|
1.Araujo, J. A., Santos, H. G., Gendron, B., Jena, S. D., Brito, S. S., & Souza, D. S. (2020). Strong bounds for resource constrained project scheduling: Preprocessing and cutting planes. Computers & Operations Research, 113, 104782. 2.Behnamian, J., & Ghomi, S. F. (2011). Hybrid flow shop scheduling with machine and resource-dependent processing times. Applied Mathematical Modelling, 35(3), 1107-1123. 3.Benda, F., Braune, R., Doerner, K. F., & Hartl, R. F. (2019). A machine learning approach for flow shop scheduling problems with alternative resources, sequence-dependent setup times, and blocking. OR Spectrum, 41(4), 871-893. 4.Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. 5.Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1), 53-66. 6.Huang, R. H., & Yu, S. C. (2016). Two-stage multiprocessor flow shop scheduling with deteriorating maintenance in cleaner production. Journal of Cleaner Production, 135, 276-283. 7.Huang, R. H., Yu, S. C., & Chen, P. H. (2017). Energy-Saving Scheduling in a Flexible Flow Shop Using a Hybrid Genetic Algorithm. Journal of Environmental Protection, 8(10), 1037-1056. 8.Laribi, I., Yalaoui, F., Belkaid, F., & Sari, Z. (2016). Heuristics for solving flow shop scheduling problem under resources constraints. IFAC-PapersOnLine, 49(12), 1478-1483. 9.Liu, X., Wang, L., Kong, L., Li, F., & Li, J. (2019). A hybrid genetic algorithm for minimizing energy consumption in flow shops considering ultra-low idle state. Procedia CIRP, 80, 192-196. 10.Meng, L., Zhang, C., Zhang, B., & Ren, Y. (2019). Mathematical modeling and optimization of energy-conscious flexible job shop scheduling problem with worker flexibility. IEEE Access, 7, 68043-68059. 11.Nabli, Z., Khalfallah, S., & Korbaa, O. (2018). A two-stage hybrid flow shop problem with dedicated machine and release date. Procedia Computer Science, 126, 214-223. 12.Naderi, B., Gohari, S., & Yazdani, M. (2014). Hybrid flexible flowshop problems: Models and solution methods. Applied Mathematical Modelling, 38(24), 5767-5780. 13.Rooeinfar, R., Raissi, S., & Ghezavati, V. R. (2019). Stochastic flexible flow shop scheduling problem with limited buffers and fixed interval preventive maintenance: a hybrid approach of simulation and metaheuristic algorithms. Simulation, 95(6), 509-528. 14.Sehrawat, M., & Singh, S. (2011). Modified Order Crossover (OX) Operator. International Journal on Computer Science and Engineering, 3(5), 2019-2023. 15.Singh, A. (2014). Resource Constrained Multi-Project Scheduling with Priority Rules & Analytic Hierarchy Process. Procedia Engineering, 69, 725-734. 16.Wang, H., Fu, Y., Huang, M., Huang, G. Q., & Wang, J. (2017). A NSGA-II based memetic algorithm for multiobjective parallel flowshop scheduling problem. Computers and Industrial Engineering, 113, 185-194. 17.Xu, W. J., He, L. J., & Zhu, G. Y. (2019). Many-objective flow shop scheduling optimisation with genetic algorithm based on fuzzy sets. International Journal of Production Research, 1-25. 18.Yu, A. J., & Seif, J. (2016). Minimizing tardiness and maintenance costs in flow shop scheduling by a lower-bound-based GA. Computers & Industrial Engineering, 97, 26-40. 19.Yu, C., Semeraro, Q., & Matta, A. (2018). A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Computers & Operations Research, 100, 211-229. 20.Zarei, H., & Rasti-Barzoki, M. (2019). Mathematical programming and three metaheuristic algorithms for a bi-objective supply chain scheduling problem. Neural Computing and Applications, 31(12), 9073-9093. 21.Zhang, J., Wang, W., & Xu, X. (2017). A hybrid discrete particle swarm optimization for dual-resource constrained job shop scheduling with resource flexibility. Journal of intelligent Manufacturing, 28(8), 1961-1972. 22.Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251-256. 23.Zhang, P., Bard, J. F., Morrice, D. J., & Koenig, K. M. (2019). Extended open shop scheduling with resource constraints: Appointment scheduling for integrated practice units. IISE Transactions, 51(10), 1037-1060. 24.Zhang, W., Wen, J. B., Zhu, Y. C., & Hu, Y. (2017). Multi-objective scheduling simulation of flexible job-shop based on multi-population genetic algorithm. International Journal of Simulation Modelling, 16(2), 313-321. 25.Zhong, Q., Yang, H., & Tang, T. (2018). Optimization algorithm simulation for dual-resource constrained job-shop scheduling. International Journal of Simulation Modelling, 17(1), 147-158.
|