(3.235.108.188) 您好!臺灣時間:2021/02/25 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳夢婷
研究生(外文):WU,MENG-TING
論文名稱:鞋底射出瑕疵檢測智慧系統之研究
論文名稱(外文):Research on Intelligent System for Detecting Defects in Sole
指導教授:陳淵琮陳淵琮引用關係
指導教授(外文):CHEN,YUAN-TSUNG
口試委員:王明習曾紹崟
口試委員(外文):WANG,MING-SHITSENG,SHAU-YIN
口試日期:2020-07-03
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:47
中文關鍵詞:瑕疵檢測深度學習卷機神經網路資料不平衡
外文關鍵詞:Defect DetectionDeep LearningCNNData Imbalance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、 緒論 1
1.1研究背景與動機 1
1.2研究目的與方法 2
1.3論文架構 3
二、 文獻探討 4
2.1相關檢測系統文獻回顧 4
2.2影像辨識 6
2.2.1深度學習 8
2.2.2卷積神經網路之模型探討 12
2.2.3資料不平衡 15
2.3圖檔壓縮 16
2.4立體成像開發 17
三、 研究方法 19
3.1系統流程 20
3.1.1立體成像 24
3.1.2網頁流程圖 25
3.3統計資料分析 26
3.4影像辨識 28
四、 實作結果與分析 31
4.1系統環境 31
4.2數據集 32
4.3數據標準值比對結果與分析 36
4.4深度學習模型訓練結果與分析 38
五、結論與未來方向 44
參考文獻 45

[1]Yann LeCun Leon, Bottou Yoshua Bengio and Patrick Haffner(1998). Gradient-Based Learning Applied to Document Recognition. Published in IEEE, 86(11):2278 - 2324.
[2]Alex Krizhevsky , Ilya Sutskever and Geoffrey E. Hinton(2012). ImageNet Classification with Deep Convolutional Neural Networks. Published in NIPS.
[3]Chang, P. C., Chen, L. Y., & Fan, C. Y. (2008). A case-based evolutionary model for defect classification of printed circuit board images. Journal of Intelligent Manufacturing, 19(2), 203–214.
[4]Yohei Takada, Tokiko Shiina, Hiroyasu Usami and Yuji Iwahori(2017). Defect Detection and Classification of Electronic Circuit Boards Using Keypoint Extraction and CNN Features. Published in IARIA.
[5]Tokiko Shiina,Yuji Iwahori and Boonserm Kijsirikul(2018). Defect Classification of Electronic Circuit Board Using Multi-Input Convolutional Neural Network. International Journal of Computer & Software Engineering Volume 3 137.
[6]X. Tao, D. Zhang, W. Ma, X. Liu and D. Xu(2018). Automatic metallic surface defect detection and recognition with convolutional neural networks. Appl. Sci., vol. 8, no. 9, pp. 1575.
[7]Li Y., Huang H., Xie Q., Yao L., Chen Q (2018). Research on a surface defect detection algorithm based on MobileNet-SSD. Appl. Sci., 8 (9), p. 1678.
[8]王泓翔。應用機器視覺與深度學習於皮革表面瑕疵檢測。國立台北科技大學工業工程與管理系碩士班碩士學位論文。2019。
[9]Ding Shumin, Liu Zhoufeng and i Chunlei(2011). AdaBoost learning for fabric defect detection based on HOG and SVM. Published in IEEE. DOI: 10.1109/ICMT.2011.6001937
[10]N. Dalal and B. Triggs(2005). Histograms of oriented gradients for human detection. Published in CVPR.
[11]謝芳伶。支援向量機於指紋辨識之應用。靜宜大學資訊管理研 究 所 碩 士 論 文。2004。
[12]陳玲慧。自動化蝴蝶自然影像辨識系統。國 立 交 通 大 學 多 媒 體 工 程 研 究 所 碩 士 論 文。2009。
[13]Chi-Ho Chan, & Pang, G. K. H. (2000). Fabric defect detection by Fourier analysis. Published in IEEE, 36(5), 1267–1276. doi:10.1109/28.871274
[14]Ajay Kumar(2008). Computer-Vision-Based Fabric Defect Detection: A Survey. Published in IEEE. doi:10.1109/tie.1930.896476
[15]A. Kumar(2003). Neural network based detection of local textile defects. Pattern Recognit. vol. 36, no. 7, pp. 1645–1659.
[16]Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour and Kai Yu(2011).Large-scale Image Classification: Fast Feature Extraction and SVM Training. Published in CVPR.doi:10.1109/CVPR.2011.5995477
[17]vivekpandian(2019).Types of Activation Functions in Neural Network. https://medium.com/@vivekpandian08/https-medium-com-types-of-activation-functions-in-neural-network-504ddba28e35
[18]R.M. Neal(1992). Connectionist Learning of Belief Networks. Artificial Intelligence, vol. 56, pp. 71-113.
[19]C. Nwankpa ,W. Ijomah, A. Gachagan, S. Marshall (2018). Activation functions: comparison of trends in practice and research for deep learning. arXiv:1811.03378.
[20]Bing Xu, Ruitong Huang, and Mu Li. (2016). Revise saturated activation functions. CoRR. Published in ICLR.abs/1602.05980.
[21]Y. Chunjing, Z. Yueyao, Z. Yaxuan, H. Liu(2017).Application of convolutional neural network in classification of high resolution agricultural remote sensing images.ISPRS – Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W7 (2017), pp. 989-992.
[22]Sumit Saha(2018).A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
[23]P. H. Pinheiro and R. Collobert(2014) . Recurrent convolutional neural networks for scene labeling. Published in ICML.
[24]F. Sultana, A. Sufian, and P. Dutta(2019). Advancements in image classification using
convolutional neural network. Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), pp. 122–129.
[25]A. Canziani, A. Paszke, and E. Culurciello(2016). An analysis of deep neural network models for practical applications. arXiv:1605.07678.
[26]Narayanan, B. N. (2019). Performance analysis of machine learning and deep learning architectures for malaria detection on cell images. Applications of Machine Learning International Societ, Vol. 11139, p. 111390W
[27]N.V. Chawla, K.W. Bowyer, L.O. Hall and W.P. Kegelmeyer(2002).SMOTE: Synthetic Minority Over-Sampling Technique. J. Artificial Intelligence Research, vol. 16, pp. 321-357
[28]Point Cloud Library(PCL). https://pointcloudlibrary.github.io/about/
[29]Radu Bogdan Rusu, Steve Cousins(2011).3D is here: Point Cloud Library (PCL).IEEE. doi:10.1109/ICRA.2011.5980567.
[30]Open TK. https://opentk.net/learn/chapter1/0-opengl.html .
[31]Web GL. https://developer.mozilla.org/zh-TW/docs/Web/API/WebGL_API
[32]Three.js. https://threejs.org/
[33]Yi Fang, Jin Xie , Guoxian Dai, Meng Wang, Fan Zhu, Tiantian Xu , Edward Wong(2015). 3D deep shape descriptor. IEEE, doi:10.1109/CVPR.2015.7298845.
[34]Volodine, Timofej (2007). Point cloud processing using linear algebra and graph theory. PhD thesis, NUMA, Numerical Analysis and Applied Mathematics Section, Department of Computer Science, Faculty of Engineering Science.
[35]F. Agarap(2018).Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375.

電子全文 電子全文(網際網路公開日期:20230731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔