Baniasadi, H., SA, A. R., & Mashayekhan, S. (2015). Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. International journal of biological macromolecules, 74, 360-366.
Bernkop-Schnürch, A., Kast, C. E., & Richter, M. F. (2001). Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. Journal of controlled release, 71(3), 277-285.
Buckwalter, J. (1990). Articular cartilage; composition, structure, response to injury, and methods of facilating repair. Articular Cartilage and Knee Joint Function; Basic Science and Arthroscopy, 19-56.
Chhatbar, M. U., Prasad, K., Chejara, D. R., & Siddhanta, A. (2012). Synthesis of sodium alginate based sprayable new soft gel system. Soft Matter, 8(6), 1837-1844.
Chohayeb, A. A., Chow, L. C., & Tsaknis, P. J. (1987). Evaluation of calcium phosphate as a root canal sealer-filler material. Journal of endodontics, 13(8), 384-387.
Choi, Y. S., Hong, S. R., Lee, Y. M., Song, K. W., Park, M. H., & Nam, Y. S. (1999). Studies on gelatin‐containing artificial skin: II. Preparation and characterization of cross‐linked gelatin‐hyaluronate sponge. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 48(5), 631-639.
Chou, C. H., Cheng, W. T., Lin, C. C., Chang, C. H., Tsai, C. C., & Lin, F. H. (2006). TGF‐β1 immobilized tri‐co‐polymer for articular cartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(2), 338-348.
Cohen, B., Pinkas, O., Foox, M., & Zilberman, M. (2013). Gelatin–alginate novel tissue adhesives and their formulation–strength effects. Acta biomaterialia, 9(11), 9004-9011.
Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. Retrieved from http://www.sciencedirect.com/science/article/pii/S0144861712010478. doi:https://doi.org/10.1016/j.carbpol.2012.10.028
Damink, L. O., Dijkstra, P., Van Luyn, M., Van Wachem, P., Nieuwenhuis, P., & Feijen, J. (1996). Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials, 17(8), 765-773.
Englert, C., Blunk, T., Müller, R., von Glasser, S. S., Baumer, J., Fierlbeck, J., . . . Hammer, J. (2007). Bonding of articular cartilage using a combination of biochemical degradation and surface cross-linking. Arthritis research & therapy, 9(3), R47.
Felson, D. T., & Zhang, Y. (1998). An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 41(8), 1343-1355.
Freed, L., Hollander, A., Martin, I., Barry, J., Langer, R., & Vunjak-Novakovic, G. (1998). Chondrogenesis in a cell-polymer-bioreactor system. Experimental cell research, 240(1), 58-65.
Friedman, M. J., Berasi, C. C., Fox, J. M., Del, W. P., Snyder, S. J., & Ferkel, R. D. (1984). Preliminary results with abrasion arthroplasty in the osteoarthritic knee. Clinical orthopaedics and related research(182), 200-205.
FUJIKAWA, K., SUGAWARA, A., MURAI, S., NISHIYAMA, M., TAKAGI, S., & CHOW, L. C. (1995). Histopathological reaction of calcium phosphate cement in periodontal bone defect. Dental Materials Journal, 14(1), 45-57,103.
Furukawa, T., Eyre, D., Koide, S., & Glimcher, M. (1980). Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg, 62(1), 79-89.
Gomoll, A. H., & Minas, T. (2014). The quality of healing: articular cartilage. Wound Repair and Regeneration, 22, 30-38.
Hamanishi, C., Kitamoto, K., Ohura, K., Tanaka, S., & Doi, Y. (1996). Self‐setting, bioactive, and biodegradable TTCP‐DCPD apatite cement. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 32(3), 383-389.
Hunter, W. (1742). Of the structure and diseases of articulating cartilages, by William Hunter, surgeon. Philosophical Transactions (1683-1775), 42, 514-521.
Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543.
Jarquín-Yáñez, K., Arenas-Alatorre, J., Piñón-Zárate, G., Arellano-Olivares, R., Herrera-Enríquez, M., Hernández-Téllez, B., & Castell-Rodríguez, A. (2016). Structural effect of different EDC crosslinker concentration in gelatin-hyaluronic acid scaffolds. J Bioeng Biomed Sci, 6(2), 182.
Kakkar, P., Verma, S., Manjubala, I., & Madhan, B. (2014). Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Materials Science and Engineering: C, 45, 343-347.
Ko, C.-L., Chen, J.-C., Hung, C.-C., Wang, J.-C., Tien, Y.-C., & Chen, W.-C. (2014). Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility. Materials Science and Engineering: C, 39, 40-46.
Ko, C.-L., Chen, J.-C., Tien, Y.-C., Hung, C.-C., Wang, J.-C., & Chen, W.-C. (2015). Osteoregenerative capacities of dicalcium phosphate-rich calcium phosphate bone cement. Journal of Biomedical Materials Research Part A, 103(1), 203-210. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.35167. doi:10.1002/jbm.a.35167
Kuijpers, A. J., Engbers, G. H., Krijgsveld, J., Zaat, S. A., Dankert, J., & Feijen, J. (2000). Cross-linking and characterisation of gelatin matrices for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 11(3), 225-243.
Laffleur, F., & Küppers, P. (2019). Adhesive alginate for buccal delivery in aphthous stomatitis. Carbohydrate research, 477, 51-57.
Lanza, R., Langer, R., Vacanti, J. P., & Atala, A. (2020). Principles of tissue engineering: Academic press.
Lapčík, L., Lapcik, L., De Smedt, S., Demeester, J., & Chabrecek, P. (1998). Hyaluronan: preparation, structure, properties, and applications. Chemical reviews, 98(8), 2663-2684.
Lee, J. E., Kim, K. E., Kwon, I. C., Ahn, H. J., Lee, S.-H., Cho, H., . . . Lee, M. C. (2004). Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials, 25(18), 4163-4173.
Levangie, P. K., & Norkin, C. C. (2000). Joint Structure and Function; A Comprehensive Analysis. 3rd. Philadelphia: FA. Davis Company.
Lien, S.-M., Ko, L.-Y., & Huang, T.-J. (2009). Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta biomaterialia, 5(2), 670-679.
Lo, H., Kadiyala, S., Guggino, S., & Leong, K. (1996). Poly (L‐lactic acid) foams with cell seeding and controlled‐release capacity. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 30(4), 475-484.
Luo, J.-W., Liu, C., Wu, J.-H., Lin, L.-X., Fan, H.-M., Zhao, D.-H., . . . Sun, Y.-L. (2019). In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. Materials Science and Engineering: C, 98, 628-634.
Ma, Z., Gao, C., Gong, Y., & Shen, J. (2005). Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials, 26(11), 1253-1259.
Mankin, H. J. (1982). The response of articular cartilage to mechanical injury. JBJS, 64(3), 460-466.
Meyer, K., & Palmer, J. W. (1934). The polysaccharide of the vitreous humor. Journal of Biological Chemistry, 107(3), 629-634.
Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., & Langer, R. (1996). Novel approach to fabricate porous sponges of poly (D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 17(14), 1417-1422.
Morelli, V., Naquin, C., & Weaver, V. (2003). Alternative therapies for traditional disease states: osteoarthritis. American Family Physician, 67(2), 339-344.
Nam, Y. S., Yoon, J. J., & Park, T. G. (2000). A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 53(1), 1-7.
Palumbo, F. S., Pitarresi, G., Mandracchia, D., Tripodo, G., & Giammona, G. (2006). New graft copolymers of hyaluronic acid and polylactic acid: synthesis and characterization. Carbohydrate Polymers, 66(3), 379-385.
Park, S.-N., Lee, H. J., Lee, K. H., & Suh, H. (2003). Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration. Biomaterials, 24(9), 1631-1641.
Park, S.-N., Park, J.-C., Kim, H. O., Song, M. J., & Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials, 23(4), 1205-1212.
Pieper, J., Van Der Kraan, P., Hafmans, T., Kamp, J., Buma, P., Van Susante, J., . . . Van Kuppevelt, T. (2002). Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering. Biomaterials, 23(15), 3183-3192.
Rose, J. B., Pacelli, S., Haj, A. J. E., Dua, H. S., Hopkinson, A., White, L. J., & Rose, F. R. A. J. (2014). Gelatin-Based Materials in Ocular Tissue Engineering. Materials, 7(4), 3106-3135. Retrieved from https://www.mdpi.com/1996-1944/7/4/3106.
Sarem, M., Moztarzadeh, F., Mozafari, M., & Shastri, V. P. (2013). Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Materials Science and Engineering: C, 33(8), 4777-4785.
Steadman, J., Rodkey, W., Briggs, K., & Rodrigo, J. (1999). The microfracture technic in the management of complete cartilage defects in the knee joint. Der Orthopade, 28(1), 26-32.
Steadman, J. R., Rodkey, W. G., Singleton, S. B., & Briggs, K. K. (1997). Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Operative techniques in orthopaedics, 7(4), 300-304.
Toh, W. S., Foldager, C. B., Pei, M., & Hui, J. H. P. (2014). Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Reviews and Reports, 10(5), 686-696.
Turhan, O., & Tezbaşaran, E. (2013). In situ observation of ninhydrin and phenylhydrazine reaction in solution by FTIR. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 297-301. Retrieved from http://www.sciencedirect.com/science/article/pii/S1386142513004836. doi:https://doi.org/10.1016/j.saa.2013.05.002
Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., . . . Shu, W. (2018). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278-314. Retrieved from http://www.sciencedirect.com/science/article/pii/S2452199X17300397. doi:https://doi.org/10.1016/j.bioactmat.2017.10.001
Wang, H.-J., Di, L., Ren, Q.-S., & Wang, J.-Y. (2009). Applications and degradation of proteins used as tissue engineering materials. Materials, 2(2), 613-635.
國家發展委員會 (2019)。人口推估查詢系統。上網日期:2020年6月20日,檢自https://pop-proj.ndc.gov.tw/pyramid.aspx?uid=64&pid=60。
柯嘉泠 (2013)。吸收速率調整型之生物引導性應股修復材料的製備與應用性質評估。未出版之博士論文,逢甲大學纖維與複合材料系博士班,台中市。張晉瑋 (2013)。磷酸鈣鹽類複合玻尿酸/明膠多孔性骨支架之性質評估。未出版之碩士論文,逢甲大學纖維與複合材料碩士班,台中市。張文馨 (2011)。以不同交聯劑製備多孔性三維明膠支架及其特性研究。中興大學材料科學與工程碩士班,台中市。