(44.192.10.166) 您好!臺灣時間:2021/03/06 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何洛瑄
研究生(外文):HO, LUO-HSUAN
論文名稱:腦電圖之輕量化分類演算法:以癲癇為例
論文名稱(外文):Permutation-Ratio Entropy of Entropy: A Lightweight Classification Scheme of Electroencephalography Applied for Epilepsy
指導教授:黃懷陞
指導教授(外文):HUANG, HUAI-SHENG
口試委員:林文修陳彥安
口試委員(外文):LIN, WEN-SHIUCHEN, YAN-ANN
口試日期:2020-06-24
學位類別:碩士
校院名稱:輔仁大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:53
中文關鍵詞:腦電圖癲癇
外文關鍵詞:Electroencephalography (EEG)EntropyEpilepsy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
對於現代醫學來說,透過腦電圖(Electroencephalography, EEG)來作為腦部疾病診斷是一種十分常見的方式,例如癲癇、思覺失調、睡眠障礙等與腦、心理學相關的領域都有著廣泛的應用。回顧過去關於癲癇疾病的相關研究文獻,往往需要大量的歷史資料量以及計算量才能使疾病在分類上有較明顯的效果。
有鑑於此,本研究提出一種適用於腦電圖的輕量化分類演算法,稱為Permutation-ratio Entropy of Entropy (PREoE)。利用腦電圖與心電圖相似的生物獨特性,其精神是基於心電圖(Electrocardiography, ECG)輕量化分類演算法(Entropy of Entropy, EoE),並結合適用於腦電圖分析的分類演算法(Permutation-ratio Entropy, PRE)來考量腦電圖資料在時序上的關聯性而成。實驗以癲癇(Epilepsy)的腦電圖分類為例,結果顯示本研究不僅能有效減少所需的資料量以及計算量,並能維持一定的分類準度。

Nowadays, Electroencephalography (EEG) has been widely used in psychology and diagnosing brain diseases, such as epilepsy, schizophrenia, sleep disorders, and so on. Reviewing those related researches on epilepsy in the past requires a large amount of historical data and calculation to make the disease have a more obvious classification effect.
Given that, this research proposes the Permutation-ratio Entropy of Entropy (PREoE), a lightweight classification scheme suitable for EEG. According to the similarity in both Electrocardiography (ECG) and EEG, PREoE is based on a lightweight classification algorithm for ECG called Entropy of Entropy (EoE). Also, considering the patterns among EEG signals, we combined a useful EEG classification algorithm so-called Permutation-ratio Entropy (PRE) into our research. In the experiment, epilepsy EEG signals were used. The results indicate that PREoE not only reduces the amount of required data and calculations but also maintains an available accuracy on classification.
表 次 vi
圖 次 vii
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第貳章 文獻探討 5
第一節 癲癇與熵的基本介紹 5
第二節 熵的腦電圖分析方法回顧 9
第參章 研究方法 15
第一節 研究概念 15
第二節 Entropy of Entropy (EoE) 之概念及公式 17
第三節 Permutation-ratio entropy (PRE) 之概念與公式 22
第四節 模型設計Permutation-ratio Entropy of Entropy (PREoE) 27
第肆章 實驗設計與結果 37
第一節 實驗設計 37
第二節 實驗結果 42
第伍章 結論 47
第一節 實驗結果總述與貢獻 47
第二節 研究限制與未來展望 49
參考文獻 50
1.施茂雄. (2009a). 癲癇 -- 也 是 一 種 病症 而 已. Retrieved from 社團法人台灣癲癇之友協會 website: www.epilepsyorg.org.tw/introduction/info.asp?/1.html
2.施茂雄. (2009b). 腦 波 檢 查 ( 腦 電 圖 測 試 ) 在 癲癇 病 患 之 應 用. Retrieved from 社團法人台灣癲癇之友協會 website: www.epilepsyorg.org.tw/introduction/info02.asp?/5.html
3.李世綽, 吳禹利, 關國良, 陳忠登, 林詩暉, & 李丹. (2011). 癲癇學和腦電圖學名詞中文標準譯法協議. 1–21.
4.李明憲. (2012). 資 訊 理 論. Retrieved April 24, 2020, from http://boson4.phys.tku.edu.tw/thermodynamics/Ch-15_Information_theory.html
5.Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. https://doi.org/10.1103/PhysRevE.64.061907
6.Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.88.174102
7.Bhattacharyya, A., Pachori, R., Upadhyay, A., & Acharya, U. (2017). Tunable-Q Wavelet Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals. Applied Sciences. https://doi.org/10.3390/app7040385
8.Cao, Z., & Lin, C. T. (2018). Inherent Fuzzy Entropy for the Improvement of EEG Complexity Evaluation. IEEE Transactions on Fuzzy Systems, 26(2), 1032–1035. https://doi.org/10.1109/TFUZZ.2017.2666789
9.Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H. (2011). Atypical EEG complexity in autism spectrum conditions: A multiscale entropy analysis. Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2011.05.004
10.Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2008.04.005
11.Costa, M., Costa, M., Goldberger, A. L., Goldberger, A. L., Peng, C.-K., Peng, C.-K., … Medical, D. (2005). Multiscale Entropy Analysis (MSE). Entropy. https://doi.org/10.1103/PhysRevLett.89.068102
12.DeWolfe, J. L., & Malow, B. A. (2012). Approach to Sleep-Related Seizure Identification and Management. Therapy in Sleep Medicine, 629–646. https://doi.org/10.1016/B978-1-4377-1703-7.10050-7
13.Fazan, F. S., Brognara, F., Fazan, R., Murta Junior, L. O., & Silva, L. E. V. (2018). Changes in the complexity of heart rate variability with exercise training measured by multiscale entropy-based measurements. Entropy. https://doi.org/10.3390/e20010047
14.Gui, Q., Ruiz-Blondet, M. V., Laszlo, S., & Jin, Z. (2019). A Survey on Brain Biometrics. ACM Computing Surveys, 51(6), 1–38. https://doi.org/10.1145/3230632
15.Hsu, C. F., Wei, S. Y., Huang, H. P., Hsu, L., Chi, S., & Peng, C. K. (2017). Entropy of entropy: Measurement of dynamical complexity for biological systems. Entropy. https://doi.org/10.3390/e19100550
16.Liang, S. F., Kuo, C. E., Hu, Y. H., Pan, Y. H., & Wang, Y. H. (2012). Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2012.2187242
17.Mannan, M. M. N., Kamran, M. A., & Jeong, M. Y. (2018). Identification and removal of physiological artifacts from electroencephalogram signals: A review. IEEE Access, 6, 30630–30652. https://doi.org/10.1109/ACCESS.2018.2842082
18.Morabito, F. C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., & Palamara, I. (2012). Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy. https://doi.org/10.3390/e14071186
19.Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal.
20.Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.88.6.2297
21.Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.h2039
22.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
23.Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography. https://doi.org/10.1177/875647939000600106
24.Yin, Y., Sun, K., & He, S. (2018). Multiscale permutation Rényi entropy and its application for EEG signals. PLoS ONE. https://doi.org/10.1371/journal.pone.0202558
25.Zeng, M., Zhao, C. Y., & Meng, Q. H. (2019). Detecting seizures from EEG signals using the entropy of visibility heights of hierarchical neighbors. IEEE Access, 7, 7889–7896. https://doi.org/10.1109/ACCESS.2019.2890895
26.Zhang, Y., Liu, C., Wei, S., Liu, Y., & Liu, H. (2018). Complexity analysis of physiological time series using a novel permutation-ratio entropy. IEEE Access, 6, 67653–67664. https://doi.org/10.1109/ACCESS.2018.2879725
27.Zhou, P. Y., & Chan, K. C. C. (2018). Fuzzy feature extraction for multichannel EEG classification. IEEE Transactions on Cognitive and Developmental Systems, 10(2), 267–279. https://doi.org/10.1109/TCDS.2016.2632130
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔