|
1.施茂雄. (2009a). 癲癇 -- 也 是 一 種 病症 而 已. Retrieved from 社團法人台灣癲癇之友協會 website: www.epilepsyorg.org.tw/introduction/info.asp?/1.html 2.施茂雄. (2009b). 腦 波 檢 查 ( 腦 電 圖 測 試 ) 在 癲癇 病 患 之 應 用. Retrieved from 社團法人台灣癲癇之友協會 website: www.epilepsyorg.org.tw/introduction/info02.asp?/5.html 3.李世綽, 吳禹利, 關國良, 陳忠登, 林詩暉, & 李丹. (2011). 癲癇學和腦電圖學名詞中文標準譯法協議. 1–21. 4.李明憲. (2012). 資 訊 理 論. Retrieved April 24, 2020, from http://boson4.phys.tku.edu.tw/thermodynamics/Ch-15_Information_theory.html 5.Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. https://doi.org/10.1103/PhysRevE.64.061907 6.Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural Complexity Measure for Time Series. Physical Review Letters. https://doi.org/10.1103/PhysRevLett.88.174102 7.Bhattacharyya, A., Pachori, R., Upadhyay, A., & Acharya, U. (2017). Tunable-Q Wavelet Transform Based Multiscale Entropy Measure for Automated Classification of Epileptic EEG Signals. Applied Sciences. https://doi.org/10.3390/app7040385 8.Cao, Z., & Lin, C. T. (2018). Inherent Fuzzy Entropy for the Improvement of EEG Complexity Evaluation. IEEE Transactions on Fuzzy Systems, 26(2), 1032–1035. https://doi.org/10.1109/TFUZZ.2017.2666789 9.Catarino, A., Churches, O., Baron-Cohen, S., Andrade, A., & Ring, H. (2011). Atypical EEG complexity in autism spectrum conditions: A multiscale entropy analysis. Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2011.05.004 10.Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering and Physics. https://doi.org/10.1016/j.medengphy.2008.04.005 11.Costa, M., Costa, M., Goldberger, A. L., Goldberger, A. L., Peng, C.-K., Peng, C.-K., … Medical, D. (2005). Multiscale Entropy Analysis (MSE). Entropy. https://doi.org/10.1103/PhysRevLett.89.068102 12.DeWolfe, J. L., & Malow, B. A. (2012). Approach to Sleep-Related Seizure Identification and Management. Therapy in Sleep Medicine, 629–646. https://doi.org/10.1016/B978-1-4377-1703-7.10050-7 13.Fazan, F. S., Brognara, F., Fazan, R., Murta Junior, L. O., & Silva, L. E. V. (2018). Changes in the complexity of heart rate variability with exercise training measured by multiscale entropy-based measurements. Entropy. https://doi.org/10.3390/e20010047 14.Gui, Q., Ruiz-Blondet, M. V., Laszlo, S., & Jin, Z. (2019). A Survey on Brain Biometrics. ACM Computing Surveys, 51(6), 1–38. https://doi.org/10.1145/3230632 15.Hsu, C. F., Wei, S. Y., Huang, H. P., Hsu, L., Chi, S., & Peng, C. K. (2017). Entropy of entropy: Measurement of dynamical complexity for biological systems. Entropy. https://doi.org/10.3390/e19100550 16.Liang, S. F., Kuo, C. E., Hu, Y. H., Pan, Y. H., & Wang, Y. H. (2012). Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2012.2187242 17.Mannan, M. M. N., Kamran, M. A., & Jeong, M. Y. (2018). Identification and removal of physiological artifacts from electroencephalogram signals: A review. IEEE Access, 6, 30630–30652. https://doi.org/10.1109/ACCESS.2018.2842082 18.Morabito, F. C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., & Palamara, I. (2012). Multivariate multi-scale permutation entropy for complexity analysis of Alzheimer’s disease EEG. Entropy. https://doi.org/10.3390/e14071186 19.Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal. 20.Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.88.6.2297 21.Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.h2039 22.Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x 23.Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography. https://doi.org/10.1177/875647939000600106 24.Yin, Y., Sun, K., & He, S. (2018). Multiscale permutation Rényi entropy and its application for EEG signals. PLoS ONE. https://doi.org/10.1371/journal.pone.0202558 25.Zeng, M., Zhao, C. Y., & Meng, Q. H. (2019). Detecting seizures from EEG signals using the entropy of visibility heights of hierarchical neighbors. IEEE Access, 7, 7889–7896. https://doi.org/10.1109/ACCESS.2019.2890895 26.Zhang, Y., Liu, C., Wei, S., Liu, Y., & Liu, H. (2018). Complexity analysis of physiological time series using a novel permutation-ratio entropy. IEEE Access, 6, 67653–67664. https://doi.org/10.1109/ACCESS.2018.2879725 27.Zhou, P. Y., & Chan, K. C. C. (2018). Fuzzy feature extraction for multichannel EEG classification. IEEE Transactions on Cognitive and Developmental Systems, 10(2), 267–279. https://doi.org/10.1109/TCDS.2016.2632130
|