跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顧祐瑄
研究生(外文):KU, YU-HSUAN
論文名稱:調氣環境對截切水果儲藏品質之影響
論文名稱(外文):Effects of Modified Atmosphere Environment on Storage Quality of Fresh Cut Fruit Products
指導教授:陳政雄陳政雄引用關係
指導教授(外文):CHEN, SHAUN
口試委員:蔣丙煌陳輝煌馮臨惠劉佳玲
口試委員(外文):CHIANG, PING-HUANGCHEN, HUI-HUANGFENG, LIN-HUILIU, CHIA-LING
口試日期:2020-07-30
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:119
中文關鍵詞:生鮮截切水果呼吸速率調氣包裝木瓜洋香瓜
外文關鍵詞:fresh-cut fruitsrespiration ratemodified atmosphere packagepapayacantaloupe
相關次數:
  • 被引用被引用:1
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
生鮮截切水果富含營養且方便食用,受輕度加工傷害,導致品質下降變劇,縮短保存期限。本研究分析截切水果在儲藏期間品質變化,並評估包裝環境氣體組成對保鮮的影響,以建立最適截切水果保存的調氣條件。首先研發用以分析採後水果呼吸速率的呼吸箱,進行密閉系統於 5 - 35°C 溫度儲藏性試驗,測量呼吸速率及各項生理性質變化,含失重、硬度、外觀顏色、總生菌數(total plate count, TPC)等,以建立品質指標及劣變動力學。另外也進行動態調氣模式環境( 3 - 10% O2 + 3 - 10% CO2 )試驗,分析冷藏時呼吸速率等儲藏品質變化,評估最適氣體的儲藏條件,續用以軟袋包裝的儲藏期限分析。結果顯示,密閉系統中截切木瓜及洋香瓜呼吸速率受溫度影響明顯,而儲於動態調氣分別於3% O2/3% CO2及 5% O2/5% CO2 環境有最低呼吸速率及硬度下降。木瓜儲藏保鮮袋充填 3% O2/3% CO2 能有效的降低呼吸速率,但無顯著抑制硬度下降及顏色暗化。綜上所述,截切水果運送及儲藏時宜保持低溫減緩劣變,配合合適氣體的調氣包裝儲藏,有助延長保存期限。
Fresh-cut fruits are nutritious and easy to eat; however, minimally processing leads to plant tissue damage and results in quality loss and shortened shelf life. This research aimed to analyze the quality changes of fresh-cut fruits during storage, and then to determine the optimal atmospheric composition for prolonging shelf life. A respiratory chamber made of low permeability material (Plexiglas) was constructed for the determination of the respiration rate, and the chamber was then used to analyze quality change during storage at 5-35oC. The analyses of respiration rate, changes of physiological properties including weight loss, hardness change, appearance color, and the viable count were achieved. Those reaction kinetics were calculated and then used to establish quality indicators. Modified atmospheres (containing 3-10 % O2 + 3-10 % CO2) were introduced to fresh-cut fruits, and the respiration rate and other physicochemical attributes were also determined during refrigeration. Finally, the fruits were stored under the optimal gas composition in permeable pouches, and the shelf life was measured and compared to those in air. The results showed the respiration rate was affected significantly by temperature for fresh-cut papaya and cantaloupe, this led to the quality decrease. The lowest respiration rates and hardness decrease for fresh-cut papaya and cantaloupe were stored at 3% O2/3% CO2 and 5 % O2/5 % CO2, respectively. Subsequently, the fresh-cut papaya stored under a 3% O2/3% CO2 atmosphere resulted in a lower respiration rate; however, no significant effects on preventing hardness loss and color darkening were observed. Conclusively, low temperature is beneficial to delay deteriorative processes, and prolonged shelf lives are achieved in association with the modified atmosphere.
第一章 緒言...........................................1
第二章 文獻回顧........................................3
一、截切蔬果生理變化...................................3
(一)、呼吸速率........................................6
(二)、乙烯與後熟......................................8
(三)、質地...........................................12
(四)、外觀顏色.......................................13
(五)、微生物.........................................14
二、調氣包裝(modified atmosphere package, MAP).......16
三、更年性水果.......................................19
四、非更年性水果.....................................21
第三章 實驗架構......................................23
第四章 材料與方法....................................24
一、化學藥品.........................................24
二、設備器材.........................................25
三、研究方法.........................................26
(一)、截切蔬果的品質變化評估..........................26
第五章 結果與討論.....................................35
一、木瓜儲藏品質變化..................................35
(一)、封閉系統儲藏....................................35
1. 品質指標測定......................................35
2. 動力學分析.........................................52
(二)、通氣系統儲藏....................................54
1. 呼吸速率之測量.....................................54
2. 質地測定..........................................56
3. 失重測定..........................................56
4. 外觀顏色..........................................58
5. TSS含量及pH值變化.................................64
6. 總生菌數測定......................................64
二、洋香瓜儲藏品質變化................................68
(一)、封閉系統儲藏....................................68
1. 品質指標測定.......................................68
2. 動力學分析.........................................84
(二)、通氣系統儲藏.....................................86
1. 呼吸速率之測量......................................86
2. 質地測定............................................88
3. 失重測定............................................88
4. 外觀顏色............................................91
5. TSS含量及pH值變化...................................96
6. 總生菌數測定........................................99
三、調氣保鮮袋儲藏......................................101
(一)、呼吸速率之測量....................................101
(二)、乙烯測定.........................................102
(三)、質地測定.........................................105
(三)、外觀顏色.........................................107
(四)、微生物...........................................112
第六章 結論............................................114
參考文獻...............................................115


王德男(2019)。包裝方法及貯藏溫度對於木瓜果實更年期上昇抑制效果之研究。中國園藝,18(2),86–93。
吳國政、謝慶昌(2007)。氣變包裝對‘台農二號’番木瓜果實之影響。中興大學園藝,32(4),13–27。
吳國政(2007)。熱處理及氣變包裝對‘台農二號’番木瓜果實採後品質及炭疽病之影響。國立中興大學園藝學系碩士學位論文。
張書榮(2006)。番木瓜外銷貯運技術之改進。國立中興大學園藝學系碩士學位論文,2–4。
衛生福利部(2013)。食品微生物之檢驗方法-大腸桿菌之檢驗。部授食字第1021951163號公告修正。
衛生福利部(2013)。食品微生物之檢驗方法-大腸桿菌群之檢驗。部授食字第1021950329 號公告修正。
衛生福利部(2013)。食品微生物之檢驗方法-生菌數之檢驗。部授食字第1021950329 號公告修正。
衛生福利部(2013)。生食用食品類衛生標準。部授食字第1021350146號令公告。
Adissie, T., & Kebede, G. (2020). Facts of packaging materials and storage environment on post harvest quality of papaya (Carica Papaya L.). Journal of Biology, 10, 21–32.
Altieri, G., Genovese, F., Matera, A., Tauriello, A., & Renzo, G. C. D. (2018). Characterization of an innovative device controlling gaseous exchange in packages for food products. Postharvest Biology and Technology, 138, 64–73.
Argañosa, S.J., Raposo, J., Teixeira, C. M., & Morais, M. M. B. (2008). Effect of cut-type on quality of minimally processed papaya. Journal of the Science of Food and Agriculture, 88, 2050–2060.
Ayhan, Z., & Chism G. W. (1998). The shelf-life of minimally processed fresh cut melons. Journal of Food Quality, 21, 29–40.
Bai, J. H., Saftner, R. A., Watada, A. E., & Lee, Y. S. (2001). Modified atmosphere maintains quality of fresh-cut cantaloupe (Cucumis melo L.). Journal of Food Science, 66, 1207–1211.
Barbosa, N. C., Vieria, R. A. M., & Resende, E. D. (2018). Modelling of respiration of Golden papaya stored under different atmosphere conditions at room temperature. Postharvest Biology and Technology, 136, 152–160.
Belay, A. Z., Caleb, O. J., & Opara, U. L. (2019). Influence of initial gas modification on physicochemical quality attributes and molecular changes in fresh and fresh-cut fruit during modified atmosphere packaging. Food Packaging and Shelf Life, 21, 2214–2894.
Cáez-Ramírez, G., Alamilla-Beltrán, L., & Gutiérrez-López, G. F. (2018). Morphometric analysis and tissue structural continuity evaluation of senescence progression in fresh cut papaya (Carica papaya L.). Journal of Food Engineering, 216, 107–119.
Cárdenas-Coronel, W. G., Carrillo-López, A., Vélez de la Rocha, R., Labavitch, J. M., Báez-Sañudo, M. A., Heredia, J. B., Zazueta-Morales, J. J., Vega-Garcia, M. O., & Sañudo-Barajas, J. A. (2016). Biochemistry and cell wall changes associated to noni (Morinda citrifolia L.) fruit ripening. Journal of Agriculture and Food Chemistry, 64(1), 302–309.
Cortellino, G., Gobbi, S., Bianchi, G., & Rizzolo, A. (2015). Modified atmosphere packaging for shelf life extension of fresh-cut apples. Food Science and Technology, 46, 1–13.
Dhineshkumar, V., Ramasamy, D., & Joyner, J. J. (2017). Effect of time and
temperature on respiration rate of Pomegranate arils (cv. ‘Bhagawa’). International Journal of Current Microbiology and Applied Sciences, 6(4), 1617–1626.
Derossi, A., Mastrandrea, M., Amodio, M. L., de Chiara, V., & Colelli, G. (2015). Application of multivariate accelerated test for the shelf life estimation of fresh-cut lettuce. Journal of Food Engineering, 169, 122–130.
Esmer, O. K., & Melikoglu, A. Y. (2016). Does the oxygen permeability affect the equilibrium gas concentrations in passive modified atmosphere packaged pomegranate arils?. Journal of Food Quality, 39, 792–804.
Fahmy, K., Violalita, F., Chatib, O. C., Yulia, R., & Nakano K. (2019). The individual influences of high CO2 on chilling injury suppression of ‘Merah Delima’ papaya fruit. International Conference on Green Agro-industry and Bioeconomy, 230, 12–16.
Fang, J., Tao, J., & Chao, C. T. (2006). Synergistic effects of modified atmosphere and minimal processing on the keeping quality of pre-cut papaya (Carica papaya L.). The Journal of Horticultural Science and Biotechnology, 81(5), 903–909.
Fonseca, S. C., Oliveira, F. A. R., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering, 52, 99–119.
Gaspar, M. (2011). Edible coating development for fresh-cut
cantaloupe. Master's thesis, Texas A&M University, 1–100.
Habib, M., Bhat, M., Dar, B. N., & Wani, A. A. (2015). Sweet cherries from farm to table: A review. Critical Reviews in Food Science and Nutrition, 57(8), 1638–1649.
Helena Gomes, M., Beaudry, R. M., & Almeida, D. P. F. (2012). Influence of oxygen and temperature on the respiration rate of fresh-cut cantaloupe and implications for modified atmosphere packaging. Horticulture Science, 47(8), 1113–1116.
Jideani, A. I. O., Anyasi, T. A., Mchau, G. R. A., Udoro, E. O., & Onipe, O. O. (2017). Processing and preservation of fresh-cut fruit and vegetable products. Postharvest Handling, 3, 47–73.
Kader, A. A., Zagory, D., & Kerbel, E. L. (1989). Modified atmosphere packaging of fruits and vegetables. Food Science and Nutrition, 28(1), 1–30.
Linhardt, J. (2016). Colorimetric detection of selected gases for work and food safety applications. sigillum universitatis ratisbonensis, 99.
Liu, M., Pirrello, J., Chervin, C., Roustan, J. P., & Bouzayen, M. (2015). Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiology, 169, 2380–2390.
Maria, A., Morais, M. B., & Argañosa, A. C. S. J. (2010). Quality during storage of fresh-cut papaya (Carica papaya L.) in various shapes. Philipp Agric Scientist, 93, 88–96.
Martinon Gaspar, M. E. (2011). Edible Coating Development for Fresh-cut Cantaloupe. Master's thesis, Texas A&M University, 1–2.
Martiñon, M. E., Moreira, R. G., Castell-Perez, M. E., & Gomes, C. (2014). Development of a multilayered antimicrobial edible coating for shelf life extension of fresh-cut cantaloupe (Cucumis melo L.) stored at 4°C. Food Science Technology, 56, 341–350.
Mclellan, M. R., Lind, L. R. & Kime R. W. (1994). Hue angle determination and statistical analysis for multiquadrant hunter L, a, b, data. Department of Food Science and Technology Institute of Food Science Cornell University, Geneva, New York, 14456, 235–340.
Morais, M. B., & Argañosa, S. J. (2010). Quality during storage of fresh-cut papaya (Carica papaya L.) in various shapes. Philipp agric scientist, 93(1), 88–96.
Oms-Oliu, G., Raybaudi-Massilia Martı´nez, R. M., Soliva-Fortuny, R., & Martı´n-Belloso, O. (2007). Effect of super atmospheric and low oxygen modified atmospheres on shelf-life extension of fresh-cut melon. Food Control, 19, 191–199.
Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., & Martı´n-Belloso, O. (2008). The role of peroxidase on the antioxidant potential of fresh-cut ‘Piel de Sapo’ melon packaged under different modified atmospheres. Food Chemistry, 106, 1085–1092.
Pan, Y. G., Yuan, M. Q., Zhang, W. M., & Zhang, Z. K. (2017). Effect of low temperatures on chilling injury in relation to energy status in papaya fruit during storage. Postharvest Biology and Technology, 125, 181–187.
Qiao, G., Xiao, Z., Ding, W., & Rok, A. (2019). Effect of chitosan/nano-titanium dioxide/thymol and tween films on ready-to-eat cantaloupe fruit quality. Coatings, 1–10.
Rahman, E. A. A., Talib, R. A., Aziz, M. G., & Yusof, Y. A. (2013). Modelling the effect of temperature on respiration rate of fresh cut papaya (Carica papaya L.) fruits. Food Science and Biotechnol, 22(6), 1581–1588.
Saquet, A. A., & Streif, J. (2016). Respiration rate and ethylene metabolism of ‘Jonagold’ apple and ‘Conference’ pear under regular air and controlled atmosphere. Bragantia, 76(2), 335–344.
Shin, J., Solval, K. M., Xiang, B., & Lee, Y. S. (2019). Combined effects of calcium ascorbate treatment and modified atmosphere packaging to improve quality retention of fresh-cut cantaloupes. Journal of Applied Packaging Research. 11(1), 70–87.
Soliva-Fortuny, R. C., Ricart-Coll, M., & Martin-Belloso, O. (2005). Sensory quality and internal atmosphere of fresh-cut Golden Delicious apples. International Journal of Food Science and Technology, 40(4), 369–375.
Song, Y., Annous, B. A., & Fan, X. (2020). Cold plasma-activated hydrogen peroxide aerosol on populations of Salmonella Typhimurium and Listeria innocua and quality changes of apple, tomato and cantaloupe during storage - A pilot scale study. Food Control, 117, 107–358.
Tabassum, N., & Khan, M. A. (2020). Modified atmosphere packaging of fresh-cut papaya using alginate based edible coating: Quality evaluation and shelf life study. Scientia Horticulturae, 259, 1–9.
Tripathi1, K., Pandey, S., Malik1, M., & Kaul1, T. (2016). Fruit ripening of climacteric and non climacteric fruit. Journal of Environmental and Applied Bioresearch, 4, 27–34.
Waghmare, R. B., Mahajan, P. V., & Annapure, U. S. (2013). Modelling the effect of time and temperature on respiration rate of selected fresh-cut produce. Postharvest Biology and Technology, 80, 25–30.
Wall, M.M., Nishijima, K. A., Fitch, M. M., & Nishijima, W. T. (2010). Physicochemical, nutritional and microbial quality of fresh-cut and frozen papaya prepared from cultivars with varying resistance to internal yellowing disease. Journal of Food Quality, 33, 131–149.
Zhou, H., Tian, M., Huang, W., Luo, S., Hu, H., Zhang, Y., & Li, P. (2020).
Physiological and transcriptomic analysis of ‘Whangkeumbae’ pear core browning during low-temperature storage. Gene Expression Patterns, 36, 119–113.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top