[1]Yann LeCun Leon, Bottou Yoshua Bengio and Patrick Haffner(1998). Gradient-Based Learning Applied to Document Recognition. Published in IEEE, 86(11):2278 - 2324.
[2]Alex Krizhevsky , Ilya Sutskever and Geoffrey E. Hinton(2012). ImageNet Classification with Deep Convolutional Neural Networks. Published in NIPS.
[3]Chang, P. C., Chen, L. Y., & Fan, C. Y. (2008). A case-based evolutionary model for defect classification of printed circuit board images. Journal of Intelligent Manufacturing, 19(2), 203–214.
[4]Yohei Takada, Tokiko Shiina, Hiroyasu Usami and Yuji Iwahori(2017). Defect Detection and Classification of Electronic Circuit Boards Using Keypoint Extraction and CNN Features. Published in IARIA.
[5]Tokiko Shiina,Yuji Iwahori and Boonserm Kijsirikul(2018). Defect Classification of Electronic Circuit Board Using Multi-Input Convolutional Neural Network. International Journal of Computer & Software Engineering Volume 3 137.
[6]X. Tao, D. Zhang, W. Ma, X. Liu and D. Xu(2018). Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci., vol. 8, no. 9, pp. 1575.
[7]Li Y., Huang H., Xie Q., Yao L., Chen Q (2018). Research on a surface defect detection algorithm based on MobileNet-SSD. Appl. Sci., 8 (9), p. 1678.
[8]王泓翔。應用機器視覺與深度學習於皮革表面瑕疵檢測。國立台北科技大學工業工程與管理系碩士班碩士學位論文。2019。[9]Ding Shumin, Liu Zhoufeng and i Chunlei(2011). AdaBoost learning for fabric defect detection based on HOG and SVM. Published in IEEE. DOI: 10.1109/ICMT.2011.6001937
[10]N. Dalal and B. Triggs(2005). Histograms of oriented gradients for human detection. Published in CVPR.
[11]謝芳伶。支援向量機於指紋辨識之應用。靜宜大學資訊管理研 究 所 碩 士 論 文。2004。
[12]陳玲慧。自動化蝴蝶自然影像辨識系統。國 立 交 通 大 學 多 媒 體 工 程 研 究 所 碩 士 論 文。2009。
[13]Chi-Ho Chan, & Pang, G. K. H. (2000). Fabric defect detection by Fourier analysis. Published in IEEE, 36(5), 1267–1276. doi:10.1109/28.871274
[14]Ajay Kumar(2008). Computer-Vision-Based Fabric Defect Detection: A Survey. Published in IEEE. doi:10.1109/tie.1930.896476
[15]A. Kumar(2003). Neural network based detection of local textile defects. Pattern Recognit. vol. 36, no. 7, pp. 1645–1659.
[16]Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour and Kai Yu(2011).Large-scale Image Classification: Fast Feature Extraction and SVM Training. Published in CVPR.doi:10.1109/CVPR.2011.5995477
[17]vivekpandian(2019).Types of Activation Functions in Neural Network. https://medium.com/@vivekpandian08/https-medium-com-types-of-activation-functions-in-neural-network-504ddba28e35
[18]R.M. Neal(1992). Connectionist Learning of Belief Networks. Artificial Intelligence, vol. 56, pp. 71-113.
[19]C. Nwankpa ,W. Ijomah, A. Gachagan, S. Marshall (2018). Activation functions: comparison of trends in practice and research for deep learning. arXiv:1811.03378.
[20]Bing Xu, Ruitong Huang, and Mu Li. (2016). Revise saturated activation functions. CoRR. Published in ICLR.abs/1602.05980.
[21]Y. Chunjing, Z. Yueyao, Z. Yaxuan, H. Liu(2017).Application of convolutional neural network in classification of high resolution agricultural remote sensing images.ISPRS – Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7 (2017), pp. 989-992.
[22]Sumit Saha(2018).A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
[23]P. H. Pinheiro and R. Collobert(2014) . Recurrent convolutional neural networks for scene labeling. Published in ICML.
[24]F. Sultana, A. Sufian, and P. Dutta(2019). Advancements in image classification using
convolutional neural network. Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 122–129.
[25]A. Canziani, A. Paszke, and E. Culurciello(2016). An analysis of deep neural network models for practical applications. arXiv:1605.07678.
[26]Narayanan, B. N. (2019). Performance analysis of machine learning and deep learning architectures for malaria detection on cell images. Applications of Machine Learning International Societ, Vol. 11139, p. 111390W
[27]N.V. Chawla, K.W. Bowyer, L.O. Hall and W.P. Kegelmeyer(2002).SMOTE: Synthetic Minority Over-Sampling Technique. J. Artificial Intelligence Research, vol. 16, pp. 321-357
[28]Point Cloud Library(PCL). https://pointcloudlibrary.github.io/about/
[29]Radu Bogdan Rusu, Steve Cousins(2011).3D is here: Point Cloud Library (PCL).IEEE. doi:10.1109/ICRA.2011.5980567.
[30]Open TK. https://opentk.net/learn/chapter1/0-opengl.html .
[31]Web GL. https://developer.mozilla.org/zh-TW/docs/Web/API/WebGL_API
[32]Three.js. https://threejs.org/
[33]Yi Fang, Jin Xie , Guoxian Dai, Meng Wang, Fan Zhu, Tiantian Xu , Edward Wong(2015). 3D deep shape descriptor. IEEE, doi:10.1109/CVPR.2015.7298845.
[34]Volodine, Timofej (2007). Point cloud processing using linear algebra and graph theory. PhD thesis, NUMA, Numerical Analysis and Applied Mathematics Section, Department of Computer Science, Faculty of Engineering Science.
[35]F. Agarap(2018).Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.