跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋佳祐
研究生(外文):Chia-Yu Sung
論文名稱:不降解聚氨酯基3D光固化內層耳廓形結構披覆生物混合水凝膠組織支架於耳軟骨植體之研究
論文名稱(外文):Study of Non-Degradable Polyurethane-Based 3D Photo-Cured inner Lamella Auricular Structure Coated Bio-inspired Hydrogel Scaffold for Ear Cartilage Implants
指導教授:王志光王志光引用關係
指導教授(外文):Chih-Kuang Wang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:68
中文關鍵詞:組織工程3D列印光固化支架塗佈聚氨酯水膠軟骨軟骨分化
外文關鍵詞:Tissue engineering3D printingPhotocuringScaffold coatedPolyurethaneHydrogelCartilageChondrogenic differentiation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
組織工程做為組織修復及再生的研究方向,其三大元素包含細胞、支架、訊息因子。3D技術有著材料成本低、列印速度快、高客製化等優點受到高度重視,這項技術也被應用在組織工程上。
本研究運用3D列印其中之光固化系統,材料選擇具有生物安全性的聚氨酯(Polyurethane,PU),添加聚乙二醇二丙烯酸酯(PEG-diacrylate)、環氧樹脂(T-6000)與實驗室開發的新型交聯劑(nSSA)調整機械強度與彈性,透過以上材料混合光起始劑做為聚氨酯預聚物光固化系統,依據光起始劑選擇上,經特定波長光照後產生鍵結交聯製作耳廓支架。
後使用生物水凝膠包覆支架,將明膠(Gelatin)與透明質酸(Hyaluronic acid,HA)各別修飾上甲基丙烯酸酯(Methyl Methacrylate,MA),作為可光交聯明膠甲基丙烯酰(GelMA)與甲基丙烯酸酯化透明質酸(HAMA),再添加新型交聯劑(nSSA)提升水膠機械強度,作為替代細胞外基質(ECM)並提供細胞生長的臨時場所;研究中將細胞與水膠做混合,塗佈光固化支架完全後,外層水膠支架高含水可使細胞與培養液通透,並添加軟骨分化誘導因子,使細胞生長與軟骨增生。
本研究選取人類脂肪組織幹細胞(hADSCs),配上含有軟骨誘導因子:BMP-2、TGF-beta 1之培養液作為軟骨分化的誘導因子評估對象,並混合生物水凝膠支架共同培養結果具有促進軟骨化能力。
Tissue engineering is the research direction of tissue repair and regeneration, and its three major elements include cells, scaffolds, and information factors. 3D technology is highly valued for its advantages of low material cost, fast printing speed, and high customization. This technology has also been applied to tissue engineering.
In this study, the light curing system in 3D printing was used. The materials were selected from bio-safety polyurethane (PU), polyethylene glycol diacrylate (PEG-diacrylate), epoxy resin (T-6000) and experiments The new type of crosslinking agent (nSSA) developed by the laboratory adjusts the mechanical strength and elasticity. Through the above materials, the photoinitiator is mixed as a polyurethane prepolymer photocuring system. According to the choice of the photoinitiator, the bond will be generated after irradiation with a specific wavelength Joint production of auricle bracket.
Afterwards, the scaffold was coated with biological hydrogel, and gelatin (Gelatin) and hyaluronic acid (HA) were modified with Methyl Methacrylate (MA) respectively to serve as the photocrosslinkable gelatin methacrylic acid. (GelMA) and methacrylic acid esterified hyaluronic acid (HAMA), and then add a new cross-linking agent (nSSA) to improve the mechanical strength of the hydrogel, as a replacement for extracellular matrix (ECM) and provide a temporary place for cell growth; research will Cells are mixed with hydrogel and the light-cured scaffold is completely coated. The high water content of the outer layer of hydrogel scaffold can make the cells and the culture liquid permeable, and add chondrogenic differentiation inducing factors to enable cell growth and cartilage hyperplasia.
In this study, human adipose tissue stem cells (hADSCs) were selected with cartilage-inducing factors: BMP-2 and TGF-beta 1 as the evaluation targets of chondrogenic differentiation. They were co-cultured with a biohydrogel scaffold to promote the ability of cartilage.
第一章、 緒論 XIV
1.1 研究背景 XIV
1.2 研究動機與目的 XIV
1.3 研究策略 XV
第二章、 介紹 1
2.1 耳朵構造之簡介 1
2.1.1 小耳症(Microtia) 2
2.1.2 小耳症重建 3
2.2 組織工程(Tissue Engineering) 5
2.2.1 細胞(Cell) 5
2.2.2 支架(Scaffold) 6
2.2.3 訊息因子(Singal factor) 7
2.1 細胞外基質(Extracellular matrix,ECM) 7
2.2 軟骨(Cartilage) 8
2.2.1 透明軟骨(Hyaline Cartilage) 9
2.2.2 彈性軟骨(Elastic Cartilage) 9
2.2.3 纖維軟骨(Fibrous Cartilage) 10
2.3 水膠(Hydrogel) 11
2.3.1 明膠(Gelatin) 11
2.3.2 透明質酸(Hyaluronic acid,HA) 12
2.4 高分子材料 13
2.4.1 聚胺脂(Polyurethane,PU) 14
2.4.2 聚乙二醇二丙烯酸酯(PEG-dicarylate,PEGDA) 14
2.4.3 環氧樹脂(T-6000) 15
2.4.4 nano-Silica-Silane-acrylate(nSSA) 16
2.5 積層製造技術之簡介 17
2.6 光聚合固化 17
2.6.1 光固化反應機制 18
2.6.2 光固化樹脂 18
2.6.3 光固化技術 19
第三章、 實驗材料與方法 21
3.1 實驗藥品 21
3.2 儀器設備 22
3.3 實驗流程及步驟 23
3.3.1 製備明膠-甲基丙烯酸甲酯(Gelatin methacryloyl,GelMA) 24
3.3.2 製備甲基丙烯酸酯化透明質酸(HAMA) 24
3.3.3 製備nano-Silica-Silane-acrylate(nSSA) 25
3.3.4 利用水膠包覆內層支架 26
3.4 分析方法 27
3.4.1 凝膠滲透層析(GPC) 27
3.4.2 以UV-Vis光譜儀檢測單體殘留 27
3.4.3 拉伸強度測試(Tensile Strength) 27
3.4.4 接觸角測試Contact Angle 28
3.4.5 核磁共振光譜儀1H NMR鑑定 29
3.4.6 掃描式電子顯微鏡SEM 29
3.4.7 水膠含水率(Swelling ratio) 30
3.4.8 抗壓強度測試(Compressive strength) 30
3.4.9 細胞分離及培養 31
3.4.10 細胞毒性/生物安全性測試 31
3.4.11 GAG/DNA 分化測試 32
第四章、 結果與討論 34
4.1 凝膠滲透色譜(GPC) 34
4.2 配製光固化樹脂系統 34
4.2.1 以UV-Vis光譜儀檢測單體殘留 36
4.3 拉伸測試(Tensile Strength) 37
4.4 接觸角測試Contact Angle 38
4.5 水膠組別 40
4.6 核磁共振光譜儀1H NMR鑑定 41
4.7 掃描式電子顯微鏡 42
4.8 外層水膠含水率測試 43
4.9 抗壓強度測試(Compressive strength) 44
4.10 細胞生物安全性測試 45
4.11 GAG/DNA 分化測試 46
4.12 混合水膠支架 47
第五章、 結論 48
第六章、 參考文獻 49
1.Iyer, K.; Dearman, B. L.; Wagstaff, M. J.; Greenwood, J. E. J. J. o. B. C.; Research, A novel biodegradable polyurethane matrix for auricular cartilage repair: An in vitro and in vivo study. 2016, 37 (4), e353-e364.
2.Zhou, G.; Jiang, H.; Yin, Z.; Liu, Y.; Zhang, Q.; Zhang, C.; Pan, B.; Zhou, J.; Zhou, X.; Sun, H. J. E., In vitro regeneration of patient-specific ear-shaped cartilage and its first clinical application for auricular reconstruction. 2018, 28, 287-302.
3.Kusindarta, D. L.; Wihadmadyatami, H. J. T. R., The role of extracellular matrix in tissue regeneration. 2018, 65.
4.Song, E.-H.; Cho, K.-I.; Kim, H.-E.; Jeong, S.-H. J. A. o., Biomimetic coating of hydroxyapatite on glycerol phosphate-conjugated polyurethane via mineralization. 2017, 2 (3), 981-987.
5.Nayyer, L.; Patel, K. H.; Esmaeili, A.; Rippel, R. A.; Birchall, M.; O'Toole, G.; Butler, P. E.; Seifalian, A. M. J. P.; surgery, r., Tissue engineering: revolution and challenge in auricular cartilage reconstruction. 2012, 129 (5), 1123-1137.
6.Yang, J.; Zhang, Y. S.; Yue, K.; Khademhosseini, A. J. A. b., Cell-laden hydrogels for osteochondral and cartilage tissue engineering. 2017, 57, 1-25.
7.Saldin, L. T.; Cramer, M. C.; Velankar, S. S.; White, L. J.; Badylak, S. F. J. A. b., Extracellular matrix hydrogels from decellularized tissues: structure and function. 2017, 49, 1-15.
8.Lam, T.; Dehne, T.; Krüger, J. P.; Hondke, S.; Endres, M.; Thomas, A.; Lauster, R.; Sittinger, M.; Kloke, L. J. J. o. B. M. R. P. B. A. B., Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue‐engineered cartilage. 2019, 107 (8), 2649-2657.
9.Zhu, J.; Marchant, R. E. J. E. r. o. m. d., Design properties of hydrogel tissue-engineering scaffolds. 2011, 8 (5), 607-626.
10.Sterodimas, A.; de Faria, J.; Correa, W. E.; Pitanguy, I. J. J. o. P., Reconstructive; Surgery, A., Tissue engineering and auricular reconstruction: a review. 2009, 62 (4), 447-452.
11.Vega, S. L.; Kwon, M. Y.; Burdick, J. A. J. E. c.; materials, Recent advances in hydrogels for cartilage tissue engineering. 2017, 33, 59.
12.Zhang, J.-Q.; Han, L.-B. J. O. L., Chlorosilane-Catalyzed Coupling of Hydrogen Phosphine Oxides with Acyl Chlorides Generating Acylphosphine Oxides. 2020.
13.Shirahama, H.; Lee, B. H.; Tan, L. P.; Cho, N.-J. J. S. r., Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. 2016, 6 (1), 1-11.
14.Morris, V. B.; Nimbalkar, S.; Younesi, M.; McClellan, P.; Akkus, O. J. A. o. b. e., Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. 2017, 45 (1), 286-296.
15.Gu, J.; Yang, X.; Lv, Z.; Li, N.; Liang, C.; Zhang, Q. J. I. J. o. H.; Transfer, M., Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. 2016, 92, 15-22.
16.Sun, Y.; Zhang, Z.; Wong, C. J. J. o. C.; Science, I., Study on mono-dispersed nano-size silica by surface modification for underfill applications. 2005, 292 (2), 436-444.
17.Huang, Y.; Zhang, X. F.; Gao, G.; Yonezawa, T.; Cui, X. J. B. j., 3D bioprinting and the current applications in tissue engineering. 2017, 12 (8), 1600734.
18.Qing-Hua, Y.; Yu-Peng, S.; Haiyue, J.; Hong-Xing, Z. J. J. o. p., reconstructive; surgery, a., The significance of the biomechanical properties of costal cartilage in the timing of ear reconstruction surgery. 2011, 64 (6), 742-746.
19.Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. J. N. p., Surface-wetting characterization using contact-angle measurements. 2018, 13 (7), 1521-1538.
20.Sun, M.; Sun, X.; Wang, Z.; Guo, S.; Yu, G.; Yang, H. J. P., Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. 2018, 10 (11), 1290.
21.Rahali, K.; Ben Messaoud, G.; Kahn, C. J.; Sanchez-Gonzalez, L.; Kaci, M.; Cleymand, F.; Fleutot, S.; Linder, M.; Desobry, S.; Arab-Tehrany, E. J. I. J. o. M. S., Synthesis and characterization of nanofunctionalized gelatin methacrylate hydrogels. 2017, 18 (12), 2675.
22.Xiao, W.; Qu, X.; Li, J.; Chen, L.; Tan, Y.; Li, K.; Li, B.; Liao, X. J. E. P. J., Synthesis and characterization of cell-laden double-network hydrogels based on silk fibroin and methacrylated hyaluronic acid. 2019, 118, 382-392.
23.Zhu, M.; Wang, Y.; Ferracci, G.; Zheng, J.; Cho, N.-J.; Lee, B. H. J. S. r., Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. 2019, 9 (1), 1-13.
電子全文 電子全文(限國圖所屬電腦使用)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊