[1] Fortinet Crop., Fortinet 2018 年第二季網路威脅報告, 取自: https://m.fortinet.com.tw/site/%E5%AE%B6%E7%94%A8%E7%89%A9%E8%81%AF%E7%B6%B2%E8%A8%AD%E5%82%99%E7%82%BA%E5%8A%AB%E6%8C%81%E6%8C%96%E7%A4%A6%E7%9A%84%E9%A6%96%E8%A6%81%E6%94%BB%E6%93%8A%E7%9B%AE%E6%A8%99/
[2] 李震華(2018)。從台積電病毒事件看近年企業資安威脅之轉變。財團法人資訊工業策進會,產業情報研究所。取自: https://mic.iii.org.tw/industry.aspx?id=310&list=75
[3] 趨勢科技(2017)。2017年資安總評:弔詭的網路威脅資安總評報告。取自:
https://www.trendmicro.com/vinfo/us/security/research-and-analysis/threat-reports/roundup
[4] 刑事警察局(2019)。反勒索,有解藥!勒索病毒來襲免緊張。取自:
https://www.cib.gov.tw/News/BulletinDetail/8186
[5] 陳智德(2018)。醫療產業駭客威脅日益增加 零信任網路成為安全架構之一。DIGITIMES。取自: https://www.digitimes.com.tw/iot/article.asp?cat=158&cat1=20&id=0000525540_9IT4KNVC5HNXBAL6NI23B
[6] 陳坤中、洪嘉璟(2017)。出席2017年物聯網資訊安全高峰會出國報告。國家通訊傳播委員會。取自: https://www.ncc.gov.tw/chinese/files/18010/3928_38523_180105_1.pdf
[7] 電週文化事業(2019)。徹底揭露2019年臺灣最大規模病毒攻擊事件。取自: https://www.ithome.com.tw/news/134108
[8] 吳保樺,林文暉,王平(2018)。應用卷積深度神經網路於DDoS攻擊偵測。崑山科技大學資訊管理系,碩士論文。
[9] 洪維謙,王平(2019)。以正規化概念分析為基礎之網路勒索病毒行為分析,崑山科技大學資訊管理系,碩士論文。.[10] NEC。人臉辨識系統解決方案。取自: http://tw.nec.com/zh_TW/solutions/security/neoface.html
[11] 鍾張涵、譚偉晟(2017)。中日兩大現場 直擊AI三大最夯亮點,今周刊。取自:http://www.businesstoday.com.tw/article/category/80394/post/201711150016
[12] 周秉誼(2016)。淺談Deep Learning原理及應用。國立台灣大學電子計算中心電子報,第0038期。取自:http://www.cc.ntu.edu.tw/chinese/epaper/0038/20160920_3805.html
[13] MoneyDJ(2017)。深度學習助網路攻擊偵測率升至 99%,NVIDIA 出資力挺。科技新報。取自: https://technews.tw/2017/07/13/nvidia-investment-deep-instinct/
[14] NVIDIA Corp. (2015)。NVIDIA GPU驅動Facebook最新深度學習機器。NVIDIA 新聞。取自:https://www.nvidia.com/zh-tw/about-nvidia/press-releases/2015/nvidia-gpus-power-facebook-deep-learning-machine-20151215/
[15] 韓曉光,曲武,姚宣霞等(2014)。基於紋理指紋的惡意程式碼變種檢測方法研究。通信學報,35(8): 125-136。
[16] 寇廣,湯光明,王碩,宋海濤,邊媛(2016)。深度學習在僵屍雲檢測中的應用研究。通信學報,37 (11):114~128, Nov. 2016。
-------英文文獻開始處
[17] Yuval Nativ.theZoo, (available online at https://github.com/ytisf/theZoo)
[18] Endermanch,MalwareDatabase, (available online at https://github.com/Enderm anch/MalwareDatabase)
[19] ANY.RUN - Interactive Online Malware Sandbox (available online at https://app. any.run/)
[20] Tutorial Jinni | Hub of Tutorials (available online at https://www.tutorialjinni.com/)
[21] Standard university.Protégé, website:https://protege.stanford.edu/
[22] HoneyNet.Cuckoo Sandbox, (available online at https://github.com/ cuckoosandbox/cuckoo)
[23] Yann LeCun,Leon Bottou,Yoshua Bengio,and Patrick Haffne(1998).GradientBased Learning Applied to Document Recognition
[24] Wikipedia.Deep Learning, website:https://en.wikipedia.org/wiki/Deep_learning
[25] S. Greengard (2016).Cybersecurity Gets Smart, Communications of the ACM, Vol. 59, No.5, Technology, DOI:10.1145/2898969
[26] A. Rosebrock, Rants (2014). Get off the deep learning bandwagon and get some perspective, Machine Learning, website:https://www.pyimagesearch.com/2014/06/09/get-deep-learning- bandwagon-get- perspective/
[27] C.Szegedy, V.Vanhoucke, S. Ioffe, Z. Wojna (2016). Rethinking the Inception Architecture for Computer Vision, in Proceedings of the IEEE on Computer Vision and Pattern Recognition (CVPR), WA, USA, arXiv:1512.00567.
[28] Wikipedia (2017). Convolutional neural network, website:https://en.wikipedia.org/wiki/ Convolutional_neural_network
[29] Wikipedia (2017).Softmax function. website:https://en.wikipedia.org/wiki/Softmax_function
[30] Z. Y. Tan (2013). Detection of denial-of-service attacks based on computer vision techniques,Sydney: University of Technology.
[31] J. E.Yan, C. Y.Yuan, H. Y.Xu, et al.(2013). Method of detecting IRC botnet based on the multi- features of traffic flow, Journal on communications, 2013, 34(10): 49-64.
[32] J. Saxe, K. Berlin (2015), Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features,
website:https://arxiv.org/abs/1508.03096v2
[33]A. Y. Javaid, Q. Niyaz,W. Sun, M. Alam (2015). A Deep Learning Approach for Network Intrusion Detection System, Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies, New York, December, 2015
[34] Y. Wang, W. D. Cai, P. C. Wei (2016).A deep learning approach for detecting malicious javascript code[J]. Security & Communication Networks, 2016, 51(8): 28656-28667.