跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁宗漢
研究生(外文):WENG, TSUNG-HAN
論文名稱:玻璃螢光片與固晶膠在不同操作條件下對LED特性的影響
論文名稱(外文):Study on the Influence of Glass Phosphor flake and die-bonding adhesives on LED Characteristics under Different Operating Conditions
指導教授:林俊良林俊良引用關係
指導教授(外文):LIN, CHUN-LIANG
口試委員:張品全汪信全
口試委員(外文):CHANG, PING-CHUANWANG, HSIN-CHUAN
口試日期:2020-07-18
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:62
中文關鍵詞:藍光高功率LED推力螢光玻璃片光特性熱特性可靠度測試
外文關鍵詞:Blue High Power LEDDie Shear StrengthPhosphor in GlassOptical PropertiesThermal PropertiesReliability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:299
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文分為實驗一與實驗二,實驗一使用釔鋁石榴石(Yttrium Aluminium Garnet, YAG)螢光玻璃片(Phosphor in Glass, PiG)覆蓋表面黏貼式元件(Surface Mount Device, SMD)封裝,並用氮化銦鎵(InGaN)藍光發光二極體(Light-emitting diode, LED)激發PiG製作之白光LED,探討其光熱特性與可靠度研究;實驗二透過操作在不同環境下的LED光熱特性,以評估藍光LED光輸出對固晶膠的影響。

實驗一 : 比較封裝矽膠中摻雜YAG螢光粉(Phosphor in Silicone, PiS)與PiG覆蓋SMD封裝之白光LED,並測試不同環境下的光熱特性與可靠度實驗結果如下。元件光特性分析聚焦在LED的光輸出功率與光品質。PiG LED的初始光輸出功率相較於PiS的初始光輸出功率低了6.4%;光品質分析,CIE1931色度座標(x, y)分佈,PiG LED相較於PiS LED集中,PiG LED的x與y座標誤差值分別為0.4%與0.7%,PiS LED的x與y座標誤差值分別為1.4%與2.7%。
可靠度分析,測試項目分為常溫測試、恆溫恆濕測試、冷熱衝擊測試與PCT(Pressure Cooker Test)壓力鍋測試;常溫測試,測試條件為溫度25℃、操作電流350 mA下點亮1008 小時;測試結果,PiG LED與PiS LED在光輸出、色溫(Correlated Color Temperature, CCT)及演色性(Color Rendering Index, CRI)偏移率均小於1%;恆溫恆濕測試,測試條件為溫度85℃與濕度85%、操作電流350 mA下點亮1008 小時;PiG LED與PiS LED測試結果,光輸出維持率分別下降44%與5%、CCT分別上升24.7%與9.2%及CRI分別上升7.2%與4.1%。
由恆溫恆濕測試結果發現,PiG LED的光輸出維持率比PiS LED低,因此做元件熱特性量測,量測項目分為接面溫度(Junction Temperature, Tj)與熱阻(Thermal Resistance, Rth);LED晶片Tj量測,PiG LED相較PiS LED的封裝方式,Tj從88.4℃降低到81.3℃(下降8.0%);LED晶片至支架Rth量測,Rth則從37.4℃/W降低到35.6℃/W(下降4.8%)。
冷熱衝擊測試,測試條件為溫度-20℃及溫度120℃,兩者皆恆溫15分鐘為一個循環,循環次數500次,每100週期將LED拿出來點亮並且浸泡紅墨水,測試結果無樣品有紅墨水滲入現象甚至死燈。
壓力鍋測試,將實驗品放入121℃、大於1大氣壓,測試120小時,每24小時拿出來點亮與浸泡紅墨水,觀察是否有死燈或是膠體與支架剝離,測試結果顯示均無樣品有紅墨水滲入且死燈的現象。
實驗一結論如下,雖然在恆溫恆濕點亮中,光輸出維持率PiG LED相較於PiS LED降低39%,但是在一般的常溫(25℃)環境下PiG LED與PiS LED兩者沒有差異,而且PiG LED相較PiS LED有較好的光特性。

實驗二 : 使用水平結構的LED晶片,搭配環氧樹脂銀膠(銀膠)導熱率25 W/mK與透明矽膠(矽膠)熱導率為0.2 W/mK兩款固晶膠,探討LED元件的光熱特性與可靠度研究。
可靠度分析,測試項目分為固晶膠推力與常溫1008 小時點亮測試;固晶膠推力測試條件,在操作電流350mA下點亮120小時後進行推力測試,測試結果銀膠與矽膠的推力值分別下降74.7%與11.5%。
常溫點亮測試,測試條件為溫度25℃、操作電流350 mA下點亮1008 小時;測試結果,銀膠 LED與矽膠 LED的光輸出維持率分別為96%與85%,然而銀膠在168小時,固晶膠開始黃化。
元件熱特性量測,量測項目分為接面溫度、熱阻與變電流;LED晶片Tj量測,銀膠相較矽膠的封裝方式,Tj從63.7℃降低到60.0℃(下降5.8%);LED晶片至支架Rth量測,Rth則從19.7℃/W降低到9.6℃/W(下降51.2%)。
變電流量測,量測結果銀膠 LED與矽膠 LED分別在1,250 mA與950 mA下達到最高光輸出值,銀膠的固晶膠體相比Silicone的膠體能夠多承受300mA的電流。
實驗二結論如下,由元件熱特性量測可以發現,銀膠 LED擁有較低的Tj與Rth;由可靠度分析可以發現,銀膠雖然膠體表面黃化,但光輸出維持率仍然比矽膠 LED高11%,推測主因是銀膠相較於矽膠有最低的熱阻,以及較好的導熱率,進而將LED元件的熱有效的導出,大幅提升LED元件的壽命。

整合實驗一與實驗二,本論文的結論如下,使用PiG覆蓋SMD封裝方式的LED,雖然在高溫高濕條件下,光衰非常嚴重,但是擁有優異的光品質,以及較低的Tj與Rth;從實驗二來看,銀膠有優異的熱導率與良好的散熱能力,相較於矽膠有較好的光輸出維持率。因此PiG覆蓋SMD封裝方式的LED,可以使用高導熱與散熱優異的材料來增加散熱,提升LED的壽命。

This thesis is divided into experiment I and experiment II. In experiment I we use Yttrium Aluminium Garnet (YAG) Phosphor in Glass (PiG) to cover the surface mount device (SMD) package, and uses indium gallium nitride (InGaN) blue Light-emitting diode (LED) excites the white LED made by PiG to discuss its light and thermal characteristics and reliability research; In experiment II we study on the light-influencing effect of blue LED chips on the performance of die-bonding adhe-sives. Through the operation of LED light and heat characteristics in different envi-ronments, to evaluate the impact of blue LED light output on die bonding adhesive.

In experiment I, the light and thermal characteristics and reliability tests under different environments has been discussed, and compared the white LEDs with YAG phosphor doped in silicon (Phosphor in Silicone, PiS) and SMD packages covered by PiG. The analysis of light characteristics of LED focuses on the light output power and quality. The initial optical output power of PiG LED is 6.4% lower than that of PiS. Light quality analysis, CIE1931 chromaticity coordinates (x, y) distribution, PiG LED compared to PiS LED set, PiG LED x and y coordinate error values are 0.4% and 0.7%, PiS LED x and y coordinate error values are 1.4% and 2.7%, respec-tively.
Reliability analysis, test items are divided into room temperature test, constant temperature /constant humidity test, thermal shock test and pressure cooker test (PCT); For the room temperature test, the test conditions is operating current at 350 mA in temperature of 25°C for 1008 hours lighting up; results, the light output, Cor-related Color Temperature(CCT) and Color Rendering Index(CRI) of LED with PiG and PiS, both of the offset rate is less than 1%; For constant temperature /constant humidity test, the test conditions is operating current at 350 mA in 85 ℃ tempera-ture and 85% humidity for 1008 hours lighting up; test results of PiG and PiS LED, light output maintenance rate decreased by 44% and 5%, CCT increased by 24.7% and 9.2% and CRI increased by 7.2% and 4.1%, respectively.
According to the results of the constant temperature /constant humidity, found that the optical output maintenance rate of the PiG LED is lower than that of the PiS LED, so the component thermal characteristics are measured, and the measurement items are divided into Junction temperature (Tj) and thermal resistance (Rth); LED chip Tj measurement, PiG LED compared with PiS LED packaging method, Tj re-duced from 88.4℃to 81.3℃ (reduced 8.0%); The Rth of the LED chip to the bracket is measured, and the Rth is reduced from 37.4°C/W to 35.6°C/W (reduced 4.8%).
For the thermal shock test, the test conditions are temperature -20℃ and tem-perature 120℃, both of which are constant temperature 15 minutes as a cycle, the number of cycles is 500 times, the LED is taken out to light up and soaked in red ink every 100 cycles, the test result that all sample shows without the Red ink penetra-tion phenomenon and even dead light.
For the pressure cooker test, put the test product at 121°C, 2 atmospheres, test for 120 hours, take out the LED every 24 hours to light up and soak the red ink, the test result shows that no sample shows red ink infiltration phenomenon even dead light.
The conclusion of Experiment 1 is as follows. Although the light output maintenance rate of PiG LED is 39% lower than that of PiS LED in the constant temperature /constant humidity test, the results of PiG LED and PiS LED are not different under room temperature environment, and PiG LED has better light quality than PiS LED.

In experiment II, the LED devices of the light and thermal characteristics and reliability has been discussed. We used a horizontal structure LED chip, it die bond-ed by two die bonding adhesive with epoxy silver adhesive (silver adhesive) and transparent silicone (silicone), thermal conductivity of 25 W/mK and 0.2 W/mK, respectively.
Reliability analysis, the test items are die-shear strength and room temperature 1008 hours light up test; For the die shear strength test conditions, after 120 hours of light up at 350 mA of operating current, the thrust test was conducted. The test re-sults showed that the thrust values of silver adhesive and silicone adhesive decreased by 74.7% and 11.5% respectively.
For the room temperature light up test, the test conditions are ambient temper-ature of 25°C and operating current of 350 mA for light up 1008 hours; the test re-sults show that the light output maintenance rates of silver adhesive LEDs and sili-cone adhesive LEDs are 96% and 85%, respectively, while silver adhesive at 168 hours, die-attach adhesive began to yellow.
Measurement of device thermal characteristics, the measurement items are di-vided into junction temperature, thermal resistance and injection current test; LED chip Tj measurement, silver adhesive compared with silicon adhesive packaging, Tj reduced from 63.7℃to 60.0℃ (reduced 5.8%); The Rth of the LED chip to the bracket is measured, and the Rth is reduced from 19.7°C/W to 9.6°C/W (reduced 51.2%).
For the injection current test measurement, the measurement results of silver adhesive LED and silicone adhesive LED reach the highest light output value at 1,250 mA and 950 mA respectively. The die-attach adhesive of silver adhesive can withstand 300 mA more current than the silicone adhesive.
The conclusion of Experiment II is as follows. From the measurement of the thermal characteristics of the device, it is found that the silver adhesive LED has a lower Tj and Rth; From the reliability analysis, it can be found that although the sur-face of the silver adhesive is yellowed, the light output maintenance rate is still higher than that of the silicone adhesive LED 11%, it is speculated that the main reason is that silver adhesive has the lowest thermal resistance and good thermal conductivity compared to silicone adhesive, and then effectively conducts the heat of the LED element, greatly improving the life of the LED element.

Integrating experiment I and experiment II, the conclusion of this paper is as follows. Using PiG to cover SMD packaged LEDs, although the light output attenua-tion is very serious under high temperature and high humidity conditions, it has ex-cellent light quality and low Tj and Rth; Form the experiment II, silver adhesive has excellent thermal conductivity and good heat dissipation ability, and has better light output maintenance rate than silicone adhesive. Therefore, for PiG covering SMD packaging, materials with high thermal conductivity and excellent heat dissipation can be used to increase heat dissipation and increase the life of LEDs.

目 錄
中文摘要 iv
Abstract iv
目 錄 xii
表目錄 xiv
圖目錄 xv
第1章 緒論 17
1.1 LED介紹與應用 17
1.2 熱對LED封裝膠體影響 17
1.3 固晶膠體的優缺點 18
1.4 螢光玻璃片製程與材料特性 18
1.5 可靠度測試目的 19
1.6 文獻回顧 20
第2章 實驗目的與規劃 23
2.1 研究目的 23
2.2 實驗規劃與樹狀 24
2.3 封裝相關製程 25
2.3.1 固晶與熱固化製程 25
2.3.2 打線製成 26
2.3.3 封裝製程 27
第3章 探討在不同操作環境下覆蓋螢光玻璃片之SMD白光LED的光熱特性 28
3.1 實驗材料 28
3.2 實驗流程 30
3.3 實驗結果 31
3.3.1 常溫測試 31
3.3.1.1 螢光粉比例調配 31
3.3.1.2 光輸出測試 33
3.3.1.3 1008小時常溫點量測試 34
3.3.2 恆溫恆濕測試 37
3.3.2.1 1008小時恆溫恆濕點量測試 37
3.3.2.2 接面溫度與熱阻量測 40
3.3.3 冷熱衝擊測試 43
3.3.4 壓力鍋測試 44
3.4 小結 45
第4章 探討在不同操作條件下固晶膠受到晶粒光照射的變化之光熱特性 46
4.1 實驗材料 46
4.2 實驗流程 48
4.3 實驗結果 49
4.3.1 推力測試分析 49
4.3.2 常溫測試 51
4.3.2.1 光輸出測試 51
4.3.2.2 1008小時常溫點亮測試 52
4.3.2.3 接面溫度測試 54
4.3.3 變流流量測分析 55
4.4 小結 56
第5章 結論 57
第6章 未來展望 60
參考文獻 60


[1]S. Tarashioon et al., “An approach to ‘Design for Reliability’ in solid state lighting systems at high temperatures,” Microelectronics Reliability, vol. 52, no. 5, pp. 783–793, May 2012
[2]Annielin,,“中功率 LED 成市場主流,高功率 LED 漸成長”,LEDinside,2017年
[3]K. Ben Abdelmlek, Z. Araoud, K. Charrada, and G. Zissis, “Optimization of the thermal distribution of multi-chip LED package,” Applied Thermal Engineering, vol. 126, pp. 653–660, Nov. 2017
[4]K. Ben Abdelmlek, Z. Araoud, R. Ghnay, K. Abderrazak, K. Charrada, and G. Zissis, “Effect of thermal conduction path deficiency on thermal properties of LEDs package,” Applied Thermal Engineering, vol. 102, pp. 251–260, Jun. 2016
[5]W. Lai, X. Liu, W. Chen, X. Lei, and X. Cao, “Thermal Characteristics Analysis of Die Attach Layer Based on Time-Constant Spectrum for High-Power LED,” IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3715–3721, Nov. 2015
[6]Byung-Ho Kim and Cheol-Hee Moon, “Comparison of the Thermal Perfor-mance of the Multichip LED Packages,” IEEE Trans. Compon., Packag. Manu-fact. Technol., vol. 2, no. 11, pp. 1832–1837, Nov. 2012
[7]Y. Ma, R. Hu, X. Yu, W. Shu, and X. Luo, “A modified bidirectional thermal resistance model for junction and phosphor temperature estimation in phos-phor-converted light-emitting diodes,” International Journal of Heat and Mass Transfer, vol. 106, pp. 1–6, Mar. 2017
[8]T. Yamada, M. Miyawaki, S. Miura, A. Umeda, and H. Shizuhata, “A Novel Die Attach Material Having High Die Shear Strength and High Heat Resistance for Brighter LED Device,” International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Oct. 2018
[9]M. Yazdan Mehr, A. Bahrami, W. D. van Driel, X. J. Fan, J. L. Davis, and G. Q. Zhang, “Degradation of optical materials in solid-state lighting systems,” In-ternational Materials Reviews,vol.65,no.2,pp.102–128, Feb. 2020
[10] “金锡合金焊料的特性及其应用”, 力道电子材料有限公司,2015年
[11]http://xinda-opt.com/bo-li-ying-guang-pian/
[12]彭鴻霖,“可靠度驗證與評估技術”,中國可靠性網,1997年。
[13]AN006_Reliability and lifetime of LEDs,OSRAM
[14]X. Zhang et al., “Facile Preparation and Ultrastable Performance of Sin-gle-Device White-Light-Emitting Phosphor-in-Glass used for High-Power Warm White LEDs,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28122–28127, Dec. 2015
[15]Y. Peng, Y. Mou, Q. Sun, H. Cheng, M. Chen, and X. Luo, “Facile fabrication of heat-conducting phosphor-in-glass with dual-sapphire plates for laser-driven white lighting,” Journal of Alloys and Compounds, vol. 790, pp. 744–749, Jun. 2019
[16]R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu, and Y. Wang, “A new-generation color converter for high-power white LED: transparent Ce3+:YAG phos-phor-in-glass,” Laser & Photonics Reviews, vol. 8, no. 1, pp. 158–164, 2014
[17]H. C. Yoon, K. Yoshihiro, H. Yoo, S. W. Lee, J. H. Oh, and Y. R. Do, “Low-Yellowing Phosphor-in-Glass for High-Power Chip-on-board White LEDs by Optimizing a Low-Melting Sn-P-F-O Glass Matrix,” Scientific Re-ports, vol. 8, no. 1, Art. no. 1, May 2018
[18]http://news.moore.ren/industry/8269.htm
[19]Q. Chen, Y. Ma, X. Yu, R. Hu, and X. Luo, “Phosphor Temperature Overesti-mation in High-Power Light-Emitting Diode by Thermocouple,” IEEE Trans. Electron Devices, vol. 64, no. 2, pp. 463–466, Feb. 2017
[20]X. Ding et al., “Thermal and optical investigations of a laser-driven phosphor converter coated on a heat pipe,” Applied Thermal Engineering, vol. 148, pp. 1099–1106, Feb. 2019
[21]J. H. Kim and M. W. Shin, “Thermal Behavior of Remote Phosphor in Light-Emitting Diode Packages,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 832–834, Aug. 2015
[22]https://www.xyztec.com/tc/how-to/shear-test/MIL-STD-883-2019-9-die-shear-strength#Figure2019-4

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊