跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 17:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝達榮
論文名稱:包埋厭氧菌於單段式消化槽產製生物氫烷氣之研究
論文名稱(外文):Biohythane Production via Single-stage Digester Using Gel-Entrapped Anaerobic Microorganisms
指導教授:林秋裕林秋裕引用關係
指導教授(外文):Chiu-Yue Lin
口試委員:陳晉照林秋裕賴奇厚朱正永童翔新
口試委員(外文):Chin-Chao ChenChiu-Yue LinChyi-How LayChen-Yeon ChuShan-Shin Ton
口試日期:2020-07-23
學位類別:博士
校院名稱:逢甲大學
系所名稱:環境工程與科學學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:108
中文關鍵詞:生物氫生質氫烷氣細胞包埋暗醱酵水力停留時間單段式
外文關鍵詞:BiohydrogenBiohythaneCell-entrapmentDark fermentation,Hydraulic retention timeSingle-stage.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生質氫烷氣(biohythane)為目前可以替代化石燃料的能源中最具發展性的種類之一。在過去的幾十年裡,兩段式厭氧醱酵系統總是廣泛地被使用於生產氫氣與甲烷;然而,由於成本及設備複雜性而有使用上的限制,也讓其被一段式厭氧醱酵系統所取代。本研究致力於開發另一套成本低於兩段式醱酵的產氫烷氣產製方法,名為單段式生產生質氫烷氣,即將單一反應槽體內用來生產氫氣與甲烷的微生群體(hydrogenic/methanogenic microbes)分別包埋在K-carrageenan以及Gelatin中來生產甲烷,探討產氫菌與產甲烷菌的比例以及水力停留時間(HRT)對產氫烷氣的影響。
測試產氫菌與產甲烷菌的比例為1/4、2/3、3/2及4/1之結果,顯示對單段式產氫烷氣系統性能有顯著的影響。在穩定狀態下 ,生產biohythane的速率為 381–480 mL/L-d,hythane中的H2含量(HCH)在1-75%(v/v)之間,化學需氧量(CODre)去除效率 為57.6-81.9 %。菌體比例為2/3時,biohythane達到最高的產氣值,H2和CH4的產率分別為64.6 mL/L-d和395 mL/L-d,HCH和CODre則分別為15%和74.4%。
測試HRT 48-6小時的影響,發現12小時有最多的biohythane,H2和CH4的生產速率分別為 3.16 和 4.25 L/L-d;在穩定狀態下,HCH and CODre分別為7.3-84.6%和70.4-77.9%。而且,殘留的產氫菌體結構與HRT無關,但是產甲烷的菌體結構則在HRT為12、6小時發生改變,Caproiciproducens and Methanobacterium分別是產H2和CH4的主要菌屬。
在現階段,單段式醱酵系統生產biohythane在某種程度上可與兩段式系統相比,但還需進一步改進,才可提昇效果。

Biohythane is among the most promising sustainable energy to replace fossil fuels. In the past decades, two-stage biosystem was developed for biohythane production. However, the implementation of this two-stage biosystem is still limited and has continued to lose its market share to one-stage CH4 production digesters due to high capital cost and complexity. Therefore, this study aimed to develop an alternative methods for biohythane production which requires fewer controls than the two-stage biosystem. The new method is called single-stage biohythane production, in which H2- and CH4-producing microbial communities (hydrogenic/methanogenic microbes) were separately entrapped in κ-carrageenan/gelatin to produce biohythane in only one reactor. In this work, effects of hydrogenic/methanogenic biomass ratios and hydraulic retention time (HRT) on single-stage biohythane production were investigated.
The hydrogenic/methanogenic biomass ratios of 1/4, 2/3, 3/2 and 4/1 were tested and shown to have a great effect on the single-stage biohythane production performance. At steady-state conditions, the cultivations had biohythane production rates in a range of 381–480 mL/L-d, with H2 content in hythane (HCH) varying from 1% to 75% (v/v) and chemical oxygen demand removal efficiencies (CODre) of 57.6–81.9 %. Biomass ratio 2/3 resulted in peak biohythane production with H2 and CH4 production rates being 64.6 and 395 mL/L-d, respectively, HCH and CODre being 15% and 74.4%.
HRT was tested at 48-6 h. Peak biohythane production was obtained at HRT 12 h with H2 and CH4 production rates of 3.16 and 4.25 L/L-d, respectively. At steady-state conditions, HCH and CODre were in ranges of 7.3-84.6 % and 70.4-77.9 %, respectively. During the operation, the microbial community structure of entrapped hydrogenic microbes was HRT-independent whereas that of methanogenic microbes changed at HRTs 12 and 6 h; Caproiciproducens and Methanobacterium were the dominant genera for producing H2 and CH¬4, respectively.
At current stage, the biohythane production via single-stage systems is somewhat comparable to the two-stage systems. More researches are needed to improve the single-stage biohythane production system and put it into practice.

TABLE OF CONTENTS
ACKNOWLEDGEMENTS I
ABSTRACT ERROR! BOOKMARK NOT DEFINED.
LIST OF TABLES IX
LIST OF FIGURES X
ABBREVIATIONS XI
CHAPTER 1 - INTRODUCTION 1
CHAPTER 2 - LITERATURE REVIEW 5
2.1. ANAEROBIC DIGESTION OF SOLID WASTE: STATE-OF-THE-ART 5
2.2. MECHANISM OF ANAEROBIC DIGESTION 7
2.2.1. Hydrolysis 7
2.2.2. Acidogenesis 10
2.2.3. Acetogenesis 11
2.2.4. Methanogenesis 12
2.2. MICROBIOLOGY OF ANAEROBIC DIGESTION 13
2.3. NUTRIENT FOR ANAEROBIC DIGESTION 15
2.3.1. C/N ratio 15
2.3.2. Trace elements 16
2.4. EFFECTS OF ENVIRONMENTAL FACTORS ON ANAEROBIC DIGESTION 17
2.4.1. Hydraulic retention time 17
2.4.2. pH 18
2.4.3. Temperature 19
2.5. IDEAS FOR SINGLE-STAGE BIOHYTHANE PRODUCTION 20
2.6. TECHNIQUE TO ARCHIVE SINGLE-STAGE BIOHYTHANE PRODUCTION 21
2.6.1. Cell immobilization 21
2.6.2. Cell entrapment 23
CHAPTER 3 - MATERIALS AND METHODS 25
3.1. ANAEROBIC INOCULUM 25
3.2. NUTRIENT COMPOSITION 26
3.3. CELL ENTRAPMENT 27
3.4. ANALYTICAL METHODS 30
CHAPTER 4 - EFFECT OF HYDROGENIC/METHANOGENIC BEADS RATIO ON SINGLE-STAGE BIOHYTHANE PRODUCTION SYSTEM 32
4.1. BACKGROUND 32
4.2. SINGLE-STAGE BIOHYTHANE REACTOR AND OPERATION 33
4.3. BIOHYTHANE PRODUCTION AT VARIOUS BEAD RATIO 35
4.3.1. Daily variations of biohythane production 35
4.3.2. Hydrogen content in hythane 38
4.4. LIQUID INTERMEDIATE PRODUCTS IN BIOHYTHANE FERMENTATION 40
4.4.1. Distribution of the metabolic intermediates 40
4.4.2. Comparison of intermediates in single- and two-stage biohythane production 41
4.5. BIOMASS LOSS OF THE ENTRAPPED HYDROGENIC/METHANOGENIC BEADS DURING BIOHYTHANE PRODUCTION 43
4.6. ORGANIC CONSUMPTION DURING BIOHYTHANE PRODUCTION 44
4.6.1. Total COD removal efficiency 44
4.6.2. Carbon balance analysis 46
4.7. SIGNIFICANCES OF THE STUDY 47
4.8. CONCLUSIONS 49
CHAPTER 5 - EFFECT OF HRT ON SINGLE-STAGE BIOHYTHANE PRODUCTION SYSTEM VIA ENTRAPPED ANAEROBIC MICROORGANISM 50
5.1. BACKGROUND 50
5.2. SINGLE-STAGE BIOHYTHANE PRODUCTION REACTOR AND ITS OPERATION 51
5.3. BIOGAS PRODUCTION PERFORMANCE AT VARIOUS HRTS 53
5.3.1. Experiments at mild HRT values (48-24 h) 56
5.3.2. Experiments at extreme HRT values (12-6 h) 58
5.4. DISTRIBUTION OF LIQUID CONTENTS AT VARIOUS HRTS 59
5.4.1. Soluble microbial products 60
5.4.2. Biodegradation efficiency of the substrate 61
5.5. BIOMASS CONCENTRATION VARIATIONS IN HYDROGENIC/METHANOGENIC BEADS AND LIQUID MEDIUM 62
5.6. COD MASS BALANCE 64
5.7. MICROBIAL COMMUNITY 66
5.8. SIGNIFICANCES OF THE STUDY 70
5.8.1. Comparing the experimental data with literature values 70
5.8.2. HRT reduction strategy 72
5.9. CONCLUSIONS 74
CHAPTER 6 - APPLICATION OF THE EXPERIMENTAL DATA 75
6.1. THEORY OF HOW SINGLE-STAGE BIOHYTHANE PRODUCTION WAS ACHIEVED 75
6.2. INCREASE BIOHYTHANE PRODUCTION RATES AND YIELDS 78
6.3. OPTIMAL BIOHYTHANE COMPOSITION 79
6.4. INCREASE COD REMOVAL EFFICIENCY 80
CHAPTER 7 - CONCLUSIONS AND PROSPECTS 81
7.1. CONCLUSIONS 81
7.2. PROSPECTS AND FUTURE WORKS 82
7.2.1. Obtaining optimal operation pH 82
7.2.2. Grouping of hydrogenic/methanogenic beads 82
7.2.3. Recirculation of the effluent 83
7.2.4. Improving the beads 84
REFERENCES 86


Affes, R., Palatsi, J., Flotats, X., Carrère, H., Steyer, J.P., Battimelli, A., 2013. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste. Bioresour. Technol. 131, 460-467.
Akansu, S.O., Dulger, Z., Kahraman, N., Veziroǧlu, T.N., 2004. Internal combustion engines fueled by natural gas—hydrogen mixtures. Int. J. Hydrogen Energy 29(14), 1527-1539.
Akansu, S.O., Kahraman, N., Çeper, B., 2007. Experimental study on a spark ignition engine fuelled by methane–hydrogen mixtures. Int. J. Hydrogen Energy 32(17), 4279-4284.
Akgöl, S., Kacar, Y., Denizli, A., Arıca, M., 2001. Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chem. 74(3), 281-288.
Akuzawa, M., Hori, T., Haruta, S., Ueno, Y., Ishii, M., Igarashi, Y., 2011. Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb. Ecol. 61(3), 595-605.
APHA, 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Inc., Washington, DC.
Anjana, K., Kaushik, A., 2014. Enhanced hydrogen production by immobilized cyanobacterium Lyngbya perelegans under varying anaerobic conditions. Biomass Bioenerg. 63, 54-57.
Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M., Lyberatos, G., 2008. Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind. Eng. Chem. 47(15), 5227-5233.
Anukam, A., Mohammadi, A., Naqvi, M., Granström, K., 2019. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 7(8), 504.
Banks, C., Humphreys, P., 1998. The anaerobic treatment of a ligno-cellulosic substrate offering little natural pH buffering capacity. Water Sci. Technol. 38(4-5), 29-35.
Bauer, C., Forest, T., 2001. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on SI engine performance. Int. J. Hydrogen Energy 26(1), 55-70.
Bélaich, J.P., Bruschi, M., Garcia, J.L., 2012. Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Springer Sci. & Bus. Media.
Belay, N., Sparling, R., Daniels, L., 1986. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl. Environ. Microbiol. 52(5), 1080-1085.
Blaut, M., 1994. Metabolism of methanogens. Antonie Van Leeuwenhoek 66(1-3), 187-208.
Campos Pozuelo, E., Palatsi Civit, J., Flotats Ripoll, X., 1999. Codigestion of pig slurry and organic wastes from food industry. Proceedings of the II International symposium on anaerobic digestion of solid waste. 192-195.
Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, I., 2016. Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386-397.
Castellano-Hinojosa, A., Armato, C., Pozo, C., González-Martínez, A., González-López, J., 2018. New concepts in anaerobic digestion processes: recent advances and biological aspects. Appl. Microbiol. Biotechnol. 102(12), 5065-5076.
Cavinato, C., Bolzonella, D., Fatone, F., Cecchi, F., Pavan, P., 2011. Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 102(18), 8605-8611.
Chandra, R., Takeuchi, H., Hasegawa, T., 2012. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renew. Sust. Energ. Rev. 16(3), 1462-1476.
Chen, C.C., Sen, B., Chuang, Y.S., Tsai, C.J., Lay, C.H., 2012. Effect of effluent recycle ratio in a continuous anaerobic biohydrogen production system. J. Clean. Prod. 32, 236-243.
Chen, C., Lin, C., 2001. Start‐up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotechnol. 21(4), 371-379.
Chen, X., Gu, Y., Zhou, X., Zhang, Y., 2014. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment. Bioresour. Technol. 164, 78-85.
Chibata, I., Tosa, T., Sato, T., Takata, I., 1987. Immobilization of cells in carrageenan. Method. Enzymol. 135, 189-198.
Choong, Y.Y., Norli, I., Abdullah, A.Z., Yhaya, M.F., 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour. Technol. 209, 369-379.
Chu, C.F., Li, Y.Y., Xu, K.Q., Ebie, Y., Inamori, Y., Kong, H.N., 2008. A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste. Int. J. Hydrogen Energy 33(18), 4739-4746.
Cirne, D., Paloumet, X., Björnsson, L., Alves, M., Mattiasson, B., 2007. Anaerobic digestion of lipid-rich waste—effects of lipid concentration. Renew. Energy 32(6), 965-975.
Cohen, A., Van Gemert, J., Zoetemeyer, R., Breure, A., 1984a. Main characteristics and stoichiometric aspects of acidogenesis of soluble carbohydrate containing wastewaters. Process Biochem. 19(6), 228-232.
Cooney, M., Maynard, N., Cannizzaro, C., Benemann, J., 2007. Two-phase anaerobic digestion for production of hydrogen–methane mixtures. Bioresour. Technol. 98(14), 2641-2651.
Danial, A.W., Abdel-Wahab, A.M., Arafat, H.H., Abdel-Basset, R., 2015. Identification and enhanced hydrogen evolution in two alginate-immobilized strains of Brevundimonas diminuta isolated from sludge and waterlogged soil. Ecohydrol. Hydrobiol. 15(2), 81-88.
Day, C., Day, G., 2017. Climate change, fossil fuel prices and depletion: The rationale for a falling export tax. Econ. Model. 63, 153-160.
De Baere, L., Mattheeuws, B., 2013. Anaerobic digestion of the organic fraction of municipal solid waste in Europe–Status, experience and prospects. ISTANBUL3WCONGRESS 38.
De Baere, L., Mattheeuws, B., 2008. State-of-the-art 2008 - anaerobic digestion of solid waste. Waste Manag. 9(4), 1-8.
De Bere, L., 2000. Anaerobic digestion of solid waste: state-of-the-art. Water Sci. Technol 41(3), 283-290.
Demirel, B., Neumann, L., Scherer, P., 2008a. Microbial community dynamics of a continuous mesophilic anaerobic biogas digester fed with sugar beet silage. Eng. Life Sci. 8(4), 390-398.
Demirel, B., Scherer, P., 2008b. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev. Environ. Sci. Biotechnol. 7(2), 173-190.
Deublein, D., Steinhauser, A., 2011. Biogas from waste and renewable resources: an introduction. John Wiley & Sons.
Dhar, B.R., Elbeshbishy, E., Hafez, H., Lee, H.S., 2015. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour. Technol. 198, 223-230.
Dinopoulou, G., Rudd, T., Lester, J.N., 1988. Anaerobic acidogenesis of a complex wastewater: I. The influence of operational parameters on reactor performance. Biotechnol. Bioeng. 31(9), 958-968.
DiStefano, T.D., Palomar, A., 2010. Effect of anaerobic reactor process configuration on useful energy production. Water Res. 44(8), 2583-2591.
Dunfield, P., Dumont, R., Moore, T.R., 1993. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem. 25(3), 321-326.
El-Mashad, H.M., Zeeman, G., Van Loon, W.K., Bot, G.P., Lettinga, G., 2004. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 95(2), 191-201.
Eden Energy, 2008. Annual report for the year ended 30 June 2008.
EPA, U.S.E.P.A, 2006. Biosolids Technology Fact Sheet, Multi-Stage Anaerobic Digestion. National Service Center for Environmental Publications.
Falshaw, R., Furneaux, R.H., 1998. Structural analysis of carrageenans from the tetrasporic stages of the red algae, Gigartina lanceata and Gigartina chapmanii (Gigartinaceae, Rhodophyta). Carbohydr. Res. 307(3-4), 325-331.
Fang, H.H., Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82(1), 87-93.
Ferguson, R.M., Coulon, F., Villa, R., 2018. Understanding microbial ecology can help improve biogas production in AD. Sci. Total Environ. 642, 754-763.
Ferrer, I., Serrano, E., Ponsa, S., Vazquez, F., Font, X.J., 2009. Enhancement of thermophilic anaerobic sludge digestion by 70 C pre-treatment: energy considerations. J. Residuals Sci. Tech. 6(1), 11-18.
Ferry, J.G., 2010. The chemical biology of methanogenesis. Planet Space Sci. 58(14-15), 1775-1783.
Ferry, J.G., 2012. Methanogenesis: ecology, physiology, biochemistry & genetics. Springer Sci. & Bus. Media.
Ferry, J.G., 1992. Methane from acetate. 174(17), 5489-5495.
Fournier, G.P., Gogarten, J.P., 2008. Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J. Bacteriol. Res. 190(3), 1124-1127.
Franke-Whittle, I.H., Walter, A., Ebner, C., Insam, H., 2014. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manag. 34(11), 2080-2089.
Fulton, J., Marmaro, R.W., Egan, G.J., 2010. System for producing a hydrogen enriched fuel, Google Patents.
Galagan, J.E., Nusbaum, C., Roy, A., Endrizzi, M.G., Macdonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., 2002. The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res. 12(4), 532-542.
Gardin, H., Pauss, A., 2001. κ-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2, 4, 6-trichlorophenol under air-limited conditions. Appl. Microbiol. Biotechnol. 56(3-4), 517-523.
Geonzon, L.C., Descallar, F.B.A., Du, L., Bacabac, R.G., Matsukawa, S., 2020. Gelation mechanism and network structure in gels of carrageenans and their mixtures viewed at different length scales - A review. Food Hydrocoll. 106039.
Gerardi, M.H., 2003. The microbiology of anaerobic digesters. John Wiley & Sons.
Glass, J., Orphan, V.J., 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front. Microbiol. 3, 61.
Gokfiliz, P., Karapinar, I., 2016. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation. Int. J. Hydrogen Energy 42(4), 2553-2561.
Gujer, W., Zehnder, A., 1983. Conversion processes in anaerobic digestion. Water Sci. Technol. 15(8-9), 127-167.
Harrop, T.C., Mascharak, P.K., 2005. Structural and spectroscopic models of the A-cluster of acetyl coenzyme a synthase/carbon monoxide dehydrogenase: Nature's Monsanto acetic acid catalyst. Coord. Chem. Rev. 249(24), 3007-3024.
Hochheimer, A., Hedderich, R., Thauer, R.K., 1998. The formylmethanofuran dehydrogenase isoenzymes in Methanobacterium wolfei and Methanobacterium thermoautotrophicum: induction of the molybdenum isoenzyme by molybdate and constitutive synthesis of the tungsten isoenzyme. Arch, Microbiol. 170(5), 389-393.
Hogan, F., Mormede, S., Clark, P., Crane, M., 2004. Ultrasonic sludge treatment for enhanced anaerobic digestion. Water Sci. Technol. 50(9), 25-32.
Hussy, I., Hawkes, F., Dinsdale, R., Hawkes, D.L., 2005. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 30(5), 471-483.
Ikeda, S., Nishinari, K., 2001. “Weak gel”-type rheological properties of aqueous dispersions of nonaggregated κ-carrageenan helices. J. Agric. Food Chem. 49(9), 4436-4441.
Ito, T., Yoshiguchi, K., Ariesyady, H.D., Okabe, S., 2012. Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresour. Technol. 123, 599-607.
Jang, H.M., Cho, H.U., Park, S.K., Ha, J.H., Park, J.M., 2014. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process. Water Res. 48, 1-14.
Jiang, H., Qin, Y., Gadow, S., Ohnishi, A., Fujimoto, N., Li, Y.Y., 2018a. Bio-hythane production from cassava residue by two-stage fermentative process with recirculation. Bioresour. Technol. 247, 769-775.
Jiang, Y., Dennehy, C., Lawlor, P.G., Hu, Z., McCabe, M., Cormican, P., Zhan, X., Gardiner, G.E., 2018b. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. Water Manag. 79, 302-311.
Kassab, Z., Aziz, F., Hannache, H., Youcef, H.B., El Achaby, M., 2019. Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. Int. J. Biol. Macromol. 123, 1248-1256.
Keskin, T., Aksöyek, E., Azbar, N., 2011. Comparative analysis of thermophilic immobilized biohydrogen production using packed materials of ceramic ring and pumice stone. Int. J. Hydrogen Energy 36(23), 15160-15167.
Kim, M., Gomec, C.Y., Ahn, Y., Speece, R., 2003. Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ. Technol. 24(9), 1183-1190.
Kim, S.H., Han, S.K., Shin, H.S., 2008. Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem. 43(2), 213-218.
Kinnunen, V., Craggs, R., Rintala, J., 2014. Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating-volume reactor. Water Res. 57, 247-257.
Ko, J.H., Wang, N., Yuan, T., Lü, F., He, P., Xu, Q., 2018. Effect of nickel-containing activated carbon on food waste anaerobic digestion. Bioresour. Technol. 266, 516-523.
Kongjan, P., Sompong, O., Angelidaki, I., 2011. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour. Technol. 102(5), 4028-4035.
Koutrouli, E.C., Kalfas, H., Gavala, H.N., Skiadas, I.V., Stamatelatou, K., Lyberatos, G., 2009. Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour. Technol. 100(15), 3718-3723.
Kraemer, J.T., Bagley, D.M., 2005. Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ. Sci. Technol. 39(10), 3819-3825.
Krishnan, S., Din, M.F.M., Taib, S.M., Ling, Y.E., Puteh, H., Mishra, P., Nasrullah, M., Sakinah, M., Wahid, Z.A., Rana, S., 2019. Process constraints in sustainable bio-hythane production from wastewater. Bioresour. Technol. Report 5, 359-363.
Kumar, G., Sivagurunathan, P., Park, J.H., Park, J.H., Park, H.D., Yoon, J.J., Kim, S.H., 2016. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Bioresour. Technol. 206, 188-194.
Kumari, S., Das, D., 2019. Biohythane production from sugarcane bagasse and water hyacinth: A way towards promising green energy production. J. Clean. Prod. 207, 689-701.
Kyazze, G., Dinsdale, R., Guwy, A., Hawkes, F., Premier, G., Hawkes, D., 2007. Performance characteristics of a two‐stage dark fermentative system producing hydrogen and methane continuously. Biotechnol. Bioeng. 97(4), 759-770.
Larsen, J., Wallace, J., 1997. Comparison of emissions and efficiency of a turbocharged lean-burn natural gas and hythane-fueled engine. J. Eng. Gas Turb. Power 119(1), 218-226.
Lay, C.H., Kumar, G., Mudhoo, A., Lin, C.Y., Leu, H.J., Shobana, S., Nguyen, M.L.T., 2020. Recent trends and prospects in biohythane research: An overview. Int. J. Hydrogen Energy 45(10), 5864-5873.
Lay, C.H., Vo, T.P., Lin, P.Y., Abdul, P.M., Liu, C.M., Lin, C.Y. 2019. Anaerobic hydrogen and methane production from low-strength beverage wastewater. Int. J. Hydrogen Energy, 44(28), 14351-14361.
Lebuhn, M., Munk, B., Effenberger, M., 2014. Agricultural biogas production in Germany-from practice to microbiology basics. Energy Sustain. Soc. 4(1), 10.
Lee, K.S., Lin, P.J., Chang, J.S., 2006. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int. J. Hydrogen Energy 31(4), 465-472.
Lee, M.J., Song, J.H., Hwang, S.J., 2009. Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation. Bioresour. Technol. 100(3), 1491-1493.
Lee, Y.W., Chung, J., 2010. Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. Int. J. Hydrogen Energy 35(21), 11746-11755.
Li, C., Wang, X., Zhang, G., Li, J., Li, Z., Yu, G., Wang, Y., 2018. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification. Bioresour. Technol. 254, 187-193.
Li, Y., Park, S.Y., Zhu, J., 2011. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sust. Energ. Rev. 15(1), 821-826.
Lin, C.Y., Chang, R.C., 2004. Fermentative hydrogen production at ambient temperature. Int. J. Hydrogen Energy 29(7), 715-720.
Lin, C.Y., Doctoral Thesis, Tohoku University, Japan. 1986. Effects of substrate loading rate and temperature on methanogenesis process in anaerobic digestion.
Lin, C.Y., Ta, D.T., Chu, C.Y., Ta, T.M.N., 2016. Single-stage biohythane production via co-immobilized fermentative microorganisms. Environmental Technology and Innovations: Proceedings of the 1st International Conference on Environmental Technology and Innovations, Ho Chi Minh City, Vietnam. 127.
Lin, L., Yan, R., Liu, Y., Jiang, W., 2010. In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour. Technol. 101(21), 8217-8223.
Lin, P.Y., Whang, L.M., Wu, Y.R., Ren, W.J., Hsiao, C.J., Li, S.L., Chang, J.S., 2007. Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int. J. Hydrogen Energy 32(12), 1728-1735.
Liu, D., Liu, D., Zeng, R.J., Angelidaki, I., 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40(11), 2230-2236.
Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., Xing, X.H., 2013. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour. Technol. 135, 292-303.
Ljungdahl, L.G., 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu. Rev. Microbiol. 40, 415-450.
Lovley, D.R., Klug, M.J., 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 45(4), 1310-1315.
Lu, J.H., Chen, C., Huang, C., Lee, D.J., 2020. Glucose fermentation with biochar-amended consortium: microbial consortium shift. Bioeng. 11(1), 272-280.
Luo, G., Xie, L., Zhou, Q., Angelidaki, I., 2011. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour. Technol. 102(18), 8700-8706.
Luo, S., Jain, A., Aguilera, A., He, Z., 2017. Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell. Appl. Energy 206, 879-886.
Luste, S., Luostarinen, S., 2010. Anaerobic co-digestion of meat-processing by-products and sewage sludge - Effect of hygienization and organic loading rate. Bioresour. Technol. 101(8), 2657-2664.
Ma, J., Frear, C., Wang, Z.W., Yu, L., Zhao, Q., Li, X., Chen, S. 2013. A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour. Technol. 134, 391-395.
Ma, Z., Li, C., Su, H., 2016. Dark bio-hydrogen fermentation by an immobilized mixed culture of Bacillus cereus and Brevumdimonas naejangsanensis. Renew. Energy 105, 458-464.
Mahdy, A., Mendez, L., Ballesteros, M., González-Fernández, C., 2015. Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158, 35-41.
Mahmood, Q., Ping, Z., Li, G.X., Mei, L.L., 2006. The rate-limiting step in anaerobic digestion in the presence of phosphine. Toxicol. Ind. Health, 22(4), 165-172.
Mamimin, C., Singkhala, A., Kongjan, P., Suraraksa, B., Prasertsan, P., Imai, T., Sompong, O., 2015. Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent. Int. J. Hydrogen Energy 40(19), 6319-6328.
Mara, D., Horan, N.J., 2003. Handbook of water and wastewater microbiology.
Meena, R.A.A., Banu, J.R., Kannah, R.Y., Yogalakshmi, K., Kumar, G., 2020. Biohythane production from food processing wastes–Challenges and perspectives. Bioresour. Technol. 298, 122449.
Meng, F., Zhang, Y., Xiong, Z., Wang, G., Li, F., Zhang, L., 2018. Mechanical, hydrophobic and thermal properties of an organic-inorganic hybrid carrageenan-polyvinyl alcohol composite film. Compos. Part B- Eng. 143, 1-8.
Meng, X., Yuan, X., Ren, J., Wang, X., Zhu, W., Cui, Z., 2017. Methane production and characteristics of the microbial community in a two-stage fixed-bed anaerobic reactor using molasses. Bioresour. Technol. 241, 1050-1059.
Middha, P., Engel, D., Hansen, O.R., 2011. Can the addition of hydrogen to natural gas reduce the explosion risk? Int. J. Hydroge Energy 36(3), 2628-2636.
Mital, K.M., 1996. Biogas systems: principles and applications. New Age International.
Mönch-Tegeder, M., Lemmer, A., Oechsner, H., 2014. Enhancement of methane production with horse manure supplement and pretreatment in a full-scale biogas process. Energy 73, 523-530.
Monlau, F., Kaparaju, P., Trably, E., Steyer, J.-P., Carrere, H., 2015. Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: mass, energy and economical balances. Chem. Eng. J. 260, 377-385.
Nasr, N., Elbeshbishy, E., Hafez, H., Nakhla, G., El Naggar, M.H., 2012. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour. Technol. 111, 122-126.
Nguyen, A.L., Luong, J.H.T., 1986. Diffusion in κ‐carrageenan gel beads. Biotechnol. Bioeng. 28(8), 1261-1267.
Nouri, A., Yaraki, M.T., Ghorbanpour, M., Wang, S., 2018. Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. Int. J. Biol. Macromol. 115, 227-235.
Nussinovitch, A., 1997. Hydrocolloid applications: gum technology in the food and other industries.
Ogbonna, J.C., Mashima, H., Tanaka, H., 2001. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. Bioresour. Technol. 76(1), 1-8.
Ortenzi, F., Chiesa, M., Scarcelli, R., Pede, G., 2008. Experimental tests of blends of hydrogen and natural gas in light-duty vehicles. Int. J. Hydrogen Energy 33(12), 3225-3229.
Pakarinen, O., Kaparaju, P., Rintala, J., 2011. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR. Bioresour. Technol. 102(19), 8952-8957.
Paliwal, R., Uniyal, S., Rai, J., 2015. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation. Environ. Sci. and Pollut. Res. 22(9), 6842-6853.
Park, J., Chang, H., 2000. Microencapsulation of microbial cells. Biotechnol. Adv. 18(4), 303-319.
Park, Y.S., Yun, J.W., Kim, D.S., Song, S.K., 1998. Wastewater treatment in a packed-bed reactor with immobilized cells onto a new ceramic carrier. Biotechnol. Tech. 12(6), 459-462.
Passos, F., Hernández-Mariné, M., García, J., Ferrer, I., 2014. Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res. 49, 351-359.
Pasupuleti, S.B., Mohan, S.V., 2015. Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresour. Technol. 189, 177-185.
Phuttaro, C., Sawatdeenarunat, C., Surendra, K., Boonsawang, P., Chaiprapat, S., Khanal, S.K., 2019. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour. Technol. 284, 128-138.
Porpatham, E., Ramesh, A., Nagalingam, B., 2007. Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int. J. Hydrogen Energy 32(12), 2057-2065.
Procházka, J., Dolejš, P., Máca, J., Dohányos, M., 2012. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl. Microbiol. Biotechnol. 93(1), 439-447.
Qin, Y., Li, L., Wu, J., Xiao, B., Hojo, T., Kubota, K., Cheng, J., Li, Y.Y., 2019a. Co-production of biohydrogen and biomethane from food waste and paper waste via recirculated two-phase anaerobic digestion process: Bioenergy yields and metabolic distribution. Bioresour. Technol. 276, 325-334.
Qin, Y., Wu, J., Xiao, B., Cong, M., Hojo, T., Cheng, J., Li, Y.Y., 2019b. Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste. Energy 179, 1235-1245.
Rathore, S., Desai, P.M., Liew, C.V., Chan, L.W., Heng, P.W.S., 2013. Microencapsulation of microbial cells. J. Food Eng. 116(2), 369-381.
Rhim, J.W., Wang, L.F., 2013. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. J. Clean. Prod. 96(1), 71-81.
Ritchie, H., Roser, M., 2017. Fossil fuels. Our World in Data.
Rochas, C., Rinaudo, M., 1980. Activity coefficients of counterions and conformation in kappa‐carrageenan systems. Biopolymers 19(9), 1675-1687.
Rotaru, A.E., Shrestha, P.M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P., Lovley, D.R., 2014. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7(1), 408-415.
Scarlat, N., Dallemand, J.-F., Fahl, F., 2018. Biogas: Developments and perspectives in Europe. Renew. Energy 129, 457-472.
Schievano, A., Tenca, A., Lonati, S., Manzini, E., Adani, F., 2014. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 124, 335-342.
Schimpf, U., Hanreich, A., Mähnert, P., Unmack, T., Junne, S., Renpenning, J., Lopez-Ulibarri, R., 2013. Improving the efficiency of large-scale biogas processes: pectinolytic enzymes accelerate the lignocellulose degradation. J. Renew. Sustain. Energy 4(53), 53-60.
Schulz, S., Matsuyama, H., Conrad, R., 1997. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol. Ecol. 22(3), 207-213.
Seengenyoung, J., Mamimin, C., Prasertsan, P., Sompong, O., 2019. Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. Int. J. Hydrogen Energy 44(6), 3347-3355.
Shima, S., Warkentin, E., Thauer, R.K., Ermler, U., 2002. Structure and function of enzymes involved in the methanogenic pathway utilizing carbon dioxide and molecular hydrogen. J. Biosci. Bioeng. 93(6), 519-530.
Shin, H.S., Youn, J.H., Kim, S.H., 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrogen Energy 29(13), 1355-1363.
Si, B., Li, J., Li, B., Zhu, Z., Shen, R., Zhang, Y., Liu, Z., 2015. The role of hydraulic retention time on controlling methanogenesis and homoacetogenesis in biohydrogen production using upflow anaerobic sludge blanket (UASB) reactor and packed bed reactor (PBR). Int. J. Hydrogen Energy 40(35), 11414-11421.
Si, B., Liu, Z., Zhang, Y., Li, J., Shen, R., Zhu, Z., Xing, X., 2016. Towards biohythane production from biomass: influence of operational stage on anaerobic fermentation and microbial community. Int. J. Hydrogen Energy 41(7), 4429-4438.
Si, B., Watson, J., Aierzhati, A., Yang, L., Liu, Z., Zhang, Y., 2019. Biohythane production of post-hydrothermal liquefaction wastewater: A comparison of two-stage fermentation and catalytic hydrothermal gasification. Bioresour. Technol. 274, 335-342.
Siddiqui, Z., Horan, N., Salter, M., 2011. Energy optimisation from co-digested waste using a two-phase process to generate hydrogen and methane. Int. J. Hydrogen Energy 36(8), 4792-4799.
Silva-Illanes, F., Tapia-Venegas, E., Schiappacasse, M.C., Trably, E., Ruiz-Filippi, G., 2017. Impact of hydraulic retention time (HRT) and pH on dark fermentative hydrogen production from glycerol. Energy 141, 358-367.
Sivagurunathan, P., Kumar, G., Sen, B., Lin, C.Y., 2014. Development of a Novel Hybrid Immobilization Material (HY‐IM) for Fermentative Biohydrogen Production from Beverage Wastewater. J. the Chinese Chem. Soc. 61(7), 827-830.
Solans, M., Vobis, G., 2013. Biology of actinomycetes in the rhizosphere of nitrogen-fixing plants. Production of industrial enzymes, 1-25.
Souza, T.S., Ferreira, L.C., Sapkaite, I., Pérez-Elvira, S.I., Fdz-Polanco, F., 2013. Thermal pretreatment and hydraulic retention time in continuous digesters fed with sewage sludge: Assessment using the ADM1. Bioresour. Technol. 148, 317-324.
Speight, J.G., 2018. Natural gas: a basic handbook. Gulf Professional Publishing.
Stams, A.J., Plugge, C.M., 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7(8), 568-577.
Statistics, N.G.V., 2002. International Association for Natural Gas Vehicles.
Sun, L., Pope, P.B., Eijsink, V.G., Schnürer, A., 2015. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microbiol. Biotechnol. 8(5), 815-827.
Ta, D.T., Lin, C.Y., Ta, T.M.N., Chu, C.Y., 2020. Biohythane production via single-stage anaerobic fermentation using entrapped hydrogenic and methanogenic bacteria. Bioresour. Technol. 300, 122702.
Tejerizo, G.T., Kim, Y.S., Maus, I., Wibberg, D., Winkler, A., Off, S., Pühler, A., Scherer, P., Schlüter, A., 2017. Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. J. Biotechnol. 247, 1-5.
Touloupakis, E., Rontogiannis, G., Benavides, A.M.S., Cicchi, B., Ghanotakis, D.F., Torzillo, G., 2016. Hydrogen production by immobilized Synechocystis sp. PCC 6803. Int. J. Hydrogen Energy, 41(34), 15181-15186.
Turner, J., 2004. Sustainable hydrogen production. Sci. 305(5686), 972-974.
Ushani, U., Banu, J.R., Kavitha, S., Kaliappan, S., Yeom, I.T., 2017. Immobilized and MgSO4 induced cost effective bacterial disintegration of waste activated sludge for effective anaerobic digestion. Chemosphere, 175, 66-75.
van Haandel, A., De Vrieze, J., Verstraete, W., dos Santos, V.S., 2014. Methanosaeta dominate acetoclastic methanogenesis during high‐rate methane production in anaerobic reactors treating distillery wastewaters. J. Chem. Technol. Biotechnol. 89(11), 1751-1759.
Van Lier, J.B., Mahmoud, N., Zeeman, G., 2008. Anaerobic wastewater treatment. Biol. Wastewater Manag. Principle Modelling and Design, 415-456.
Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., Lyberatos, G., 2009. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 100(15), 3713-3717.
Vo, T.P., Lay, C.H., Lin, C.Y., 2019. Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor. Bioresour. Technol. 292, 121869.
Wang, B., Li, Y., Ren, N., 2013. Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time. Int. J. Hydrogen Energy 38(11), 4361-4367.
Wang, J., Yin, Y., 2017. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. nt. J. Hydrogen Energy 42(8), 4804-4823.
Wang, Y., Zhang, Y., Wang, J., Meng, L., 2009. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenerg. 33(5), 848-853.
Weiß, S., Tauber, M., Somitsch, W., Meincke, R., Müller, H., Berg, G., Guebitz, G., 2010. Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water Res. 44(6), 1970-1980.
Win, T.T., Kim, H., Cho, K., Song, K.G., Park, J., 2016. Monitoring the microbial community shift throughout the shock changes of hydraulic retention time in an anaerobic moving bed membrane bioreactor. Bioresour. Technol. 202, 125-132.
Wong, B.T., Show, K., Lee, D., Lai, J., 2009. Carbon balance of anaerobic granulation process: Carbon credit. Bioresour. Technol. 100(5), 1734-1739.
Wu, S.Y., Hung, C.H., Lin, C.Y., Lin, P.J., Lee, K.S., Lin, C.N., Chang, F.Y., Chang, J.S., 2008. HRT-dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended, granular and immobilized sludge systems using glucose as the carbon substrate. Int. J. Hydrogen Energy 33(5), 1542-1549.
Wu, S.Y., Hung, C.H., Lin, C.N., Chen, H.W., Lee, A.S., Chang, J.S., 2006. Fermentative hydrogen production and bacterial community structure in high‐rate anaerobic bioreactors containing silicone‐immobilized and self‐flocculated sludge. Biotechnol. Bioeng. 93(5), 934-946.
Wu, S.Y., Lin, C.N., Chang, J.S., Lee, K.S., Lin, P.J., 2002. Microbial hydrogen production with immobilized sewage sludge. Biotechnol. Progress 18(5), 921-926.
Wu, X., Yao, W., Zhu, J., 2010. Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 35(13), 6592-6599.
Yang, G., Yin, Y., Wang, J., 2019. Microbial community diversity during fermentative hydrogen production inoculating various pretreated cultures. Int. J. Hydrogen Energy 44(26), 13147-13156.
Yang, Y., Yu, K., Xia, Y., Lau, F.T., Tang, D.T., Fung, W.C., Fang, H.H., Zhang, T., 2014. Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 98(12), 5709-5718.
Yeshanew, M.M., Frunzo, L., Pirozzi, F., Lens, P.N., Esposito, G., 2016. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 220, 312-322.
Yi, J., Dong, B., Jin, J., Dai, X., 2014. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. Plos One 9(7), 1-10.
Yin, F., Dong, H., Zhang, W., Zhu, Z., Shang, B., Wang, Y., 2019. Removal of combined antibiotic (florfenicol, tylosin and tilmicosin) during anaerobic digestion and their relative effect. Renew. Energy 139, 895-903.
Yossan, S., Sompong, O., Prasertsan, P., 2012. Effect of initial pH, nutrients and temperature on hydrogen production from palm oil mill effluent using thermotolerant consortia and corresponding microbial communities. Int. J. Hydrogen Energy 37(18), 13806-13814.
Yu, B., Shan, A., Zhang, D., Lou, Z., Yuan, H., Huang, X., Zhu, N., Hu, X., 2015. Dosing time of ferric chloride to disinhibit the excessive volatile fatty acids in sludge thermophilic anaerobic digestion system. Bioresour. Technol. 189, 154-161.
Yu, H., Zhu, Z., Hu, W., Zhang, H., 2002. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy 27(11-12), 1359-1365.
Zabranska, J., Dohanyos, M., Jeníček, P., Kutil, J., 2006. Disintegration of excess activated sludge–evaluation and experience of full-scale applications. Water Sci. Technol. 53(12), 229-236.
Zahan, Z., Othman, M.Z., Muster, T.H., 2018. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Water Manag. 71, 663-674.
Zhang, T., Liu, H., Fang, H.H., 2003. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Manag. 69(2), 149-156.
Zhang, Y., Wang, X., Hu, M., Li, P., 2015. Effect of hydraulic retention time (HRT) on the biodegradation of trichloroethylene wastewater and anaerobic bacterial community in the UASB reactor. Appl. Microbiol. Biotechnol. 99(4), 1977-1987.
Zhao, L., Cao, G.L., Wang, A.J., Guo, W.Q., Liu, B.F., Ren, H.Y., Ren, N.Q., Ma, F., 2012. Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier. Int. J. Hydrogen Energy, 37(1), 162-166.
Zhen, G., Lu, X., Kato, H., Zhao, Y., Li, Y.Y., 2017. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 69, 559-577.
Zhu, H., Stadnyk, A., Béland, M., Seto, P., 2008. Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process. Bioresour. Technol. 99(11), 5078-5084.


電子全文 電子全文(網際網路公開日期:20260101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top