跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃寶嫺
研究生(外文):Pao Hsien Huang
論文名稱:7,3\',4\'-trihydroxyisoflavone環糊精包合物的保濕及預防空氣懸浮微粒誘發角質細胞氧化、發炎及老化作用
論文名稱(外文):Moisture and prevention effects on PMs-induced oxidative stress, inflammation and aging in keratinocyte of 7,3\',4\'-trihydroxyisoflavone cyclodextrin complex
指導教授:曾志華曾志華引用關係
指導教授(外文):Chih Hua Tseng
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:藥學系博士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:104
中文關鍵詞:空氣污染環糊精保濕人體試驗化粧品活性原料
外文關鍵詞:air pollutantscyclodextrinmoisturepilot studycosmetics active ingredient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
空氣懸浮微粒(Particulate matters, PM)為空氣污染的指標之一,造成皮膚老化、過敏及皮膚疾病的發生,如異位性皮膚炎。根據市場上的調查,植物萃取物中有許多抗氧化劑常被作為護膚產品的活性成分,以預防皮膚過度暴露於環境污染物後的損傷,但總是缺乏實證數據驗證其效用。7,3',4'-trihydroxyisoflavone (734THIF)是daidzein的二次代謝物,具有抗氧化、抑制黑色素產生和預防皮膚癌之活性。然而734THIF疏水特性限制其在皮膚的穿透及吸收,進而影響其藥理作用。本研究目的為以2-Hydroxypropyl-β-cyclodextrin (HPBCD)包覆734THIF形成環糊精包合物(5-7HP)並探討其改善734THIF在水中溶解度之機制、光安定性以及在預防PM誘導角質細胞氧化、發炎及保濕蛋白質表現之變化,並以人體試驗探討其保濕之實證效用。結果顯示734THIF成功地被包覆在HPBCD的內腔中,其機制主要是透過表面積增加、無晶型轉變及兩者間氫鍵形成來提升734THIF水溶解度及經皮吸收能力。此外,5-7HP透過抑制MAPKs的磷酸化來預防PM誘導的ROS產生,使得COX-2和MMP-9表現下降並提升AQP-3蛋白質表現來預防PM引起的傷害。而人體試驗結果證實5-7HP是一個安全並具皮膚保濕的成分。總結,5-7HP是一個具有抗氧化、抗發炎及保濕等實證功效的活性原料,可做為「抗污染化粧保養品」添加物藉此提高其在化粧品產業價值。
Particulate matters (PM), one of the indicators for assessing the severity of air pollution, are usually induced skin problems, such as skin aging, allergy and atopic dermatitis. According to cosmetic marketing report, skincare products have used many plant extracts as additional antioxidants to prevent skin injury after overexposure to environmental pollutants. However, the products are lack of empirical data to verify their efficacy. 7,3',4'-trihydroxyisoflavone (734THIF), a secondary metabolite of daidzein, had many biological effects, including antioxidant, anti-skin cancer, and skin whitening. Unfortunately, the lipophilicity of 734THIF limits its skin penetration and absorption and resulting in the poor pharmacological effects in the skin.
The aim of the present study was to prepare 734THIF cyclodextrin complex (5-7HP) using 2-Hydroxypropyl-β-cyclodextrin (HPBCD) for improving the poor water solubility of 734THIF. We also investigated the mechanism of improvement of the water solubility, photostability of 5-7HP, and the prevention of PM-induced oxidative stress, inflammation, and aging in keratinocyte. In addition, the skin moisture pilot study was also performed to confime the evidence-base cosmetic. In the present study, 5-7HP was successfully prepared and its water solubility was significantly increasd due to improvement of physicochemical properties of 734THIF, including amorphous transformation, surface area enhancement, and hydrogen bonding formation between 734THIF and HPBCD. 5-7HP was also significantly enhanced the skin penetration of raw 734THIF. In addition, 5-7HP was also effectively decreased the content of reactive oxygen species and the protein expression of COX-2, MMP-9 and AQP-3 through downregulating phosphorylation of MAPKs in PM-induced keratinocytes injury model. According to our pilot study, 5-7HP is a safe ingredient and also displayed good skin moisture effect in skin dryness.
Consequently, 5-7HP can be developed as "anti-pollution cosmetic care product" as cosmetics active ingredient due to its antioxidant, anti-inflammatory and moisturize and finally could be enhanced the market value in cosmetic industry.
中文摘要 I
英文摘要 II
致謝辭 IV
第一章 前言 1
第一節 空氣懸浮微粒與皮膚的氧化壓力、發炎、保濕之關係 1
第二節 7,3',4'-trihydroxyisoflavone與皮膚穿透的關係 8
第三節 經皮傳輸系統 16
第四節 創新轉譯化粧品在臨床實證的落實 23
第五節 研究目的 25
第六節 研究架構 26
第二章 實驗材料及方法 28
第一節 實驗材料 28
第二節 實驗儀器 32
第三節 實驗方法 33
1. 高效液相層析分析方法建立 33
2. 734THIF與HPBCD之相溶解度 33
3. 製備734THIF環糊精包合物 34
4. 水溶解度、產率及光安定性試驗 34
5. 外觀型態觀察 35
6. 結晶型態觀察 36
7. 氫鍵鍵結測定 36
8. 體外試驗 37
9. 在角質細胞中的生物活性分析 39
10. 人體試驗 45
11. 統計方法 51
第三章 結果 52
第一節 相溶解度及透過水溶解決定最佳比例之7HP 52
第二節 外觀型態及結晶型態的改變改善734THIF的水溶解度 54
第三節 734THIF透過氫鍵鍵結與HPBCD 鑲嵌 56
第四節 5-7HP的光安定 59
第五節 經皮吸收及使用之安全劑量 61
第六節 DPPH清除自由基活性及細胞存活率 65
第七節 5-7HP抑制PM誘發的ROS表現 67
第八節 5-7HP預防PM在角質細胞中誘發傷害之機制 68
第九節 5-7HP 增加皮膚的含水量 70
第四章 討論 73
第五章 結論 78
第六章 研究贊助 79
第七章 參考文獻 80
附錄一 近五年內主要研究成果 94
第一節 期刊論文 94
第二節 專利發表 94
第三節 研討會論文 94
附錄二 人體試驗通過文件 96
1.Chriscaden, K.; Osseiran, N. WHO releases country estimates on air pollution exposure and health impact. Available online: https://www.who.int/news-room/detail/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact (accessed on Jun 26, 2019).
2.Tseng, C.H.; Tsuang, B.J.; Chiang, C.J.; Ku, K.C.; Tseng, J.S.; Yang, T.Y.; Hsu, K.H.; Chen, K.C.; Yu, S.L.; Lee, W.C.; et al. The relationship between air pollution and lung cancer in non-smokers in Taiwan. J. Thorac. Oncol. 2019, 14, 784–792.
3.Sun, Q.; Hong, X.; Wold, L.E. Cardiovascular effects of ambient particulate air pollution exposure. Circulation 2010, 121, 2755–2765.
4.Jiménez, E.; Linares, C.; Rodríguez, L.F.; Díaz, J. Short-term impact of particulate matter (PM2.5) on daily mortality among the over-75 age group in Madrid (Spain). Sci. Total. Environ. 2009, 407, 5486–5492.
5.Vierkötter, A.; Schikowski, T.; Ranft, U.; Sugiri, D.; Matsui, M.; Krämer, U.; Krutmann, J. Airborne particle exposure and extrinsic skin aging. J. Investig. Dermatol. 2010, 130, 2719–2726.
6.Fisher, G.J.; Datta, S.C.; Talwar, H.S.; Wang, Z.Q.; Varani, J.; Kang, S.; Voorhees, J.J. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 1996, 379, 335–339.
7.Sárdy, M. Role of matrix metalloproteinases in skin ageing. Connect. Tissue Res. 2009, 50, 132–138.
8.Agren, J.; Zelenin, S.; Håkansson, M.; Eklöf, A.C.; Aperia, A.; Nejsum, L.N.; Nielsen, S.; Sedin, G. Transepidermal water loss in developing rats: role of aquaporins in the immature skin. Pediatr. Res. 2003, 53, 558–565.
9.Shan, S.J.; Xiao, T.; Chen, J.; Geng, S.L.; Li, C.P.; Xu, X.; Hong, Y.; Ji, C.; Guo, Y.; Wei, H.; Li, D.; Chen, H.D. Kanglaite attenuates UVB-induced down-regulation of aquaporin-3 in cultured human skin keratinocytes. Int. J. Mol. Med. 2012, 29, 625–629.
10.Lee, C.W.; Lin, Z.C.; Hu, S.C.S.; Chiang, Y.C.; Hsu, L.F.; Lin, Y.C.; Lee, I.T.; Tsai, M.H.; Fang, J.Y. Urban particulate matter down-regulates filaggrin via COX2 expression/PGE2 production leading to skin barrier dysfunction. Sci. Reports 2016, 6, 27995:1-27995:16.
11.Pan, T.L.; Wang, P.W.; Aljuffali, I.A.; Huang, C.T.; Lee, C.W.; Fang, J.Y. The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J. Dermatol. Sci. 2015, 78, 51–60.
12.Ahn, K. The role of air pollutants in atopic dermatitis. J. Allergy Clin. Immunol. 2014, 134, 993–999.
13.Ngoc, L.T.N.; Park, D.; Lee, Y.; Lee, Y.C. Systematic review and meta-analysis of human skin diseases due to particulate matter. Int. J. Environ. Res. Public Health 2017, 14, 1458:1-1458:11.
14.Sticozzi, C.; Belmonte, G.; Pecorelli, A.; Arezzini, B.; Gardi, C.; Maioli, E.; Miracco, C.; Toscano, M.; Forman, H.J.; Valacchi, G. Cigarette smoke affects keratinocytes SRB1 expression and localization via H2O2 production and HNE protein adducts formation. PLoS One. 2012, 7, e33592:1-e33592:14.
15.Saito, A.; Tanaka, H.; Tanaka, H.; Usuda, H.; Shibata, T.; Higashi, S.; Yamashita, H.; Inagaki, N.; Nagai, H. Characterization of skin inflammation induced by repeated exposure of toluene, xylene, and formaldehyde in mice. Environ. Toxicol. 2011, 26, 224–232.
16.Yang, C.; Ling, H.; Zhang, M.; Yang, Z.; Wang, X.; Zeng, F.; Wang, C.; Feng, J. Oxidative stress mediates chemical hypoxia-induced injury and inflammation by activating NF-κb-COX-2 pathway in HaCaT cells. Mol. cells 2011, 31, 531–538.
17.Whitehouse, L. What’s the state of anti-pollution skin care? Part II. Available online: https://www.cosmeticsdesign-europe.com/Article/2016/08/25/What-s-the-state-of-anti-pollution-skin-care-Part-II (accessed on Aug 17, 2019).
18.Whitehouse, L. Anti-pollution beauty and the current state of the market: your questions answered. Available online: https://www.cosmeticsdesign-europe.com/Article/2017/03/14/Anti-pollution-beauty-and-the-current-state-of-the-market-your-questions-answered (accessed on Mar 20, 2020).
19.Anti-Pollution Skincare Products Market Size, Share & Trends Analysis Report By End User (Male, Female), By Product (Cream, Moisturizer, Face Mask), By Nature (Organic, Conventional) And Segment Forecasts, 2019 – 2025. Available online: https://www.grandviewresearch.com/industry-analysis/anti-pollution-skincare-products-market (accessed on Jul 16, 2020).
20.Talaei, M.; Koh, W.P.; van Dam, R.M.; Yuan, J.M.; Pan, A. Dietary soy intake is not associated with risk of cardiovascular disease mortality in Singapore Chinese adults. J. Nutr. 2014, 144, 921–928.
21.Acharjee, S.; Zhou, J.R.; Elajami, T.K.; Welty, F.K. Effect of soy nuts and equol status on blood pressure, lipids and inflammation in postmenopausal women stratified by metabolic syndrome status. Metabolism 2015, 64, 236–243.
22.Moghaddam, A.S.; Entezari, M.H.; Iraj, B.; Askari, G.R.; Maracy, M.R. The effects of consumption of bread fortified with soy bean flour on metabolic profile in type 2 diabetic women: a cross-over randomized controlled clinical trial. Int. J. Prev. Med. 2014, 5, 1529–1536.
23.Kim, J.S.; Lee, H.; Nirmala, F.S.; Jung, C.H.; Kim, M.J.; Jang, Y.J.; Ha, T.Y.; Ahn, J. Dihydrodaidzein and 6-hydroxydaidzein mediate the fermentation-induced increase of anti-osteoporotic effect of soybeans in ovariectomized mice. FASEB J. 2018, 33, 3252–3263.
24.Kulling, S.E.; Honig, D.M.; Metzler, M. Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J. Agric. Food Chem. 2001, 49, 3024−3033.
25.Esaki, H.; Onozaki, H.; Morimitsu, Y.; Kawakishi, S.; Osawa, T. Potent Antioxidative Isoflavones Isolated from Soybeans Fermented with Aspergillus saitoi. Biosci. Biotechnol. Biochem. 1998, 62, 740–746.
26.Roh, C.; Jung, U.; Jo, S.K. 6, 7, 4′-Trihydroxyisoflavone from Doenjang inhibits lipid accumulation. Food Chem. 2011, 129, 183–187.
27.Lee, K.W.; Bode, A.M.; Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer 2011, 11, 211–218.
28.Chavan, U.D. Phenolic Antioxidants And Health Benefits; Scientific Publishers, 2018; ISBN 978-938-665-213-3.
29.Erasto, P.; Bojase-Moleta, G.; Majinda, R. Antimicrobial and radical scavenging flavonoids from the stem wood of Erythrina latissima. Phytochemistry 2005, 65, 875–880.
30.Kim, B.B.; Kim, J.R.; Kim, J.H.; Kim, Y.A.; Park, J.S.; Yeom, M.H.; Joo Lee, H.; Lee, K.W.; Kang, N.J. 7,3’,4’-Trihydroxyisoflavone Ameliorates the Development of Dermatophagoides farinae-Induced Atopic Dermatitis in NC/Nga Mice. Evidence-based Complement. Altern. Med. 2013, 2013, 636597:1-636597:10.
31.Park, J.S.; Kim, D.H.; Lee, J.K.; Lee, J.Y.; Kim, D.H.; Kim, H.K.; Lee, H.J.; Kim, H.C. Natural ortho-dihydroxyisoflavone derivatives from aged Korean fermented soybean paste as potent tyrosinase and melanin formation inhibitors. Bioorganic & Med. Chem. Lett. 2010, 20, 1162–1164.
32.Lee, D.E.; Lee, K.W.; Byun, S.; Jung, S.K.; Song, N.; Lim, S.H.; Heo, Y.S.; Kim, J.E.; Kang, N.J.; Kim, B.Y.; et al. 7, 3′, 4′-Trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses ultraviolet B-induced skin cancer by targeting Cot and MKK4. J. Biol. Chem. 2011, 286, 14246–14256.
33.Bae, M.; Woo, M.; Kusuma, I.W.; Arung, E.T.; Yang, C.H.; Kim, Y.U. Inhibitory effects of isoflavonoids on rat prostate testosterone 5α-reductase. J. Acupunct. Meridian Stud. 2012, 5, 319–322.
34.Pandey, B.P.; Lee, N.; Kim, B.G. Effect of Extracellular Tyrosinase on the Expression Level of P450, Fpr, and Fdx and Ortho-hydroxylation of Daidzein in Streptomyces avermitilis. Appl. Biochem. Biotechnol. 2018, 184, 1036–1046.
35.Ko, Y.H.; Kwon, S.H.; Ma, S.X.; Seo, J.Y.; Lee, B.R.; Kim, K.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. Memory-enhancing effects of 7, 3′, 4′-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. Brain Res. Bull. 2020, 142, 197–206.
36.Ko, Y.H.; Kwon, S.H.; Ma, S.X.; Seo, J.Y.; Lee, B.R.; Kim, K.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. The memory-enhancing effects of 7,8,4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res. Bull. 2018, 142, 197–206.
37.Ko, Y.H.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 6,7,4’-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Eur. J. Pharmacol. 2018, 826, 140–147.
38.Park, S.H.; Lee, C.H.; Lee, J.Y.; Yang, H.; Kim, J.H.; Park, J.H.Y.; Kim, J.E.; Lee, K.W. Topical Application of 7, 3′, 4′-Trihydroxyisoflavone Alleviates Atopic Dermatitis-Like Symptoms in NC/Nga Mice. Planta medica 2020, 86, 190–197.
39.Kim, H.; Kim, J.R.; Kang, H.; Choi, J.; Yang, H.; Lee, P.; Kim, J.; Lee, K.W. 7, 8, 4′-Trihydroxyisoflavone attenuates DNCB-induced atopic dermatitis-like symptoms in NC/Nga mice. PLoS One 2014, 9, e104938:1-e104938:9.
40.Hummelova, J.; Rondevaldova, J.; Balastikova, A.; Lapcik, O.; Kokoska, L. The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on antistaphylococcal effect of demethyltexasin. Lett. Appl. Microbiol. 2015, 60, 242–247.
41.Yatsu, F.K.J.; Koester, L.S.; Bassani, V.L. Isoflavone-aglycone fraction from Glycine max: a promising raw material for isoflavone-based pharmaceutical or nutraceutical products. Rev. Bras. de Farmacogn. 2016, 26, 259–267.
42.Rostagno, M.A.; Palma, M.; Barroso, C.G. Short-term stability of soy isoflavones extracts: Sample conservation aspects. Food Chem. 2005, 93, 557–564.
43.Smith, G.J.; Thomsen, S.T.; Markham, K.R.; Andary, C.; Cardon, D. The photostabilities of naturally occurring 5-hydroxyflavones, flavonols, their glycosides and their aluminium complexes. J. Photochem. Photobiol. A: Chem. 2000, 136, 87–91.
44.Dunford, C.L.; Smith, G.J.; Swinny, E.E.; Markham, K.R. The fluorescence and photostabilities of naturally occurring isoflavones. Photochemical & Photobiological Sciences 2003, 2, 611–615.
45.Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21.
46.Prausnitz, M.R.; Elias, P.M.; Franz T J; Schmuth, M.; Tsai, J.C.; Menon, G.K.; Holleran, W.M.; Feingold, K.R. Dermatology; 3rd ed.; Elsevier Health Sciences, 2012; Chapter 124; ISBN 978-072-343-571-6.
47.Cornell, M.; Pillai, S.; Oresajo, C. Cosmetic Dermatology: Products and Procedures, Second; 2nd ed.; Wiley-Blackwell: USA, 2016; Chapter 7; ISBN 978-111-865-556-6.
48.Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Therapeutic delivery 2010, 1, 109–131.
49.Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics 2015, 7, 438–470.
50.Patel, H.H.; Trivedi, M.; Maniar, M.; Ren, C.; Dave, R.H. Effect of β-cyclodextrin and Hydroxypropyl β-cyclodextrin on Aqueous Stability, Solubility and Dissolution of Novel Anti-cancer Drug Rigosertib. J. Pharm. Res. Int. 2018, 21, 1–20.
51.Challa, R.; Ahuja, A.; Ali, J.; Khar, R.K. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 2005, 6, 43:1-43:29.
52.Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of cyclodextrin/volatile inclusion complexes: a review. Molecules 2018, 23, 1204:1–1203:23.
53.Michalska, P.; Wojnicz, A.; Ruiz-Nuño, A.; Abril, S.; Buendia, I.; León, R. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: Preparation, physical characterization and pharmacological effect. Carbohydr. Polym. 2017, 157, 94–104.
54.Background review for cyclodextrins used as excipients. Available online: https://www.ema.europa.eu/en/documents/report/background-review-cyclodextrins-used-excipients-context-revision-guideline-excipients-label-package_en.pdf (accessed on Aug 24, 2020).
55.Irie, T.; Uekama, K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 1997, 86, 147–162.
56.劉仁龍; 蔡美娟; 王淑娟 藥品、醫療及化妝品零售業銷售穩健。 Available online: https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9&html=1&menu_id=18808&bull_id=5661 (accessed on Aug 24, 2019).
57.Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert Opin. drug Deliv. 2005, 2, 335–351.
58.化粧品標示宣傳廣告涉及虛偽誇大或醫療效能認定準則。Available online:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0030099 (accessed on Jun 30, 2020).
59.Huang, P.H.; Tseng, C.H.; Lin, C.Y.; Lee, C.W.; Yen, F.L. Preparation, characterizations and anti-pollutant activity of 7, 3′, 4′-trihydroxyisoflavone nanoparticles in particulate matter-induced HaCaT keratinocytes. Int. J. Nanomedicine 2018, 13, 3279–3293.
60.Pandya, P.; Gattani, S.; Jain, P.; Khirwal, L.; Surana, S. Co-solvent Evaporation Method for Enhancement of Solubility and Dissolution Rate of Poorly Aqueous Soluble Drug Simvastatin: In vitro–In vivo Evaluation. AAPS PharmSciTech 2008, 9, 1247–1252.
61.Huang, P.H.; Hu, S.C.; Lee, C.W.; Yeh, A.C.; Tseng, C.H.; Yen, F.L. Design of acid-responsive polymeric nanoparticles for 7, 3′, 4′-trihydroxyisoflavone topical administration. Int. J. Nanomedicine 2016, 11, 1615–1627.
62.Andonova, V.; Peneva, P.; Georgiev, G.S.; Toncheva, V.T.; Apostolova, E.; Peychev, Z.; Dimitrova, S.; Katsarova, M.; Petrova, N.; Kassarova, M. Ketoprofen-loaded polymer carriers in bigel formulation: an approach to enhancing drug photostability in topical application forms. Int. J. Nanomedicine 2017, 2017, 6221–6238.
63.COLIPA Guidelines for Percutaneous Absorption/Penetration, 1997. Available online: https://cosmeticseurope.eu/files/8314/6407/9075/Guidelines_for_Percutaneous_Absorption-Penetration_-_1997.pdf (accessed on Apr 7, 2020).
64.Material Details SRM 1649b - Urban Dust. Available online: https://www-s.nist.gov/srmors/view_detail.cfm?srm=1649B (accessed on Mar 22, 2020).
65.Dittert, L.W.; Higuchi, T.; Reese, D.R. Phase solubility technique in studying the formation of complex salts of triamterene. J. Pharm. Sci. 1964, 53, 1325–1328.
66.Güleç, K.; Demirel, M. Characterization and Antioxidant Activity of Quercetin/Methyl-β-Cyclodextrin Complexes. Current drug delivery 2016, 13, 444–451.
67.Borghetti, G.S.; Pinto, A.P.; Lula, I.S.; Sinisterra, R.D.; Teixeira, H.F.; Bassani, V.L. Daidzein/cyclodextrin/hydrophilic polymer ternary systems. Drug Dev. Ind. Pharm. 2011, 37, 886–893.
68.He, J.; Zheng, Z.P.; Zhu, Q.; Guo, F.; Chen, J. Encapsulation mechanism of oxyresveratrol by β-cyclodextrin and hydroxypropyl-β-cyclodextrin and computational analysis. Molecules 2017, 22, 1801:1-1801:13.
69.Popielec, A.; Loftsson, T. Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm. 2017, 531, 532–542.
70.Yotsumoto, K.; Ishii, K.; Kokubo, M.; Yasuoka, S. Improvement of the skin penetration of hydrophobic drugs by polymeric micelles. Int. J. Pharm. 2018, 553, 132–140.
71.The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 10th. Revision. Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_224.pdf (accessed on Jun 22, 2019).
72.Li, F.X.; Huang, L.Z.; Dong, C.; Wang, J.P.; Wu, H.J.; Shuang, S.M. Down-regulation of aquaporin3 expression by lipopolysaccharide via p38/c-Jun N-terminal kinase signalling pathway in HT-29 human colon epithelial cells. World J. Gastroenterol. 2015, 21, 4547–4554.
73.Verdier-Sévrain, S.; Bonté, F. Skin hydration: a review on its molecular mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82.
74.Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/waiver-vivo-bioavailability-and-bioequivalence-studies-immediate-release-solid-oral-dosage-forms (accessed on Jun 20, 2019).
75.Seo, J.Y.; Pandey, R.P.; Lee, J.; Sohng, J.K.; Namkung, W.; Park, Y.I. Quercetin 3-O-xyloside ameliorates acute pancreatitis in vitro via the reduction of ER stress and enhancement of apoptosis. Phytomedicine 2019, 55, 40–49.
76.Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; Naguib, D.M. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019, 20, 181:1-181:14.
77.Baidya, D.; Kushwaha, J.; Mahadik, K.; Patil, S. Chrysin-loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells. Drug Dev. Ind. Pharm. 2019, 45, 852–860.
78.Sieniawska, E.; Świątek, Ł.; Wota, M.; Rajtar, B.; Polz-Dacewicz, M. Microemulsions of essentials oils–Increase of solubility and antioxidant activity or cytotoxicity? Food Chem. Toxicol. 2019, 129, 115–124.
79.El-Laithy, H.M.; Badawi, A.; Abdelmalak, N.S.; Elsayyad, N.M.E. Stabilizing excipients for engineered clopidogrel bisulfate procubosome derived in situ cubosomes for enhanced intestinal dissolution: Stability and bioavailability considerations. Eur. J. Pharm. Sci. 2019, 136, 104954:1-104954:11.
80.Zhang, W.; Gong, X.; Cai, Y.; Zhang, C.; Yu, X.; Fan, J.; Diao, G. Investigation of water-soluble inclusion complex of hypericin with β-cyclodextrin polymer. Carbohydr Polym 2013, 95, 366–370.
81.Lu, Y.; Guo, T.; Qi, J.; Zhang, J.; Wu, W. Enhanced dissolution and stability of lansoprazole by cyclodextrin inclusion complexation: preparation, characterization, and molecular modeling. AAPS PharmSciTech 2012, 13, 1222–1229.
82.Furuishi, T.; Takahashi, S.; Ogawa, N.; Gunji, M.; Nagase, H.; Suzuki, T.; Endo, T.; Ueda, H.; Yonemochi, E.; Tomono, K. Enhanced dissolution and skin permeation profiles of epalrestat with β-cyclodextrin derivatives using a cogrinding method. Eur. J. Pharm. Sci. 2017, 106, 79–86.
83.Kim, Y.M.; Kim, J.; Jung, K.; Eo, S.; Ahn, K. The effects of particulate matter on atopic dermatitis symptoms are influenced by weather type: Application of spatial synoptic classification (SSC). Int. J. Hyg. Environ. Health 2018, 221, 823–829.
84.Park, S.Y.; Byun, E.J.; Lee, J.D.; Kim, S.; Kim, H.S. Air Pollution, Autophagy, and Skin Aging: Impact of Particulate Matter (PM10) on Human Dermal Fibroblasts. Int. J. Mol. Med. 2018, 19, 2727:1-2727:15.
85.Piao, M.J.; Ahn, M.J.; Kang, K.A.; Ryu, Y.S.; Hyun, Y.J.; Shilnikova, K.; Zhen, A.X.; Jeong, J.W.; Choi, Y.H.; Kang, H.K.; et al. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol 2018, 92, 2077–2091.
86.Sougrat, R.; Morand, M.; Gondran, C.; Barré, P.; Gobin, R.; Bonté, F.; Dumas, M.; Verbavatz, J.-M. Functional expression of AQP3 in human skin epidermis and reconstructed epidermis. J. Investig. Dermatol. 2002, 118, 678–685.
87.Hara, M.; Ma, T.; Verkman, A.S. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J. Biol. Chem. 2002, 277, 46616–46621.
88.Jiang, Y.; Jiang, X.; Law, K.; Chen, Y.; Gu, J.; Zhang, W.; Xin, H.; Sha, X.; Fang, X. Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation. Int. J. Pharm. 2011, 415, 252–258.
89.Itoh, K.; Kawasaki, S.; Kawamoto, S.; Seishima, M.; Chiba, H.; Michibata, H.; Wakimoto, K.; Imai, Y.; Minesaki, Y.; Otsuji, M.; Okubo, K. Identification of differentially expressed genes in psoriasis using expression profiling approaches. Exp. Dermato. 2005, 14, 667–674.
90.Brandner, J.M. Pores in the epidermis: aquaporins and tight junctions. Int. J. Cosmet. Sci. 2007, 29, 413–422.
91.Schrader, A.; Siefken, W.; Kueper, T.; Breitenbach, U.; Gatermann, C.; Sperling, G.; Biernoth, T.; Scherner, C.; Stäb, F.; Wenck, H.; Wittern, K.P.; Blattet, T. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol. Physiol. 2012, 25, 192–199.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top