跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 15:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許凱博
研究生(外文):Kai-Po Hsu
論文名稱:靜電紡絲製備超級電容之氧化鐵陰極電極
論文名稱(外文):The Preparation of Iron Oxide Negative Electrode of Supercapacitors by Using Electrospinning
指導教授:鍾卓良
指導教授(外文):Zhuo-Liang Zhong
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:78
中文關鍵詞:靜電紡絲氧化鐵超級電容
外文關鍵詞:SupercapacitorsIron OxideElectrospinning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超級電容器或電化學電容器具有超高電容和能夠快速充、放電的性質,並吸引了許多國家的許多科學家的關注。超級電容器的電極在於決定超級電容器的性能方面起著至關重要的作用。目前各國已經嘗試了許多用於超級電容器的高比電容正電極材料,而相對的的負電極材料仍在繼續開發。氧化鐵電極材料是潛在的候選者。本研究已成功以靜電紡絲法製備出α-Fe2O3奈米纖維,經過500-700°C煆燒其直徑範圍為0.1-0.30μm左右。配製前驅物溶液時,加入少量DMF可以讓PVP和硝酸鐵順利混合。而硝酸鐵濃度在0.2g/ml時所紡出來的纖維維持形貌的能力較弱,在熱處理的過程中會液化灘成片狀;而硝酸鐵濃度為小於0.15g/ml 時,經過熱處理之後能維持纖維狀並且表面光滑;硝酸鐵濃度為0.1g/ml時更可形成多孔中空纖維。結果顯示前驅體溶液的最佳組成是0.8 g PVP和0.8 g硝酸鐵。摻雜錫後的纖維結構有所改變,不再是中空多孔纖維,整體上錫所增加的比電容值小於中空多孔的結構所帶來的效益。另外,我們也發現升溫速率對於形成的氧化鐵奈米結構有關鍵性的影響。煆燒升溫速率要在每分鐘10oC以上才有辦法做出多孔中空氧化鐵纖維,低於每分鐘10oC一些能做出中空纖維。每分鐘3oC以下會成為碎片。從X光繞射分析結果顯示,主要的結晶相為a-Fe2O3,但存在少量的Fe3O4。利用循環伏安法量測氧化鐵奈米纖維的的電化學特性,當煆燒溫度為700°C時,可得到較高的比電容,這可能是與奈米纖維表現出較多孔的結構與殘留碳較低有關。
Supercapacitors or electrochemical capacitors possess ultrahigh capacitance and fast charge/discharge abilities and have attracted the attention of many scientists in various countries. The electrode of a supercapacitor plays a vital role in deciding the supercapacitor’s performance. The high specific capacitance positive electrode materials for supercapacitor applications have been widely synthesized, while the comparable negative electrode materials still continue to be developed. Meanwhile, the iron oxide electrode material is a potential candidate. In this study, α-Fe2O3 nanofibers have been successfully prepared by electrospinning, and their diameters range from 0.1-0.30μm after calcination at 500-700°C. When preparing the precursor solution, a small amount of DMF can make the PVP and ferric nitrate mix uniformily. However, when the concentration of ferric nitrate is 0.2g/ml, the products cannot maintain the fiber morphology, and will liquefy into flakes during the heat treatment process; and when the concentration of ferric nitrate is less than 0.15g/ml, nanofibers with smooth surface are obtained; when the concentration of iron nitrate is 0.1g/ml, porous hollow fibers can be formed. The results show that the optimal composition of the precursor solution is 0.8 g PVP and 0.8 g ferric nitrate. The fiber structure after doping with tin is changed, and it is no longer a hollow porous fiber. In addition, we also found that the heating rate has a critical influence on the iron oxide nanostructure formed. The heating rate of calcination should be above 10oC /min to make porous hollow iron oxide fibers. Below 3oC /min the precursors become fragments. X-ray diffraction analysis results show that the main crystal phase is a-Fe2O3, but there is a small amount of Fe3O4. Cyclic voltammetry is used to measure the electrochemical characteristics of iron oxide nanofibers. When the calcination temperature is at 700°C, a higher specific capacitance can be obtained. This may be due to the fact that such nanofibers exhibit a relatively porous structure and contain relatively low residual carbon.
摘  要 II
Abstract III
誌  謝 IV
表 目 錄 IX
圖 目 錄 X
第一章 前言 12
1-1 研究背景 12
1-2 研究目的 13
第二章 文獻回顧 14
2.1靜電紡絲介紹 14
2.1.1 靜電紡絲發展 14
2.1.2 靜電紡絲原理 14
2.2靜電紡絲的影響因子 16
2.2.1溶劑的調配 16
2.2.2 溶劑導電率與表面張力對靜電紡絲的影響 16
2.2.3 環境溫溼度對靜電紡絲的影響 18
2.2.4工作距離對於靜電紡絲的影響 20
2.2.5 高壓電壓對於靜電紡絲的影 22
2.2.6 注射幫浦推進速率對靜電紡絲的影響 23
2.2.7 電場影響對靜電紡絲的影響 24
2.2.8 高分子的分子量與濃度對靜電紡絲的影響 25
2.2.9 金屬離子 27
2.3 超級電容介紹 29
2.3.1超級電容原理 30
2.3.2超級電容分類 33
2.3.2.1 電雙層電容(Electric Double-Layer Capacitors, EDLC) 33
2.3.2.2 法拉第擬電容(Pseudo capacitor) 34
2.3.2.3 對稱型超級電容(Symmetric Supercapacitor ) 35
2.3.2.4 非對稱型超級電容(Asymmetric Supercapacitor) 35
2.3.2.5 水溶液電解液超級電容(Aqueous Electrolyte Supercapacitor) 35
2.3.2.6非水溶液電解液超級電容(Aqueous Electrolyte Supercapacitor) 36
第三章 實驗方法 37
3.1實驗藥品與方法 37
3.1.1 實驗藥品 37
3.1.2實驗方法 38
3.2實驗樣品與試片之製備 39
3.2.1電紡溶液製備 39
3.2.2煆燒與分析 39
3.2.3試片熱處理 39
3.3實驗儀器 40
3.3.1 靜電紡絲設備 40
3.3.2 電化學工作站(Electrochemical Workstation) 41
3.3.3 熱重分析儀 (Thermogravimetric analysis, TGA) 43
3.3.4 熱機械分析儀 (Thermo Mechanical Analyzer,TMA) 44
3.3.5 場發式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 45
3.3.6 X光繞射分析(X-ray diffraction analysis, XRD) 47
第四章 結果 49
4.1利用場發式電子顯微鏡觀察靜電紡絲之顯微結構 49
4.1.1硝酸鐵濃度為0.1g/ml之初紡纖維 49
4.1.2硝酸鐵濃度為0.2 g/ml經600 oC煆燒之纖維 50
4.1.3硝酸鐵濃度為0.15 g/ml經600 oC煆燒之纖維 51
4.1.4硝酸鐵濃度為0.1 g/ml經600 oC煆燒之纖維 52
4.1.5摻雜氯化亞錫二水合物之纖維 53
4.1.6 硝酸鐵濃度為0.1 g/ml經500oC煆燒之纖維 56
4.1.7 硝酸鐵濃度為0.1 g/ml經600oC煆燒之纖維 57
4.1.8 硝酸鐵濃度為0.1 g/ml經700oC煆燒之纖維 58
4.2熱分析結果 59
4.2.1 TGA熱重分析儀 59
4.7.2 TMA熱機械分析儀(穿刺) 60
4.8 XRD X-光繞射分析儀 61
4.9 傅立葉紅外光譜 FTIR 62
4.10電化學分析 63
4.10.1 不同濃度硝酸鐵所製備之氧化鐵纖維循環伏安測試 63
第五章 討論 66
5.1硝酸鐵濃度的影響 66
5.2 溫度與升溫速率的影響 68
5.3 摻雜錫離子 69
5.4 時間與濕度對形貌的影響 70
5.5 傅立葉紅外線光譜 71
第六章 結論 73
6.1 DMF添加多寡 73
6.2 硝酸鐵濃度 73
6.3 摻雜錫之影響 73
6.4 升溫速率影響 73
6.4 比電容影響 74
第七章 參考文獻 74
[1] A.L. Yarin, S. Koombhongse, D.H. Reneker, Journal of Applied Physics, 90 (2001) 4836-4846.
[2] N. Bhardwaj, S.C. Kundu, Biotechnol Adv, 28 (2010) 325-347.
[3] S. Haider, Y. Al-Zeghayer, F.A. Ahmed Ali, A. Haider, A. Mahmood, W.A. Al-Masry, M. Imran, M.O. Aijaz, Journal of Polymer Research, 20 (2013).
[4] L. Wang, G. Yang, S. Peng, J. Wang, W. Yan, S. Ramakrishna, Energy Storage Materials, 25 (2020) 443-476.
[5] S.D.A. Zaidi, C. Wang, B. Gyorgy, C. Sun, H. Yuan, L. Tian, J. Chen, J Colloid Interface Sci, 569 (2020) 164-176.
[6] A.D. Sekar, V. Kumar, H. Muthukumar, P. Gopinath, M. Matheswaran, European Polymer Journal, 118 (2019) 27-35.
[7] E. Mudra, I. Shepa, O. Milkovic, Z. Dankova, A. Kovalcikova, A. Annušová, E. Majkova, J. Dusza, Applied Surface Science, 480 (2019) 876-881.
[8] I.S. Chronakis, S. Grapenson, A. Jakob, Polymer, 47 (2006) 1597-1603.
[9] S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, H.Y. Kim, Materials Science and Engineering: B, 217 (2017) 36-48.
[10] F.-L. Zhou, P.L. Hubbard, S.J. Eichhorn, G.J.M. Parker, Polymer, 52 (2011) 3603-3610.
[11] S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagström, P. Westbroek, K. De Clerck, Journal of Materials Science, 44 (2009) 1357-1362.
[12] T. Wang, S. Kumar, Journal of Applied Polymer Science, 102 (2006) 1023-1029.
[13] F.-L. Zhou, R.-H. Gong, I. Porat, Polymer Engineering & Science, 49 (2009) 2475-2481.
[14] F.-L. Zhou, R.-H. Gong, I. Porat, Journal of Applied Polymer Science, 115 (2010) 2591-2598.
[15] C.S. Kong, T.H. Lee, S.H. Lee, H.S. Kim, Journal of Materials Science, 42 (2007) 8106-8112.
[16] X. Yuan, Y. Zhang, C. Dong, J. Sheng, Polymer International, 53 (2004) 1704-1710.
[17] L. Mei, R. Han, Y. Gao, Y. Fu, Y. Liu, Journal of Wuhan University of Technology-Mater. Sci. Ed., 28 (2013) 1107-1111.
[18] Y. Yang, Z. Jia, J. Liu, Q. Li, L. Hou, L. Wang, Z. Guan, Journal of Applied Physics, 103 (2008).
[19] C. Zhang, Y. Li, P. Wang, H. Zhang, Comprehensive Reviews in Food Science and Food Safety, 19 (2020) 479-502.
[20] S. Bhattacharyya, L.S. Nair, A. Singh, N.R. Krogman, Y.E. Greish, P.W. Brown, H.R. Allcock, C.T. Laurencin, Journal of Biomedical Nanotechnology, 2 (2006) 36-45.
[21] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Polymer, 45 (2004) 2959-2966.
[22] A. Kulkarni, V.A. Bambole, P.A. Mahanwar, Polymer-Plastics Technology and Engineering, 49 (2010) 427-441.
[23] M.M. Munir, A.B. Suryamas, F. Iskandar, K. Okuyama, Polymer, 50 (2009) 4935-4943.
[24] B. Bai, X. Yan, G. Li, P. Li, J. Hu, H. Jiang, W. Zhang, Nano, 11 (2016).
[25] N. Horzum, R. Munoz-Espi, G. Glasser, M.M. Demir, K. Landfester, D. Crespy, ACS Appl Mater Interfaces, 4 (2012) 6338-6345.
[26] J.-S.M. Lee, M.E. Briggs, C.-C. Hu, A.I. Cooper, Nano Energy, 46 (2018) 277-289.
[27] V.D. Nithya, N. Sabari Arul, Journal of Materials Chemistry A, 4 (2016) 10767-10778.
[28] C.D. Lokhande, D.P. Dubal, O.-S. Joo, Current Applied Physics, 11 (2011) 255-270.
[29] X. Li, B. Wei, Nano Energy, 2 (2013) 159-173.
[30] S. Zhang, N. Pan, Advanced Energy Materials, 5 (2015).
[31] X. Sun, X. Zhang, Y. Ma, SCIENTIA SINICA Chimica, 44 (2014) 1081-1096.
[32] M. Yu, Z. Wang, Y. Han, Y. Tong, X. Lu, S. Yang, Journal of Materials Chemistry A, 4 (2016) 4634-4658.
[33] S. Kabir, S. Medina, G. Wang, G. Bender, S. Pylypenko, K.C. Neyerlin, Nano Energy, 73 (2020).
[34] Z. Jian, V. Raju, Z. Li, Z. Xing, Y.-S. Hu, X. Ji, Advanced Functional Materials, 25 (2015) 5778-5785.
[35] S. Liu, K. Yao, L.-H. Fu, M.-G. Ma, RSC Advances, 6 (2016) 2135-2140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊