跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏福順
研究生(外文):WEI, FU-SHUN
論文名稱:氧化鋅奈米結晶薄膜厚度效應對 微結構及光學特性的影響
論文名稱(外文):Thickness Effect on the Nanostructural and Optical Properties of ZnO Nanocrystalline Films
指導教授:楊尚霖楊尚霖引用關係
指導教授(外文):YOUNG, SAN-LIN
口試委員:陳開煌陳宏仁楊尚霖
口試委員(外文):CHEN, KAI-HUANGCHEN, HONE-ZERNYOUNG, SAN-LIN
口試日期:2020-07-14
學位類別:碩士
校院名稱:修平科技大學
系所名稱:電機工程碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:58
中文關鍵詞:氧化鋅奈米晶體薄膜晶粒紫外光特性
外文關鍵詞:zinc oxidenanocrystallinefilmgrainUV photodetection characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過溶膠-凝膠法合成氧化鋅溶液,結合旋轉塗佈法塗佈於玻璃基板上,並分析氧化鋅的奈米結構、光學特性及對UV光的光電感測靈敏度。
以旋轉塗佈法分別塗佈了4、6、8、10層的氧化鋅薄膜,由電子顯微鏡觀測得知薄膜厚度和晶粒尺寸隨著層數上升而增加。
由X光繞射圖得知,製備的薄膜均具有良好的(002)晶相。此外,所有的薄膜透射光譜均有相同的紫外光放射,表示具有相近的微晶結構,並隨著薄膜厚度增加,光學能隙有略為上升的趨勢,4層Eg = 3.2655 eV,6層Eg = 3.2781 eV,8層Eg = 3.2753 eV,10層Eg = 3.2831 eV。
最後,電性量測分別以不照光(dark)與照射紫外光(photo)下量測I-V曲線並以(Iphoto-Idark)/Idark定義光暗電流百分比,結果顯示,隨著厚度上升,光暗電流百分比明顯增加,從4層4236.31%、6層5254.89%、8層9630.87%,而在10層有最好的17823.86%,由此觀察到氧化鋅薄膜厚度增加導致紫外光靈敏度顯著上升,這可能是晶粒增加所導致。
The ZnO nanocrystalline films deposited by sol-gel spin-coating method have been grown on the glass substrates for the nanostructural and optical properties observation and for the UV photodetection investigation.
Four different thickness with 4, 6, 8, and 10 ZnO layers deposited by sol-gel spin-coating method, respectively. The FE-SEM images show that the thickness and grain size increases with the increase of layer thickness.
The x-ray diffraction (XRD) patterns show well (002) crystallized phase for all films. Besides, the transmittance spectra of all ZnO nanocrystalline films show the same ultraviolet emission indicating the similar crystallite state with an slightly increase of optical bandgap form Eg=3.2655 eV for 4 layers, Eg=3.2781 eV for 6 layers, Eg=3.2753 eV for 8 layers, to Eg=3.2831 eV for 10 layers with the increase of film thickness.
Finally, the I-V curves are measured in the dark and under UV illumination separately. The results show an obvious increase of current variation ratio that increases apparently from 4236.31%, 5254.89%, 9630.87%, to 17823.86% for 4, 6, 8, and, 10 layers samples, respectively, defined as (Iphoto-Idark)/Idark with increasing ZnO layer thickness resulting in an apparent enhancement of ultraviolet photodetection characteristics which may be resulted from the increase of grain crystallization.
Abstract
目錄
表目錄
圖目錄
第一章 緒論
1.1前言
1.2 研究動機與目的
第二章 文獻回顧
2.1氧化鋅簡介
2.1.1氧化鋅缺陷特性
2.2溶膠凝膠法
2.3 旋轉塗佈法
第三章 研究方法
3.1實驗流程
3.2實驗材料
3.2.1 實驗藥品
3.2.2 基板參數
3.3實驗細節
3.3.1 基板清洗
3.3.2 溶液製備
3.3.3 氧化鋅薄膜製備
3.3.4 退火處理
3.4 量測分析儀器
3.4.1 X光繞射儀
3.4.2 冷場發射掃描式電子顯微鏡
3.4.3 紫外光-可見光-近紅外線光譜儀
3.4.4 電流-電壓特性量測系統
第四章 結果與討論
4.1 X光繞射分析
4.1.1 原始數據圖
4.1.2 (002)繞射峰半高寬變化
4.1.3晶粒平均粒徑
4.2 表面結構分析
4.3光學分析
4.3.1 穿透率分析
4.3.2 換算吸收率
4.3.3 換算光學能隙
4.4 電性分析
4.4.1 光暗電流變化百分比
第五章 結論
參考文獻
[1]Fonoberov, V. A., &Balandin, A. A. (2004). Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes. Applied physics letters, 85(24), 5971-5973.
[2]Ba-Abbad, M. M., Kadhum, A. A. H., Mohamad, A. B., Takriff, M. S., &Sopian, K. (2013). Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere, 91(11), 1604-1611.
[3]Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654-3656.
[4]Li, Y., Meng, G. W., Zhang, L. D., &Phillipp, F. (2000). Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters, 76(15), 2011-2013.
[5]Sun, Y., Riley, D. J., &Ashfold, M. N. (2006). Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. The Journal of Physical Chemistry B, 110(31), 15186-15192.
[6]Bie, L. J., Yan, X. N., Yin, J., Duan, Y. Q., & Yuan, Z. H. (2007). NanopillarZnO gas sensor for hydrogen and ethanol. Sensors and Actuators B: Chemical, 126(2), 604-608.
[7]Cui, J., & Gibson, U. (2007). Low-temperature fabrication of single-crystal ZnOnanopillar photonic bandgap structures. Nanotechnology, 18(15), 155302.
[8]Wang, D., Zhou, J., & Liu, G. (2009). The microstructure and photoluminescence of Cu-doped ZnOnano-crystal thin films prepared by sol–gel method. Journal of Alloys and Compounds, 487(1-2), 545-549.
[9]Jongnavakit, P., Amornpitoksuk, P., Suwanboon, S., &Ndiege, N. (2012). Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Applied Surface Science, 258(20), 8192-8198.
[10]Kamaruddin, S. A., Chan, K. Y., Yow, H. K., Sahdan, M. Z., Saim, H., &Knipp, D. (2011). Zinc oxide films prepared by sol–gel spin coating technique. Applied Physics A, 104(1), 263-268.
[11]Jie, J., Wang, G., Han, X., &Hou, J. G. (2004). Synthesis and characterization of ZnO: In nanowires with superlattice structure. The Journal of Physical Chemistry B, 108(44), 17027-17031.
[12]Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T., &Segawa, Y. (1999). Structure and optical properties of ZnO/Mg 0.2 Zn 0.8 O superlattices. Applied Physics Letters, 75(7), 980-982.
[13]Kamalasanan, M. N., & Chandra, S. (1996). Sol-gel synthesis of ZnO thin films. Thin Solid Films, 288(1-2), 112-115.
[14]Krunks, M., &Mellikov, E. (1995). Zinc oxide thin films by the spray pyrolysis method. Thin solid films, 270(1-2), 33-36.
[15]Carcia, P. F., McLean, R. S., Reilly, M. H., &Nunes Jr, G. (2003). Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 82(7), 1117-1119.
[16]Liu, Y., Gorla, C. R., Liang, S., Emanetoglu, N., Lu, Y., Shen, H., &Wraback, M. (2000). Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. Journal of Electronic Materials, 29(1), 69-74.
[17]Polsongkram, D., Chamninok, P., Pukird, S., Chow, L., Lupan, O., Chai, G., ... & Schulte, A. (2008). Effect of synthesis conditions on the growth of ZnOnanorods via hydrothermal method. Physica B: Condensed Matter, 403(19-20), 3713-3717.
[18]Tam, K. H., Cheung, C. K., Leung, Y. H., Djurišić, A. B., Ling, C. C., Beling, C. D., ... & Ding, L. (2006). Defects in ZnOnanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B, 110(42), 20865-20871.
[19]Ogata, K., Sakurai, K., Fujita, S., Fujita, S., &Matsushige, K. (2000). Effects of thermal annealing of ZnO layers grown by MBE. Journal of crystal growth, 214, 312-315.
[20]Johnson, M. A. L., Fujita, S., Rowland, W. H., Hughes, W. C., Cook, J. W., &Schetzina, J. F. (1996). MBE growth and properties of ZnO on sapphire and SiC substrates. Journal of Electronic Materials, 25(5), 855-862.
[21]Kamble, A. S., Sinha, B. B., Chung, K., Gil, M. G., Burungale, V., Park, C. J., ... &Patil, P. S. (2014). Effect of hydroxide anion generating agents on growth and properties of ZnOnanorod arrays. ElectrochimicaActa, 149, 386-393.
[22]Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., ... &Morkoç, A. H. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11.
[23]Foster, A. S., Gejo, F. L., Shluger, A. L., &Nieminen, R. M. (2002). Vacancy and interstitial defects in hafnia. Physical Review B, 65(17), 174117.
[24]Asom, M. T., Benton, J. L., Sauer, R., &Kimerling, L. C. (1987). Interstitial defect reactions in silicon. Applied physics letters, 51(4), 256-258.
[25]Feenstra, R. M., Woodall, J. M., & Pettit, G. D. (1993). Observation of bulk defects by scanning tunneling microscopy and spectroscopy: Arsenic antisite defects in GaAs. Physical review letters, 71(8), 1176.
[26]Hu, W. G., Wang, Z., Su, B. F., Dai, Y. Q., Wang, S. J., & Zhao, Y. W. (2004). Gallium antisite defect and residual acceptors in undopedGaSb. Physics Letters A, 332(3-4), 286-290.
[27]Janotti, A., & Van de Walle, C. G. (2007). Native point defects in ZnO. Physical Review B, 76(16), 165202.
[28]Park, W. I., Jun, Y. H., Jung, S. W., & Yi, G. C. (2003). Excitonic emissions observed in ZnO single crystal nanorods. Applied Physics Letters, 82(6), 964-966.
[29]Lin, B., Fu, Z., &Jia, Y. (2001). Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied physics letters, 79(7), 943-945.
[30]Wen, L., Xu, J., Yang, Q., Zhang, F., Li, F., & Zhang, L. (2020). Gelation process of nanosilica sol and its mechanism: Molecular dynamics simulation. Chemical Engineering Science, 216, 115538.
[31]Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
[32]Sahu, N., Parija, B., &Panigrahi, S. (2009). Fundamental understanding and modeling of spin coating process: A review. Indian Journal of Physics, 83(4), 493-502.
[33]Gómez-Núñez, A., Alonso-Gil, S., López, C., Roura, P., &Vilà, A. (2017). Role of Ethanolamine on the Stability of a Sol–Gel ZnO Ink. The Journal of Physical Chemistry C, 121(42), 23839-23846.
[34]Ho, Y. S., & Lee, K. Y. (2010). Fabrication of highly oriented (002) ZnO film on glass by sol–gel method. Thin Solid Films, 519(4), 1431-1434.
[35]Scherrer, P. (1912). Bestimmung der innerenStruktur und der Größe von KolloidteilchenmittelsRöntgenstrahlen. In KolloidchemieEinLehrbuch (pp. 387-409). Springer, Berlin, Heidelberg.
[36]羅聖全(2013),科學基礎研究之重要利器─掃描式電子顯微鏡(SEM),《科學研習》,52卷5期,2-4頁。
[37]陳宏仁"薄膜(thin film)特性之量測與分析"
[38]Benramdane, N., Murad, W. A., Misho, R. H., Ziane, M., &Kebbab, Z. (1997). A chemical method for the preparation of thin films of CdO and ZnO. Materials Chemistry and Physics, 48(2), 119-123.
[39]Viezbicke, B. D., Patel, S., Davis, B. E., &Birnie III, D. P. (2015). Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b), 252(8), 1700-1710.
[40]Sagadevan, S., &Murugasen, P. (2014). Studies on optical, mechanical and electrical properties of organic nonlinear optical p-Toluidine p-Toluenesulfonate single crystal. Journal of Crystallization Process and Technology, vol. 4, no. 2, pp. 99-110.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊