跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:KAI-EN YAO
研究生(外文):YAO
論文名稱:以文獻主題分析為基礎之服務型機器人搜尋行銷之初探
論文名稱(外文):Searching Marketing Analysis for Service Robots based on Subject Analysis and Latent Semantic Indexing
指導教授:董惟鳳董惟鳳引用關係
指導教授(外文):TUNG, WEI-FENG
口試委員:黃士嘉郭國泰
口試委員(外文):HUANG,SHI-JIAGUO,GUO-TAI
口試日期:2020-03-19
學位類別:碩士
校院名稱:輔仁大學
系所名稱:國際經營管理碩士學位學程
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:90
外文關鍵詞:Service robotsubject analysisSearching marketingLatent Semantic IndexingLatent Dirichlet Allocation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
The breakthrough of technology has not only made our daily life more convenient but also create a magnificent commercial and research value. The service robot is one of the best cases for exploring potential opportunities. Therefore, the approach of getting the current market index can not only from the media but also by reviewing the related research.
Thus, this paper will be conducted by the topic modeling analysis to identify the current research development and analyze the market attention based on the academic result. By applying the topic modeling, we can find out the hidden topic inside the numerous amounts of articles which have not been discovered yet. Furthermore, the study will apply the result from topic modeling into Latent Semantic Indexing which can help us to address the current market index for the service robot.
To reach the research proposal, the paper collected 383 service robot-related articles from authority open libraries and operate the topic modeling by Python. After the topic modeling, the open tool ‘’twinword’’ will be applied for Latent Semantic Indexing and concluded the result with the data from 8 nations.
The result has presented the market index that the customers are more interested in the service robot for elders. Furthermore, not only the home assistant robot is the main focus, the robotics for kids is also another popular keyword. The education element might be considered as their purchase intention. However, the data also reflect the keywords of definition and the knowledge clarification which might be illustrated as the industry still at the stage of research and design. The potential opportunities for future research are still wide and valuable to be explored.

Table of Contents
Chapter 1 Introduction 1
1.1 Background of the study 1
1.2 Research motivation 3
1.3 Research Objective 4
1.4 Research Process 7
Chapter 2 Literature Review 9
2.1 Service Robot 9
2.2 Keyword Marketing 12
Chapter 3 Research Methodology 15
3.1 Latent Dirichlet Allocation 15
3.2 Latent Semantic Indexing 19
Chapter 4 Research Result 22
4.1 LDA Result 22
4.2 LSI Result 25
4.3 Search Marketing Comparison 42
Chapter 5 Conclusions and Limitations 63
5.1 Research Conclusion 63
5.2 Practical Conclusion 64
5.3 Limitations and Future work 64
Reference List 65
Appendix 71


Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Block, F. L., & Keller, M. R. (2015). State of innovation: the US government's
role in technology development. Routledge.
Bartneck, C., & Forlizzi, J. (2004). A design-centred framework for social
human-robot interaction. RO-MAN 2004. 13th IEEE International
Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759). doi:10.1109/roman.2004.1374827
Bogdan, R., Bogdan10, J. N., & Horea11, I. C. (2018). THE IMPORTANCE OF
SEARCH ENGINE OPTIMIZATION ON DIFFERENT LANGUAGES
FOR SAAS BUSINESSES. Recent Advances in Information Technology,
Tourism, Economics, Management and Agriculture, 26.
Baye, M. R., De los Santos, B., & Wildenbeest, M. R. (2016). Search engine
optimization: what drives organic traffic to retail sites. Journal of
Economics & Management Strategy, 25(1), 6-31.
Flandorfer, P. (2012). Population Ageing and Socially Assistive Robots for
Elderly Persons: The Importance of Sociodemographic Factors for User
Acceptance. International Journal of Population Research, 2012, 1–13.
doi:10.1155/2012/829835
Giomelakis, D., & Veglis, A. (2016). Investigating search engine optimization
factors in media websites: The case of Greece. Digital journalism, 4(3),
379-400.
Garcia, E., Jimenez, M. A., De Santos, P. G., & Armada, M. (2007). The
evolution of robotics research. IEEE Robotics & Automation Magazine, 14(1), 90–103. doi:10.1109/mra.2007.339608
Hidayatullah, A. F., & Ma'arif, M. R. (2017). Road traffic topic modeling on
Twitter using latent dirichlet allocation. In 2017 International Conference
on Sustainable Information Engineering and Technology (SIET) (pp.
47-52). IEEE.
Internatioanl Federation of Robotics (n,d). Robot Density. Retrieved from:
https://ifr.org/news/robot-density-rises-globally
International Federation of Robotic. (2019) The application of service robots in
different industry. Retrieved from:
https://ifr.org/downloads/press2018/IFR%20World%20Robotics%20Presentation%20-%2018%20Sept%202019.pdf
Jansen, B. J., & Schuster, S. (2011). Bidding on the buying funnel for sponsored
search and keyword advertising. Journal of Electronic Commerce
Research, 12(1), 1.
Kontostathis, A. (2007). Essential dimensions of latent semantic indexing (LSI).
In 2007 40th Annual Hawaii International Conference on System Sciences
(HICSS'07) (pp. 73-73). IEEE.
Karna-Lin, E., Pihlainen-Bednarik, K., Sutinen, E., & Virnes, M. (2006). Can
robots teach? Preliminary results on educational robotics in special
education. In Sixth IEEE International Conference on Advanced Learning
Technologies (ICALT'06) (pp. 319-321). IEEE.
Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A., & Alami, R. (2017).
Artificial cognition for social human–robot interaction: An
implementation. Artificial Intelligence, 247, 45–69. doi:10.1016/j.artint.2016.07.002
Moat, H. S., Olivola, C. Y., Chater, N., & Preis, T. (2016). Searching Choices:
Quantifying Decision‐Making Processes Using Search Engine
Data. Topics in cognitive science, 8(3), 685-696.
Niemelä, M., Heikkilä, P., & Lammi, H. (2017). A Social Service Robot in a
Shopping Mall. Proceedings of the Companion of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction - HRI ’17. doi:10.1145/3029798.3038301
Pinillos, R., Marcos, S., Feliz, R., Zalama, E., & Gómez-García-Bermejo, J.
(2016). Long-term assessment of a service robot in a hotel environment.
Robotics and Autonomous Systems, 79,
40–57. doi:10.1016/j.robot.2016.01.014
Riffe, D., Lacy, S., Fico, F., & Watson, B. (2019). Analyzing media messages:
Using quantitative content analysis in research. Routledge.
Rosso, M. A., McClelland, M. K., Jansen, B. J., & Fleming, S. W. (2019). Using
Google AdWords in the MBA MIS course. Journal of Information Systems
Education, 20(1), 6.
Robotic Industries Association (n, d.) Type of service robot. Retrieved from:
https://www.robotics.org/Service-Robots
Sajid, S. I. (2016). Social media and its role in marketing. Retrieved from:
http://41.89.240.73/bitstream/handle/123456789/810/social-media-and-its-
role-in-marketing.pdf?sequence=1&isAllowed=y
Statista (2019). Worldwide desktop market share of leading search engines from
January 2010 to October 2019. Retrieved from:
https://www.statista.com/statistics/216573/worldwide-market-share-of-sea
rch-engines/
Stock, R. M., & Merkle, M. (2018, January). Can humanoid
service robots perform better than service employees? A comparison of innovative behavior cues. In Proceedings of the 51st Hawaii International Conference on System Sciences.
Stock, R. M., & Merkle, M. (2017). A service Robot Acceptance Model: User
acceptance of humanoid robots during service encounters. 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). doi:10.1109/percomw.2017.7917585

Terrance, A. R., Shrivastava, S., & Kumari, A. (2017). Importance of search
engine marketing in the digital world. In Proceedings of the First International Conference on Information Technology and Knowledge Management (icitkm) (Vol. 14, pp. 155-158).
Wallén, J. (2008). The History of the Industrial Robot (LiTH-ISY-R). Linköping.
Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56167
Wirtz, J., Patterson, P., Kunz, W., Gruber, T., Lu, V., Paluch, S., & Martins, A.
(2018). Consumer Responses to Service Robots. ACR European Advances.
Waroquier, L., Marchiori, D., Klein, O., & Cleeremans, A. (2010). Is it better to
think unconsciously or to trust your first impression? A reassessment of
unconscious thought theory. Social Psychological and Personality
Science, 1(2), 111-118..
Yamazaki, K., Ueda, R., Nozawa, S., Kojima, M., Okada, K., Matsumoto, K., ...
& Inaba, M. (2012). Home-assistant robot for an aging
society. Proceedings of the IEEE, 100(8), 2429-2441.
Yee, C. W. (2020). Retrieving Semantically Relevant Documents using Latent
Semantic Indexing (Doctoral dissertation, Unversity of Computer Studies,
Yangon).
Yang, Y., Jansen, B., Yang, Y. C., Guo, X., & Zeng, D. D. (2018). Keyword
optimization in sponsored search advertising: A multi-level computational
framework. Xunhua and Zeng, Daniel Dajun, Keyword Optimization in
Sponsored Search Advertising: A Multi-Level Computational Framework
Zhang, Y., Wang, H., & Xu, F. (2017). Object detection and recognition of
intelligent service robot based on deep learning. 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). doi:10.1109/iccis.2017.8274769

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top