(3.238.7.202) 您好!臺灣時間:2021/03/04 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾凱威
論文名稱:抗菌肽對多重耐藥鮑曼不動桿菌的抗菌作用
論文名稱(外文):Antibacterial effect of antibacterial peptide on multi-drug resistant Acinetobacter baumannii
指導教授:羅宏仁羅宏仁引用關係
指導教授(外文):Lo, Horng-Ren
口試委員:黃小萍陳義元
口試委員(外文):Huang, Shiao-PingChen, Yih-Yuan
口試日期:2020-07-09
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:醫學檢驗生物技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:50
中文關鍵詞:鮑氏不動桿菌多重耐藥性抗菌肽
外文關鍵詞:Acinetobacter baumanniiMultidrug resistanceAntimicrobial peptides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鮑氏不動桿菌屬於伺機性格蘭氏陰性菌,為人體皮膚上的正常菌叢之一。抗生素的過度使用導致了細菌產生抗生素抗藥性的比例增多,抗藥性細菌更難治療,需要替代藥物或更高劑量的抗生素。這些方法可能更昂貴,更具毒性或兩者兼而有之。對多種抗菌劑具有抗性的微生物稱為多重抗藥性(MDR),因此,需要更多的抗微生物研究來克服這一關鍵問題。抗菌肽(antimicrobial microbial peptides; AMPs)是在動物,微生物和植物中發現的胜肽類抗菌試劑,AMPs的兩親性質使其易於插入目標細胞的細胞壁和細胞膜中。儘管AMP的抗菌活性在於破壞細胞膜,但它們可以以其他蛋白質、DNA、RNA和調節酶為反應標的,因此是有希望替代抗生素的藥物分子。本研究目的是一、評估AMPs對多重抗藥性鮑氏不動桿菌的抗菌活性,包括測定AMPs的最低抑菌濃度(MIC)、藥物作用下之細菌存活率、抑制生物膜合成能力。並為了提高AMPs的抗菌作用,二、合併3種不同輔佐藥物(BITC、EDTA、CCCP),評估對多重抗藥性鮑氏不動桿菌的協同殺菌效果,並嘗試三、探討AMPs對鮑氏不動桿菌的殺菌作用與機制。我們結果表現出AMP與CCCP合併使用後可以降低使用濃度並抑制生物膜的合成,其中CCCP藉著抑制外排幫浦功能可以讓AMP類藥物可以停留於細菌內不被排出,達到殺菌或抑菌的效果。
關鍵詞:鮑氏不動桿菌、多重耐藥性(MDR)、抗菌肽(AMPs)

Acinetobacter baumannii is an opportunistic Gram-negative bacteria, one of the normal flora on human skin. However, the overuse of antibiotics has led to an increased proportion of antibiotic resistant bacteria. Drug-resistant bacteria are more difficult to treat and require alternative drugs or higher doses of antibiotics. These methods may be more expensive, more toxic, or both. Microorganisms that are resistant to multiple antimicrobials are called multidrug resistance (MDR). hence, more antimicrobial research is required to overcome this critical problem. Antimicrobial peptides (AMPs) are emerging antimicrobial agents found in animals, microorganisms and plants. The amphiphilic nature of AMPs makes it possible to interact and insert into the cell walls and cell membranes of target cells. Although AMP usually shows antibacterial activity due to the disruption of cell membranes, they can also target other proteins, DNA, RNA, and regulatory enzymes, therefore appear to be a promising alternative to classic antibiotics. In our study, we evaluated (1) the antibacterial activity of AMPs against MDR Acinetobacter baumannii, including determination of the minimum inhibitory concentration (MIC) of clinical MDR isolates, the survival rate of bacteria under the action of drugs and the ability to inhibit biofilm synthesis. In order to improve the antibacterial ability of AMPs, we evaluate (2) the synergistic bactericidal effect of three different adjuvant drugs (BITC, EDTA, CCCP) against MDR Acinetobacter baumannii. In addition, we attempted to explore the bactericidal mechanism of AMPs on Acinetobacter baumannii. Our results show that the combined use of AMP and CCCP can reduce the concentration and inhibit biofilm synthesis. CCCP can inhibit the efflux pump function to allow AMP drugs to stay in the bacteria and not be excreted, achieving sterilization or antibacterial Effect.
Keywords: Acinetobacter baumannii、multidrug resistance (MDR)、Antimicrobial peptides (AMP)


致謝-----------------------------------------i
中文摘要--------------------------------------ii
英文摘要--------------------------------------iv
目錄-----------------------------------------vi
表目錄---------------------------------------viii
圖目錄---------------------------------------ix
符號縮寫說明----------------------------------x
第一章 文獻探討-------------------------------1
第一節 鮑氏不動桿菌介紹-------------------------1
一 鮑氏不動桿菌-------------------------------1
二 感染種類-----------------------------------1
三 治療與預防----------------------------------1
四 產生多重抗藥性機制--------------------------2
第二節 抗菌肽----------------------------------3
一 抗菌肽介紹--------------------------------3
二 作用機制-----------------------------------4
三 合併藥物種類---------------------------------6
第三節 研究動機與目的---------------------------8
第二章 材料方法--------------------------------9
第一節 實驗菌株來源與保存-----------------------9
一 實驗菌株--------------------------------9
二 菌株培養-----------------------------------9
三 菌株保存----------------------------------9
第二節 抗菌藥物製備與保存----------------------9
第三節 菌株特性分析---------------------------9
一 最低抑菌濃度試驗-------------------------------9
二 微量抑制濃度指數-----------------------------------10
三 生物膜定量-----------------------------------------10
四 外排幫浦抑制試驗------------------------------------11
五 運動性試驗-----------------------------------------12
第三章 研究結果---------------------------------------13
第一節 多重抗藥性鮑氏不動桿菌對抗菌肽最低抑菌濃度-----------13
第二節 多重抗藥性鮑氏不動桿菌對輔佐性藥物(adjuvant molecule)
最低抑菌濃度---------------------------------------13
第三節 微量抑制濃度指數----------------------------------13
第四節 生物膜合成能力------------------------------------15
第五節 外排幫浦活性測驗----------------------------------15
第六節 運動性試驗-----------------------------------------16
第四章 討論-----------------------------------------------17
參考文獻 -------------------------------------------------24















1.Peng, J., et al., Antibacterial mechanism of peptide Cec4 against Acinetobacter baumannii. Infect Drug Resist, 2019. 12: p. 2417-2428.
2.Ghajavand, H., et al., Molecular identification of Acinetobacter baumannii isolated from intensive care units and their antimicrobial resistance patterns. 2015. 4.
3.Howard, A., et al., Acinetobacter baumannii: an emerging opportunistic pathogen. 2012. 3(3): p. 243-250.
4.Chapartegui-Gonzalez, I., et al., Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS One, 2018. 13(8): p. e0201961.
5.Antunes, L.C., P. Visca, and K.J. Towner, Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis, 2014. 71(3): p. 292-301.
6.Pour, N.K., et al., Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol Med Microbiol, 2011. 62(3): p. 328-38.
7.Yagnik, K.J., et al., Outbreak of Acinetobacter baumannii associated with extrinsic contamination of ultrasound gel in a tertiary centre burn unit. 2019. 1(2): p. 100009.
8.Lashinsky, J.N., et al., Minocycline for the Treatment of Multidrug and Extensively Drug-Resistant A. baumannii: A Review. Infect Dis Ther, 2017. 6(2): p. 199-211.
9.Gribun, A., et al., Molecular and structural characterization of the HMP-AB gene encoding a pore-forming protein from a clinical isolate of Acinetobacter baumannii. Curr Microbiol, 2003. 47(5): p. 434-43.
10.Vila, J., S. Marti, and J. Sanchez-Cespedes, Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother, 2007. 59(6): p. 1210-5.
11.Fernandez, L. and R.E. Hancock, Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev, 2012. 25(4): p. 661-81.
12.Li, X.Z., P. Plesiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev, 2015. 28(2): p. 337-418.
13.Su, C.C., et al., Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump. mBio, 2019. 10(4).
14.Gaca, A.O., et al., From (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by the Small Alarmone Synthetase of Enterococcus faecalis. J Bacteriol, 2015. 197(18): p. 2908-19.
15.Jung, H.W., et al., Role of ppGpp-regulated efflux genes in Acinetobacter baumannii. J Antimicrob Chemother, 2020. 75(5): p. 1130-1134.
16.Liu, H., et al., Influence of (p)ppGpp on biofilm regulation in Pseudomonas putida KT2440. Microbiol Res, 2017. 204: p. 1-8.
17.Liu, K., A.N. Bittner, and J.D. Wang, Diversity in (p)ppGpp metabolism and effectors. Curr Opin Microbiol, 2015. 24: p. 72-9.
18.Zhang, Y., et al., Novel (p)ppGpp Binding and Metabolizing Proteins of Escherichia coli. mBio, 2018. 9(2).
19.De la Fuente-Núñez, C., et al., Broad-spectrum anti-biofilm peptide that targets a cellular stress response. 2014. 10(5): p. e1004152.
20.Rendueles, O., J.B. Kaplan, and J.M. Ghigo, Antibiofilm polysaccharides. Environ Microbiol, 2013. 15(2): p. 334-46.
21.Bulet, P., R. Stocklin, and L. Menin, Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev, 2004. 198: p. 169-84.
22.Nguyen, L.T., E.F. Haney, and H.J.J.T.i.b. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. 2011. 29(9): p. 464-472.
23.Findlay, B., G.G. Zhanel, and F. Schweizer, Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother, 2010. 54(10): p. 4049-58.
24.Di Luca, M., et al., Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. 2014. 70(3): p. 257-270.
25.Chen, Y., et al., Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. 2005. 280(13): p. 12316-12329.
26.Jiang, Z., et al., Rational Design of α‐Helical Antimicrobial Peptides to Target Gram‐negative Pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of Charge,‘Specificity Determinants,’Total Hydrophobicity, Hydrophobe Type and Location as Design Parameters to Improve the Therapeutic Ratio. 2011. 77(4): p. 225-240.
27.Powers, J.-P.S. and R.E.J.P. Hancock, The relationship between peptide structure and antibacterial activity. 2003. 24(11): p. 1681-1691.
28.Yeaman, M.R. and N.Y. Yount, Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003. 55(1): p. 27-55.
29.Yount, N.Y., et al., Advances in antimicrobial peptide immunobiology. Biopolymers, 2006. 84(5): p. 435-58.
30.Seo, M.D., et al., Antimicrobial peptides for therapeutic applications: a review. Molecules, 2012. 17(10): p. 12276-86.
31.Mihajlovic, M. and T. Lazaridis, Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta, 2010. 1798(8): p. 1485-93.
32.Li, J., et al., Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci, 2017. 11: p. 73.
33.Fernandez, D.I., et al., The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys, 2012. 14(45): p. 15739-51.
34.Dufourc, E.J., et al., Membrane interacting peptides: from killers to helpers. Curr Protein Pept Sci, 2012. 13(7): p. 620-31.
35.Oren, Z. and Y. Shai, Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers, 1998. 47(6): p. 451-63.
36.Tran, T.B., et al., Synergistic Killing of Polymyxin B in Combination With the Antineoplastic Drug Mitotane Against Polymyxin-Susceptible and -Resistant Acinetobacter baumannii: A Metabolomic Study. Front Pharmacol, 2018. 9: p. 359.
37.Gupta, S., et al., Colistin and polymyxin B: a re-emergence. Indian J Crit Care Med, 2009. 13(2): p. 49-53.
38.Shi, C., et al., ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals. 2015. 26(18): p. 1343-1356.
39.Shi, C., et al., Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination. Food Nutr Res, 2016. 60: p. 31891.
40.Pranantyo, D., et al., Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. 2017. 8(21): p. 3364-3373.
41.Sofrata, A., et al., Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS One, 2011. 6(8): p. e23045.
42.Dufour, V., et al., Insights into the mode of action of benzyl isothiocyanate on Campylobacter jejuni. 2013. 79(22): p. 6958-6968.
43.Lambert, R.J., G.W. Hanlon, and S.P. Denyer, The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa. J Appl Microbiol, 2004. 96(2): p. 244-53.
44.Umerska, A., et al., Synergistic Effect of Combinations Containing EDTA and the Antimicrobial Peptide AA230, an Arenicin-3 Derivative, on Gram-Negative Bacteria. Biomolecules, 2018. 8(4).
45.Pamp, S.J., et al., Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB‐oprM genes. 2008. 68(1): p. 223-240.
46.Osei Sekyere, J. and D.G.J.F.i.m. Amoako, Carbonyl cyanide m-chlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrug-resistant Enterobacteriaceae. 2017. 8: p. 228.
47.Jangra, M., et al., Purification and biological activity of natural variants synthesized by tridecaptin M gene cluster and in vitro drug-kinetics of this antibiotic class. Sci Rep, 2019. 9(1): p. 18870.
48.Baptista, P.V., et al., Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Front Microbiol, 2018. 9: p. 1441.
49.Ageitos, J.M., et al., Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol, 2017. 133: p. 117-138.
50.Zahi, M.R., et al., Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. 2017. 221: p. 18-23.
51.Lan, W., et al., ε-Polylysine Inhibits Shewanella putrefaciens with Membrane Disruption and Cell Damage. 2019. 24(20): p. 3727.
52.Petri, J., et al., Structure of the NDH-2–HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. 2018. 1859(7): p. 482-490.
53.Nelson, N. and D.K.J.B.j. Schwartz, Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers. 2018. 114(11): p. 2606-2616.
54.Bohannon, J.K., et al., The immunobiology of TLR4 agonists: from endotoxin tolerance to immunoadjuvants. 2013. 40(6): p. 451.
55.Tang, H., et al., Design, synthesis and antimicrobial studies of some polymyxin analogues. 2020. 73(3): p. 158-166.
56.Olaitan, A.O., S. Morand, and J.-M.J.F.i.m. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. 2014. 5: p. 643.
57.Nang, S.C., et al., Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. 2018. 73(6): p. 1604-1610.
58.Yin, W., et al., Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. 2017. 8(3).
59.Carroll, L.M., et al., Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. 2019. 10(3).
60.Schmid, A., et al., Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci Rep, 2019. 9(1): p. 15290.
61.Ni, W., et al., Effects of efflux pump inhibitors on colistin resistance in multidrug-resistant Gram-negative bacteria. 2016. 60(5): p. 3215-3218.
62.Martin-Visscher, L.A., et al., The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment. 2011. 317(2): p. 152-159.
63.Kopermsub, P., V. Mayen, and C.J.F.R.I. Warin, Potential use of niosomes for encapsulation of nisin and EDTA and their antibacterial activity enhancement. 2011. 44(2): p. 605-612.
64.Ge, X., et al., Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP). 2018. 62(11).
65.Pakharukova, N., et al., Structural basis for Acinetobacter baumannii biofilm formation. 2018. 115(21): p. 5558-5563.
66.Alav, I., J.M. Sutton, and K.M. Rahman, Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother, 2018. 73(8): p. 2003-2020.
67.Giacomucci, S., et al., Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One, 2019. 14(8): p. e0221431.
68.Soto, S.M.J.V., Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. 2013. 4(3): p. 223-229.
69.de la Fuente-Núñez, C., R.E.J.P.j.a.j.o.p.r. Hancock, and p. affairs, Using anti-biofilm peptides to treat antibiotic-resistant bacterial infections. 2015. 3(2): p. 1.
70.Xu, X., et al., Role of ppGpp in Pseudomonas aeruginosa acute pulmonary infection and virulence regulation. 2016. 192: p. 84-95.
71.Pérez-Varela, M., et al., Mutations in the β-subunit of the RNA polymerase impair the surface-associated motility and virulence of Acinetobacter baumannii. 2017. 85(8).
72.Tomaras, A.P., et al., Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology, 2003. 149(Pt 12): p. 3473-3484.
73.Skotnicka, D., et al., Cyclic di-GMP regulates type IV pilus-dependent motility in Myxococcus xanthus. 2016. 198(1): p. 77-90.
74.Klausen, M., et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003. 48(6): p. 1511-24.
75.Sharma, A., V.K. Gupta, and R. Pathania, Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J Med Res, 2019. 149(2): p. 129-145.
76.Li, H., et al., Global regulator SoxR is a negative regulator of efflux pump gene expression and affects antibiotic resistance and fitness in Acinetobacter baumannii. 2017. 96(24).
77.Blanchard, C., et al., Identification of Acinetobacter baumannii serum-associated antibiotic efflux pump inhibitors. Antimicrob Agents Chemother, 2014. 58(11): p. 6360-6370.
78.Yoon, E.-J., et al., Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. 2015. 6(2).
79.Duperthuy, M.J.M., Antimicrobial peptides: Virulence and resistance modulation in gram-negative bacteria. 2020. 8(2): p. 280.
80.Falagas, M.E. and S.K.J.C.c. Kasiakou, Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. 2006. 10(1): p. R27.
81.Yu, Z., et al., Antibacterial mechanisms of polymyxin and bacterial resistance. 2015. 2015(679109).

電子全文 電子全文(網際網路公開日期:20250630)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔