|
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data. University of California, Berkeley, 110(1-12), 24. Chopra, S., Hadsell, R., & LeCun, Y. (2005, June). Learning a similarity metric discriminatively, with application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 1, pp. 539-546). IEEE. Cui, Y., Jia, M., Lin, T. Y., Song, Y., & Belongie, S. (2019). Class-balanced loss based on effective number of samples. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 9268-9277). Dueck, D. (2009). Affinity propagation: clustering data by passing messages (p. 144). Toronto: University of Toronto. Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). Huang, C., Li, Y., Change Loy, C., & Tang, X. (2016). Learning deep representation for imbalanced classification. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5375-5384). Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. science, 290(5500), 2323-2326. Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823). Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9). Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. science, 290(5500), 2319-2323. Wang, K., Zhang, J., Li, D., Zhang, X., & Guo, T. (2008). Adaptive affinity propagation clustering. arXiv preprint arXiv:0805.1096. Zadrozny, B., Langford, J., & Abe, N. (2003, November). Cost-sensitive learning by cost-proportionate example weighting. In Third IEEE international conference on data mining (pp. 435-442). IEEE. Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv preprint arXiv:1605.07146.
|