跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方郁涵
研究生(外文):FANG,YU-HAN
論文名稱:軋延晶相對鋁合金之磨耗特性
論文名稱(外文):The Characteristics of Wear of Aluminium with Different Direction Rolling and Crystal Phase
指導教授:張育斌周煥銘周煥銘引用關係
指導教授(外文):CHANG,YUH-PINGCHOU.HUANN-MING
口試委員:朱力民
口試委員(外文):CHU,LI-MING
口試日期:2020-06-19
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:109
中文關鍵詞:鋁合金磨耗軋延晶相
外文關鍵詞:Aluminum AlloyWearRollingGrain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
由於工業界產業及交通運輸蓬勃發展,其機械構造也因長期運作下有所磨耗,因此為了讓機構能更加抗磨耗,我們使用業界最常使用的三種不同試片(5083、6061-T6、7075-T6)透過往復試驗機做摩擦磨耗實驗,再經過研磨拋光腐蝕後,使用光學顯微鏡(OM)拍攝其金相,研究晶粒與軋延方向之對應關係。本實驗使用荷重10N及20N研究,然而,我們發現在20N時,超出鋁合金負荷,其摩擦係數沒有太大差異;在10N時,5083及7075-T6摩擦係數在平行時較大,6061-T6則是在垂直時較大,故5083和7075-T6在垂直時較耐磨,6061-T6則反之。由此可見,並非所有鋁合金都以垂直軋延來的抗磨耗,透過這個實驗可建立材料耐磨性和抗磨耗的關鍵,降低機具造出的產品不良率,為工業界的機械零組件延長壽命,提升其競爭力更能達到節能之目的。
Due to the vigorous development of industry and transportation in the industrial world, its mechanical structure is also worn due to long-term operation. Therefore, in order to make the tissue more resistant to wear, we used three different test pieces, which are the most commonly used in the industry, for friction and wear experiments with reciprocating test machines. Then, after grinding, polishing and etching, an optical microscope (OM) is used to photograph the metallography to study the correspondence between the crystal grains and the rolling direction. In this experiment, 10N and 20N loads were used for the study. However, we found that at 20N, the friction coefficient of the aluminum alloy is not much different. At 10N, the friction coefficients of 5083 and 7075-T6 are larger when they are parallel, 6061-T6 are larger when they are vertical, and Gu 5083 and 7075-T6 are more wear-resistant when they are vertical, while 6061-T6 is the opposite. It can be seen that not all aluminum alloys can resist the wear of vertical rolling. Through this experiment, the key to the wear resistance and wear resistance of the material can be determined, the product defect rate caused by the machine tool can be reduced, and the mechanical parts of the industry can be expanded. Longevity and improving competitiveness can achieve the purpose of energy saving.
目錄
摘 要 i
英文摘要 ii
誌 謝 iv
表目錄 xi
圖目錄 xii
符號說明 xvi
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 研究動機 - 2 -
1.3 文獻回顧 - 2 -
1.3.1 鋁合金相文獻 - 2 -
1.3.2 熱處理相關文獻 - 4 -
1.3.2.1 正火 - 4 -
1.3.2.2 退火 - 4 -
1.3.2.3 淬火 - 4 -
1.3.2.4 回火 - 4 -
1.3.2.5 固溶處理 - 5 -
1.3.2.6 T6熱處理 - 5 -
1.3.3 微動磨耗相關文獻 - 6 -
1.3.4 軋製之相關文獻 - 7 -
1.4 研究背景 - 11 -
1.5 論文架構 - 12 -
第二章 實驗原理與設備 - 13 -
2.1 實驗原理 - 13 -
2.1.1 摩擦作用 - 13 -
2.1.2 接觸電阻 - 14 -
2.2 實驗設備 - 15 -
2.2.1 往復摩擦試驗機暨量測系統(The Reciprocating Friction Tester with Measuring System) - 15 -
2.2.1.1 摩擦係數量測系統(Frication Coefficent Measuring System) - 19 -
2.2.1.2 接觸電阻量測系統(Electrical Contact Resistance System) - 22 -
2.2.1.3 電子訊號與數據擷取處理 - 23 -
2.2.2 實驗設備之調校 - 28 -
2.2.2.1 負荷計與動態應變放大器之調校 - 28 -
2.2.2.2 操作荷重之調校 - 30 -
2.2.2.3 接觸電阻儀調校 - 33 -
第三章 研究方法 - 35 -
3.1 實驗方法 - 35 -
3.2 實驗材料 - 42 -
3.3 實驗條件與參數 - 46 -
3.4 實驗步驟 - 46 -
3.5 實驗注意事項 - 51 -
第四章 - 52 -
觀察晶相與20N下往復摩擦對鋁合金的磨耗影響 - 52 -
4.1 晶相之微觀分析09 - 52 -
4.2 鋁和金在20N下摩擦係數與接觸電阻之動態響應圖 - 54 -
4.2.1 鋁合金5083在20N下摩擦係數與接觸電阻之動態響應圖 - 54 -
4.2.2 鋁合金6061-T6在20N下摩擦係數與接觸電阻之動態響應圖 - 58 -
4.2.3 鋁合金7075-T6在20N下摩擦係數與接觸電阻之動態響應圖 - 62 -
4.3 鋁合金磨耗表面之微觀分析 - 66 -
4.3.1 鋁合金5083磨耗表面之微觀分析 - 66 -
4.3.2 鋁合金6061-T6磨耗表面之微觀分析 - 67 -
4.3.3 鋁合金7075-T6磨耗表面之微觀分析 - 69 -
4.4 鋁合金磨痕深度之分析 - 71 -
4.5 結論 - 74 -
第五章 10N下往復摩擦對鋁合金的磨耗影響 - 76 -
5.1 鋁和金在10N下摩擦係數與接觸電阻之動態響應圖 - 76 -
5.1.1 鋁合金5083在10N下摩擦係數與接觸電阻之動態響應圖 - 76 -
5.1.2 鋁合金6061-T6在10N下摩擦係數與接觸電阻之動態響應圖 - 81 -
5.1.3 鋁合金7075-T6在10N下摩擦係數與接觸電阻之動態響應圖 - 85 -
5.2 鋁合金磨耗表面之微觀分析 - 89 -
5.2.1 鋁合金5083磨耗表面之微觀分析 - 89 -
5.2.2 鋁合金6061-T6磨耗表面之微觀分析 - 90 -
5.2.3 鋁合金7075-T6磨耗表面之微觀分析 - 92 -
5.3 鋁合金磨痕深度之分析 - 94 -
5.4 結論 - 97 -
第六章 結論與未來展望 - 98 -
6.1 結論 - 98 -
6.2 未來展望 - 99 -
參考文獻 - 100 -
作者簡介 - 104 -
1.澄柏國際股份有限公司 https://www.cp-mg.com
2.楊榮顯,工程材料學,全華科技圖書股份有限公司,臺北市,1997初版。
3.賴耿陽,非鐵金屬材料,復漢出版社,台南市,2000一版二刷。
4.賴耿陽,鋁合金構造設計輯覽,復漢出版社,台南市,1999一版二刷。
5.金重勳,機械材料,復文書局,台南市,1995初版。
6.金重勳,工程材料,復文書局,台南市,1996初版。
7.E. A. Starke. “Aluminum Alloys: Properties and Applications,” Encyclopedia of Materials: Science and Technology (Second Edition) 2001, Pages 114-116.
8.G. M. Scamans, N. Birbilis, R. G. Buchheit. “Corrosion of Aluminum and its Alloys,” Shreir's Corrosion, Volume 3, 2010, Pages 1974-2010.
9.維基百科 熱處理
10.P. Shanmughasundaram, A. K. Dahle. “Heat Treatment of Aluminum Alloys,” Reference Module in Materials Science and Materials Engineering 2018.
11.H. M. M. A. Rashed, A. K. M. Bazlur Rashid. “Heat Treatment of Aluminum Alloys,” Comprehensive Materials Finishing, Volume 2, 2017, Pages 337-371.
12.E. A. Starke Jr. “Aluminum Alloys: Thermal Treatments,” Encyclopedia of Materials: Science and Technology (Second Edition) 2001, Pages 116-118.
13.何慶復,機械工程材料及選用,中國鐵道出版社,2003。
14.維基百科 退火
15.維基百科 淬火
16.黃政憲,T6熱處理對鋁合金之磨耗機制的影響,碩士論文,崑山科技大學,2018。
17.G.P. Liu, et al. “Effect of T6 heat treatment on microstructure and mechanical property of 6101/A356 bimetal fabricated by squeeze casting,” Materials Science and Engineering: A, Volume 696, 1 June 2017, Pages 208-215.
18.S. Sharmaa, “Investigation of T4 and T6 heat treatment on the wear properties of sillimanite reinforced LM30 aluminium alloy composites,” Wear, Volumes 426–427, Part A, 30 April 2019, Pages 27-36.
19.T. C. Lindley, “Fretting Fatigue,” Encyclopedia of Materials: Science and Technology (Second Edition) 2001, Pages 3347-3351.
20.華人百科 微動磨損
21.周仲榮,Leo Vincent,微動磨損,科學出版社,2002。
22.維基百科 軋製
23.J. Sidor, R. H. Petrov, L. Kestens, “Texture Control in Aluminum Sheets by Conventional and Asymmetric Rolling,” Comprehensive Materials Processing, Volume 3, 2014, Pages 447-498.
24.P. Montmitonnet, Y. E. Khalfalla, K. Y. Benyounis, “Metal Working: Cold Rolling,” Reference Module in Materials Science and Materials Engineering 2016.
25.P. Montmitonnet, “Metal Working: Cold Rolling,” Encyclopedia of Materials: Science and Technology (Second Edition) 2001, Pages 5500-5506.
26.I. V. Samarasekera, “Hot Rolling,” Encyclopedia of Materials: Science and Technology (Second Edition) 2001, Pages 3836-3843.
27.L. Li, H. Yang, L. Guo, “Hot Shape Rolling,” Comprehensive Materials Processing, Volume 5, 2014, Pages 393-439.
28.S. Serajzadeh, “Hot Rolling and Direct Cooling,” Comprehensive Materials Processing, Volume 3, 2014, Pages 377-396.
29.R. Uscinowicz, “The effect of rolling direction on the creep process of Al–Cu bimetallic sheet,” Materials & Design, Volume 49, August 2013, Pages 693-700.
30.R. Sakin, “Investigation of bending fatigue-life of aluminum sheets based on rolling direction,” Alexandria Engineering Journal, Volume 57, Issue 1, March 2018, Pages 35-47.
31.《新華詞典》商務印書館出版,第一版,統一書號:9017.841,1980。
32.M. R. Jandaghi, et al. “Study on the post-rolling direction of severely plastic deformed Aluminum-Manganese-Silicon alloy,” Archives of Civil and Mechanical Engineering, Vol.16, issue. 4, pp. 876-887, 2016
33.Degarmo, Black & Kohser, pp. 384、408, 2003.
34.U. A. Curle, L.A. Cornish, G. Govender, “Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminium alloys based on alloy composition or hardness,” Materials&Design, Vol. 99, pp. 211-218, 2016.
35.J. Frenkel, “Theory of the Elasticity Limits and Rigidity of Crystalline Bodies,” Zeitschrift für Physik, Vol. 37, pp. 572, 1926.
36.E. Orowan, “Zur Kristallplastizität,” Zeitschrift für Physik, Vol. 89, pp. 605–659, 1934.
37.M. Polanyi, “Form of lattice distortion that may render a crystal plastic,” Zeitschrift für Physik, Vol. 89, pp. 660–666, 1934.
38.G. I. Taylor, “The mechanism of plastic deformation of crystals,” Proceedings of the Royal Society of London, Vol. A 145, pp. 362–404, 1934.
39.Arthur Reardon, Metallurgy for the Non-Metallurgist(2nd edition), ASM International, ISBN 978-1-61503-821-3, 2011.
40.劉明忠,Al2O3顆粒強化 6061 鋁基複合材料之高溫拉伸與室溫磨耗性質研究,碩士論文,國立中央大學機械工程研究所,高雄、台灣,2010。
41.P. Ma, et al. “Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy,” Journal of Materials Science & Technology, Vol. 46, pp. 107-113, 2020.
42.陳建佑,水潤滑下金屬配對之磨潤特性研究,崑山科技大學機械工程系,碩士論文,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊