跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許瀚鴻
研究生(外文):XU, HAN-HONG
論文名稱:梧棲黑豆與市售三種黑豆抗氧化能力比較
論文名稱(外文):Comparison of Antioxidant Activity Between Wu-Qi and Three Commercially Available Black Soybeans
指導教授:周怡真
指導教授(外文):CHOU, YI-CHEN
口試委員:林永昇陳怡佳
口試委員(外文):LIN,YUNG-SHENGCHEN, I-CHIA
口試日期:2020-07-30
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品應用研究所
學門:民生學門
學類:美容學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:76
中文關鍵詞:黑豆抗氧化自由基
外文關鍵詞:black soybeansantioxidant activityfree radical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以探討梧棲農會提供之黑豆與市售三種黑豆以熱迴流萃取之萃取液進行總酚含量 (TPC)、還原力測定、清除DPPH自由基、清除ABTS陽離子自由基、清除羥基自由基、清除超氧陰離子自由基及螯合亞鐵離子能力比較。實驗結果顯示,總酚含量實驗由高到低依序為梧棲農會台南3號青仁黑豆>台南3號青仁黑豆>中國黑豆>中國有機黑豆,其梧棲農會台南3號青仁黑豆總酚含量為2.721 ± 0.003 mg of GAE/g,在還原能力以梧棲農會台南3號青仁黑豆效果最高,其還原率為56.20%,清除DPPH自由基能力及清除ABTS陽離子自由基能力、清除超氧陰離子自由基能力,IC50皆以梧棲農會台南3號青仁黑豆效果最佳,其IC50分別為3.081 ± 0.005 mg/mL、8.134 ± 0.003 mg/mL、21.451 ± 0.008 mg/mL,其次是台南3號青仁黑豆。綜合以上實驗結果,梧棲農會台南3號青仁黑豆在總酚含量、還原力、清除DPPH自由基能力及清除ABTS陽離子自由基能力、清除超氧陰離子自由基能力,抗氧化效果最佳,在文獻之比較中,清除DPPH自由基能力之IC50,梧棲台南三號青仁黑豆為3.081 mg/mL與張凱傑等人2015年文獻之台南三號青仁黑豆的5.955 mg/mL相比之下高出了1.93倍。未來可以進一步應用在化妝品上。
The purpose of this study was use Wu-Qi District Farmers' Association and commercially available Black soybeans extracts extracted by hot water reflux to compared antioxidant activity. The antioxidant activity experiments including the total phenolic content (TPC), reducing power, DPPH radical scavenging, ABTS cationic radical scavenging, hydroxyl radical scavenging, superoxide radical scavenging, ferrous ion chelating ability. The results of the experiment showed that the total phenolic content (from most to least) as Wu-Qi District Farmers' Association TN 3 > TN 3 > China Black soybean > China Organic Black soybean. The Wu-Qi District Farmers' Association TN 3 have 2.721 ± 0.003 mg of GAE/g. The Wu-Qi District Farmers' Association TN 3 56.20% has a higher ability to reducing power.The IC50 of Wu-Qi District Farmers' Association TN 3 is the best in the DPPH radical scavenging, ABTS cationic radical scavenging and superoxide radical scavenging,and second is TN 3. The IC50 value of Wu-Qi District Farmers' Association TN 3 is 3.081 ± 0.005 mg/mL 8.134 ± 0.003 mg/mL and 21.451 ± 0.008 mg/mL. Results of the present study demonstrated that the Wu-Qi District Farmers' Association TN 3 have the best antioxidant activity in the total phenolic content, DPPH radical scavenging, ABTS cationic radical scavenging and superoxide radical scavenging. Comparison of the literature the IC50 of the DPPH radical scavenging, Wu-Qi District Farmers' Association TN 3 is 3.081 mg/mL and the literature (Chang K.C. et al, 2015) TN 3 is 5.955 mg/mL. It is 1.93 times higher than the literature . Therefore, it can be further applied on the cosmetic.
致謝 I
中文摘要 III
Abstract V
目錄 V
表目錄 X
圖目錄 X
第一章 緒論 1
第一節 前言 1
第二節 研究動機 2
第二章 文獻探討 3
第一節 黑豆文獻回顧 3
2.1.1 黑豆簡介 3
2.1.2 黑豆抗氧化文獻 5
第二節 化學成分 6
第三節 自由基探討 9
2.3.1 自由基的定義 9
2.3.2 自由基來源 9
2.3.3 自由基種類 9
2.3.4 自由基造成的影響 10
2.3.5 自由基對人體的危害 12
第四節 抗氧化之介紹 13
2.4.1 酵素抗氧化系統(Enzymatic antioxidant) 13
2.4.2 非酵素抗氧化系統(non-enzymatic antioxidant) 14
第三章 材料與方法 18
第一節 實驗架構 18
第二節 實驗藥品及儀器設備 19
第三節 實驗方法 24
3.3.1 樣品來源與前處理 24
3.3.2 萃取方式及條件 24
3.3.3 抗氧化能力測定 26
3.3.3.1 總酚含量測定 28
3.3.3.2 還原能力測定 28
3.3.3.3 清除DPPH自由基能力測定 29
3.3.3.4 清除 ABTS陽離子自由基之能力測定 30
3.3.3.5 清除羥基自由基能力測定 32
3.3.3.6 清除超氧陰離子自由基能力測定 34
3.3.3.7 螯合亞鐵離子能力測定 36
第四章 結果與討論 37
第一節 萃取條件結果 37
4.1.1 不同溫度條件 37
4.1.1.1 總酚含量測定 37
4.1.1.2 清除DPPH自由基能力測定 38
4.1.1.3 清除ABTS陽離子自由基能力測定 39
4.1.2 不同溶劑條件 42
4.1.2.1 總酚含量測定 42
4.1.2.2 清除DPPH自由基能力測定 44
4.1.2.3 清除ABTS陽離子自由基能力測定 46
第二節 抗氧化實驗結果 48
4.2.1 總酚含量測定 48
4.2.2 還原能力測定 49
4.2.3 清除DPPH自由基能力測定 51
4.2.4 清除ABTS陽離子自由基能力測定 54
4.2.5 清除羥基自由基能力測定 57
4.2.6 清除超氧陰離子自由基能力測定 60
4.2.7 螯合亞鐵離子能力測定 63
第五章 結論 66
第六章 參考文獻 67


Auclair, C., & Voisin, E. (1985). Nitroblue tetrazolium reduction. Handbook of methods for oxygen radical research, 123.
Ali, H. M., Almagribi, W., & Al-Rashidi, M. N. (2016). Antiradical and reductant activities of anthocyanidins and anthocyanins, structure–activity relationship and synthesis. Food Chemistry, 194, 1275-1282
Burton, G. W., & Ingold, K. (1984). Beta-carotene: an unusual type of lipid antioxidant. Science, 224(4649), 569-573.
Bhosale, P., & Bernstein, P. S. (2005). Microbial xanthophylls. Applied Microbiology and Biotechnology, 68(4), 445-455.
Boulekbache-Makhlouf, L., Medouni, L., Medouni-Adrar, S., Arkoub, L., & Madani, K. (2013). Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant. Industrial Crops and Products, 49, 668-674.
Cameron, E., & Pauling, L. (1976). Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proceedings of the National Academy of Sciences, 73(10), 3685-3689.
Cicco, N., Lanorte, M. T., Paraggio, M., Viggiano, M., & Lattanzio, V. (2009). A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91(1), 107-110.
Corso, C. R., & Acco, A. (2018). Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Critical Reviews in Oncology/Hematology, 128, 43-57.
Collin, F. (2019). Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. International journal of molecular sciences, (2010), 2407.
Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328.
Dai, Y., Shao, C., Piao, Y., Hu, H., Lu, K., Zhang, T., ... & Man, S. (2017). The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydrate polymers, 178, 34-40.
Dahham, S. S., Al-Rawi, S. S., Ibrahim, A. H., Majid, A. S. A., & Majid, A. M. S. A. (2018). Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi Journal of Biological Sciences, 25(8), 1524-1534.
Dong, H., Zheng, L., Yu, P., Jiang, Q., Wu, Y., Huang, C., & Yin, B. (2019). Characterization and application of lignin–carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species. ACS Sustainable Chemistry & Engineering, 8(1), 256-266.
Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annual Review of Biochemistry, 64(1), 97-112.
Fu, R., Zhang, Y., Guo, Y., Liu, F., & Chen, F. (2014). Determination of phenolic contents and antioxidant activities of extracts of Jatropha curcas L. seed shell, a by-product, a new source of natural antioxidant. Industrial Crops and Products, 58, 265-270.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930.
Ganesan, K., & Xu, B. (2017). A critical review on polyphenols and health benefits of black soybeans. Nutrients, 9(5), 455.
Halliwell, B., & Gutteridge, J. M. (1992). Biologically relevant metal ion-dependent hydroxyl radical generation an update. FEBS letters, 307(1), 108-112.
Halliwell, B., & Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?. British Journal of Pharmacology, 142(2), 231-255.
Higdon, J. V., Delage, B., Williams, D. E., & Dashwood, R. H. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological research, 55(3), 224-236.
Hu, C. C., Lin, J. T., Lu, F. J., Chou, F. P., & Yang, D. J. (2008). Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. Food Chemistry, 109(2), 439-446.
Huang, G., Cai, W., & Xu, B. (2017). Improvement in beta-carotene, vitamin B2, GABA, free amino acids and isoflavones in yellow and black soybeans upon germination. LWT, 75, 488-496.
Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287-293.
Jenner, P. (2003). Oxidative stress in Parkinson's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 53(S3), S26-S38.
Jin-rui, X. U., Ming-wei, Z. H. A. N. G., Xing-hua, L. I. U., Zhang-xiong, L. I. U., Rui-fen, Z. H. A. N. G., Ling, S. U. N., & Li-juan, Q. I. U. (2007). Correlation between antioxidation and the content of total phenolics and anthocyanin in black soybean accessions. Agricultural Sciences in China, 6(2), 150-158.
Jiang, Y., Rakesh, K. P., Alharbi, N. S., Vivek, H. K., Manukumar, H. M., Mohammed, Y. H. E., & Qin, H. L. (2019). Radical scavenging and anti-inflammatory activities of (hetero) arylethenesulfonyl fluorides: Synthesis and structure-activity relationship (SAR) and QSAR studies. Bioorganic chemistry, 89, 103015.
Jakovljević, K., Joksović, M. D., Botta, B., Jovanović, L. S., Avdović, E., Marković, Z., Mihailović, M., Andrić., M., Trifunović., S., & Marković, V. (2019). Novel 1, 3, 4-thiadiazole conjugates derived from protocatechuic acid: Synthesis, antioxidant activity, and computational and electrochemical studies. Comptes Rendus Chimie.
Kaplowitz, N., Aw, T. Y., & Ookhtens, M. (1985). The regulation of hepatic glutathione. Annual Review of Pharmacology and Toxicology, 25(1), 715-744.
Karuppanapandian, T., Moon, J. C., Kim, C., Manoharan, K., & Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709.
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, 61(1), 1361779.
Krishnan, V., Gothwal, S., Dahuja, A., Vinutha, T., Singh, B., Jolly, M., ... & Sachdev, A. (2018). Enhanced nutraceutical potential of gamma irradiated black soybean extracts. Food chemistry, 245, 246-253
Kumar, M., Dahuja, A., Sachdev, A., Kaur, C., Varghese, E., Saha, S., & Sairam, K. V. S. S. (2019). Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. International Journal of Biological Macromolecules, 135, 1070-1081.
Lu, S. C. (2013). Glutathione synthesis. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(5), 3143-3153.
Liu, J., Wen, X. Y., Kan, J., & Jin, C. H. (2015). Structural characterization of two water-soluble polysaccharides from black soybean (Glycine max (L.) Merr.). Journal of Agricultural and Food Chemistry,
Losada-Barreiro, S., & Bravo-Díaz, C. (2017). Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry, 133, 379-402.
Lee, J. H., Kim, H. J., Lee, B. W., Lee, Y. Y., Lee, B. K., Ko, J. Y., & Woo, K. S. (2018). Physicochemical and antioxidant properties of rice cooked with different proportions of black soybeans and cooking methods. Journal of food biochemistry, 42(6), e12671.
Loizzo, M. R., Sicari, V., Pellicanò, T., Xiao, J., Poiana, M., & Tundis, R. (2019). Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food and Chemical Toxicology, 127, 127-134.
Lee, K. J., Baek, D. Y., Lee, G. A., Cho, G. T., So, Y. S., Lee, J. R., ... & Hyun, D. Y. (2020). Phytochemicals and antioxidant activity of Korean black soybean (Glycine max L.) landraces. Antioxidants, 9(3), 213.
Medini, F., Fellah, H., Ksouri, R., & Abdelly, C. (2014). Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. Journal of Taibah University for science, 8(3), 216-224.
Muñoz-Bernal, Ó. A., Torres-Aguirre, G. A., Núñez-Gastélum, J. A., de la Rosa, L. A., Rodrigo-García, J., Ayala-Zavala, J. F., & Álvarez-Parrilla, E. (2017). Nuevo acercamiento a la interacción del reactivo de Folin-Ciocalteu con azúcares durante la cuantificación de polifenoles totales. TIP Revista Especializada en Ciencias Químico-Biológicas, 20(2), 23-28
Mukund, V., Mukund, D., Sharma, V., Mannarapu, M., & Alam, A. (2017). Genistein: Its role in metabolic diseases and cancer. Critical reviews in oncology/hematology, 119, 13-22.
Mozos, I., Stoian, D., Caraba, A., Malainer, C., Horbańczuk, J. O., & Atanasov, A. G. (2018). Lycopene and vascular health. Frontiers in pharmacology, 9, 521.
Monk, J. M., Wu, W., Hutchinson, A. L., Pauls, P., Robinson, L. E., & Power, K. A. (2018). Navy and black bean supplementation attenuates colitis-associated inflammation and colonic epithelial damage. The Journal of nutritional biochemistry, 56, 215-223.
Noviendri, D., Hasrini, R. F., & Octavianti, F. (2011). Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. Journal of Medicinal Plants Research, 5(33), 7119-7131.
O’Connell, P. J., Gormally, C., Pravda, M., & Guilbault, G. G. (2001). Development of an amperometric L-ascorbic acid (vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis. Analytica Chimica Acta, 431(2), 239-247.
Ozen, T., Demirtas, I., & Aksit, H. (2011). Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chemistry, 124(1), 58-64
Okoh, S., Asekun, O., Familoni, O., & Afolayan, A. (2014). Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L). Antioxidants, 3(2), 278-287.
Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of natural products, 63(7), 1035-1042.
Panfili, G., Fratianni, A., & Irano, M. (2003). Normal Phase High-Performance Liquid Chromatography method for the determination of tocopherols and tocotrienols in cereals. Journal of Agricultural and Food Chemistry, 51(14), 3940-3944.
Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J. H., Chen. S., Corpe, C., Dutta, A., Dutta, S. K., & Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18-35.
Pastore, A., Federici, G., Bertini, E., & Piemonte, F. (2003). Analysis of glutathione: implication in redox and detoxification. Clinica Chimica Acta, 333(1), 19-39.
Pangestuti, R., & Kim, S. K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3(4), 255-266.
Peng, H., Li, W., Li, H., Deng, Z., & Zhang, B. (2017). Extractable and non-extractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) merr). Journal of Functional Foods, 32, 296-312.
Paoli, D., Pecora, G., Pallotti, F., Faja, F., Pelloni, M., Lenzi, A., & Lombardo, F. (2019). Cytological and molecular aspects of the ageing sperm. Human Reproduction, 34(2), 218-227.
Qian, D., Han, P., QiYing, M., ZeYuan, D., & Bing, Z. (2019). Qualitative and quantitative analysis of soluble and bound anthocyanins in black soybean seed coat by high performance liquid chromatography-mass spectrometry. Shipin Kexue/Food Science, 40(10), 178-186.
Rattan, S. I. (2006). Free Radical Research, 40(12), 1230-1238.
Rebey, I. B., Jabri-Karoui, I., Hamrouni-Sellami, I., Bourgou, S., Limam, F., & Marzouk, B. (2012). Effect of drought on the biochemical composition and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Industrial Crops and Products, 36(1), 238-245.
Ryu, D., & Koh, E. (2018). Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food chemistry, 261, 260-266.
Ryu, D., & Koh, E. (2019). Optimization of ultrasound-assisted extraction of Anthocyanins and Phenolic Compounds from Black Soybeans (Glycine max L.). Food Analytical Methods, 12(6), 1382-1389.
Sies, H., Stahl, W., & Sundquist, A. R. (1992). Antioxidant functions of vitamins: vitamins E and C, beta‐Carotene, and other carotenoids a. Annals of the New York Academy of Sciences, 669(1), 7-20.
Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113(4), 1202-1205.
Song, J., Xu, L., Xing, R., Li, Q., Zhou, C., Liu, D., & Song, H. (2014). Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Scientific Reports, 4, 7515.
Schaich, K. M., Tian, X., & Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of Functional Foods, 14, 111-125.
Sharifian, S., & Nezamzadeh-Ejhieh, A. (2016). Modification of carbon paste electrode with Fe (III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Materials Science and Engineering: C, 58, 510-520.
Van Noorden, C. J., & Butcher, R. G. (1989). The involvement of superoxide anions in the nitro blue tetrazolium chloride reduction mediated by NADH and phenazine methosulfate. Analytical biochemistry, 176(1), 170-174.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry, 266(1-2), 37-56.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84.
Vílchez, C., Forján, E., Cuaresma, M., Bédmar, F., Garbayo, I., & Vega, J. M. (2011). Marine carotenoids: biological functions and commercial applications. Marine Drugs, 9(3), 319-333.
Varela, J. C., Pereira, H., Vila, M., & Leon, R. (2015). Production of carotenoids by microalgae: achievements and challenges. Photosynth Res, 125(3), 423-436.
Wu, H. J., Deng, J. C., Yang, C. Q., Zhang, J., Zhang, Q., Wang, X. C., ... & Liu, J. (2017). Metabolite profiling of isoflavones and anthocyanins in black soybean [Glycine max (L.) Merr.] seeds by HPLC-MS and geographical differentiation analysis in Southwest China. Analytical Methods, 9(5), 792-802.
Wang, H. F., Yih, K. H., & Huang, K. F. (2010). Comparative study of the antioxidant activity of forty-five commonly used essential oils and their potential active components. Journal of Food and Drug Analysis, 18(1).
Wang, X., Yong, H., Gao, L., Li, L., Jin, M., & Liu, J. (2019). Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food hydrocolloids, 89, 56-66.
Yoon, Y., Lee, Y. M., Song, S., Lee, Y. Y., & Yeum, K. J. (2018). Black soybeans protect human keratinocytes from oxidative stress‐induced cell death. Food Science & Nutrition, 6(8), 2423-2430.
Yahia, Y., Bagues, M., Zaghdoud, C., Al-Amri, S. M., Nagaz, K., & Guerfel, M. (2019). Phenolic profile, antioxidant capacity and antimicrobial activity of Calligonum arich L., desert endemic plant in Tunisia. South African Journal of Botany, 124, 414-419.
Zhao, Y., Du, S. K., Wang, H., & Cai, M. (2014). In vitro antioxidant activity of extracts from common legumes. Food chemistry, 152, 462-466.
Zmorzyński, S., Świderska-Kołacz, G., Koczkodaj, D., & Filip, A. A. (2015). Significance of polymorphisms and expression of enzyme-encoding genes related to glutathione in hematopoietic cancers and solid tumors. BioMed Research International, 2015.
曾慶瀛, 余哲仁, & 洪沄利. (1994). 烏豆、薏仁和糙米應用於早餐穀粉之製造. 中華生質能源學會會誌, 13:1/2 民83.06 頁102-109.
趙強:自由基(Free Radicals)。 美食天下 1997;第64期, 1997.3 P116
連大進, 吳昭慧, 吳振碩, & 王裕權. (1999). 黑豆新品種台南 3 號之育成. 台南區農業改良場研究彙報, 35, 14-24.
趙璧玉, 林碧秀, 張恬慈, 蔡旻汎, & 楊棋明. (2003). 白肉火龍果與紅肉火龍果抗氧化性之研究. 華岡農科學報, (11), 13-27.
鄭統隆, 施怡如, 曾東海, 賴永昌, & 吳明哲. (2008). 甘藷花青素與多酚含量之研究. 台灣農業研究, 57(1), 33-48.
吳昭慧, 吳建銘, 林棟樑 (2010) 大豆新品種「台南 8 號(黑珍)及台南 9 號(黑寶)」
之育成 台南區農業專訊 72。
吳慧中, 王志玄, 蔡復淳, & 梁致遠. (2013). 豆科種子的種皮及種仁乙醇萃取物於體外清除自由基的研究. MC-Transaction on Biotechnology, 5(1), 9-19.
張凱傑, 陳伯彥, 林冠宏, 熊同銓, 黃盟元, 吳昭慧, & 楊棋明. (2015). 黑豆水萃取物抗氧化功能評估. 中華民國雜草學會會刊, 36(2), 93-107.
林均威, 張凱傑, 陳伯彥, 吳昭慧, 黃盟元, 林冠宏, & 楊棋明. (2016). 黑豆葉綠素相關化合物對其抗氧化功能之灰理論分析. 中華民國雜草學會會刊, 37(2), 127-143.
張汀沂. (2009). 白藜蘆醇抗氧化及美白特性之研究. (碩士), 弘光科技大學
黃蓉蘋. (2017). 黃精與玉竹萃取之成分及活性分析. (碩士), 弘光科技大學
劉康佑. (2018).黑豆茶包與黑豆營養補充品的機能性評估和產品開發. (碩士), 國立嘉義大學
黎孝韻、曾國慶. (2008). 自由基及抗氧化物功能的探討. The Journal Of Pharmacy, 95(24), 95-103.
程台生, 陳麗珠, & 連大進. (2006). 國產大豆抗氧化活性之研究. 作物, 環境與生物資訊, 3(4), 325-336.

電子全文 電子全文(網際網路公開日期:20250827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top