跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐佩瑛
研究生(外文):OU, PEI-YING
論文名稱:綠建築被動式與主動式節能策略之研究
論文名稱(外文):Study on Passive and Active Energy Saving Strategies of The Green Architecture
指導教授:周煥銘周煥銘引用關係莊慧仁莊慧仁引用關係
指導教授(外文):CHOU, HUANN-MINGCHUANG, HUI-JEN
口試委員:林建德洪榮芳陳賢焜
口試委員(外文):LAM, KIN-TAKHORNG, RONG-FANGCHEN, SHENG-KUN
口試日期:2020-07-12
學位類別:博士
校院名稱:崑山科技大學
系所名稱:機械與能源工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:176
中文關鍵詞:綠建築設計被動式節能主動式節能節能策略
外文關鍵詞:Green building designpassive energy savingactive energy savingenergy saving strategies
相關次數:
  • 被引用被引用:2
  • 點閱點閱:778
  • 評分評分:
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:0
「綠建築」是21世紀建築設計發展的重要方向,它著眼於使建築和自然環境成為一個有機的結合體;希望能提供人們一個環境舒適的居住空間與生活場域,並降低對地球能源及物資的消耗。如今,能源問題已成為每個國家所必須面對的重大議題,因此,綠建築的節能策略與技術運用受到越來越多的關注。
本論文主要針對綠建築設計方法中被動式節能與主動式節能的策略來作研究比較,分析二者在節能技術上所採行的理念及方法上有何不同,在運用上及效益上又有何差異,如何截長補短、互補運用,希望能找出綠建築節能策略上的較佳方案。論文中藉由對建築本質、建築機能性的探討,並根據「建築氣候設計」原理,提出以「被動式建築設計為主」、「主動式機械節能為輔」的節能策略來進行綠建築設計。同時,透過實際案例的模擬解析,探究建築物如何在參考當地氣候環境的前提下,應用計算流體力學(Computational Fluid Dynamics, CFD)模擬風場、能量場及舒適度(Thermal Comfort)評估等工具,配合業主的需求來進行綠建築的規劃與設計。
在採取被動式優先、主動式優化的節能效益上,研究成果發現本研究個案所使用之F/C +排風扇中央空調系統,比一般AHU空調箱系統的用電量,每年約可省下63.8%的電量。同時,在被動式節能設計、使用氣冷蒸發式冰水機的全年用電量,比無被動式節能設計、使用氣冷式冰水機的全年用電量,則節省了30.7%的電量。本研究成果可以提供綠建築設計師在節能策略、技術上之參考。如何根據地區、氣候等等不同因素而採行適切、有效的節能策略與方法,設計出符合當地生態,能永續發展,並兼顧人文面向的綠建築。
The idea of “green building” has become an important development direction in the architectural design in the 21st century. It focuses on an organic integration between architecture and the natural environment. The purpose is to provide human beings with a comfortable living space and environment, and at the same time reducing the consumption of natural resources and materials derived from the earth. As a matter of fact, the issues of natural resource have protruded to the forefront on every country’s agenda. It is only natural that energy saving strategy and technology application on green buildings gradually attract a lot of attention.
This article focuses on the research of comparing passive and active energy-saving strategies on green architectural design. It comprises of a discussion about the differences on the concepts and methodologies of the two types of strategies, their application as well as cost and benefits variations. It also juxtaposes the two strategies and examines how they can complement each other in order to obtain a better energy-saving strategy during their application. In this paper, the natures and functions of buildings were explored. In addition, based on the principle of “climate-responsive design”, the energy conservation strategies of “using passive building design primarily, with active mechanical energy conservation as auxiliary” were proposed to carry out green building design. At the same time, through the simulations and analyses of actual cases, how the green buildings, under the premises of referring to the local climate environment, applied computational fluid dynamics (CFD) to simulate wind field, energy field, thermal comfort, and other assessment tools were explored; meanwhile, green building planning and design were carried out in conjunction with the needs of the proprietors.
In terms of the energy saving effectiveness based on passive priority and active optimization, the result of this study reveals that the F/C(Fan Coil Unit,FCU) and exhaust fan central air conditioning system used in this case can save around 63.8% of electricity every year as compared to the power consumption by conventional AHU(Air Handlung Unit) central air conditioning system. Meanwhile, the air-cooled evaporative chiller based on passive energy saving design can save up to 30.7% in a year as compared to the air-cooled chiller without any passive energy saving design.The result of this research paper will provide reference points for architects and engineers on green buildings of energy-saving applications and strategies. It will allow architects adapt to different factors, geographic locations, and weather patterns to select appropriate and effective energy-saving strategies and methods. As a result, it will also conform to local environment and provide a sustainable development model for green buildings.
中文摘要 ------------------------------------------------------------------------------ i
英文摘要 ------------------------------------------------------------------------------ iii
誌 謝 ------------------------------------------------------------------------------ vi
目 錄 ------------------------------------------------------------------------------ vii
表 目 錄 ------------------------------------------------------------------------------ x
圖 目 錄 ------------------------------------------------------------------------------ xii
符號說明 ------------------------------------------------------------------------------ xvi

第一章 緒論------------------------------------------------------------------------ 1
1.1 研究背景與動機--------------------------------------------------------- 1
1.2 研究目的與方法--------------------------------------------------------- 2
1.3 研究步驟------------------------------------------------------------------ 2
第二章 文獻探討------------------------------------------------------------------ 5
2.1 綠建築--------------------------------------------------------------------- 5
2.2 節能策略------------------------------------------------------------------ 7
2.2.1主動式節能-------------------------------------------------------- 8
2.2.2被動式節能-------------------------------------------------------- 9
2.3 建築節能理論------------------------------------------------------------ 13
2.3.1建築的本質-------------------------------------------------------- 13
2.3.2建築的機能性------------------------------------------------------ 14
2.3.3建築氣候設計----------------------------------------------------- 16
1. 氣候環境系統-------------------------------------------------- 17
2. 應用計算流體力學CFD-------------------------------------- 19
3. 熱舒適理論----------------------------------------------------- 23
2.4 兩種節能策略的比較與運用------------------------------------------ 41
第三章 研究方法------------------------------------------------------------------ 44
3.1 計算流體力學(CFD)------------------------------------------------- 46
3.1.1計算流體力學數學模型----------------------------------------- 47
3.1.2計算流體力學模擬步驟----------------------------------------- 51
3.2 熱舒適(Thermal Comfort))研究方法----------------------------- 54
3.2.1熱舒適的概念----------------------------------------------------- 54
3.2.2熱舒適參數的定義----------------------------------------------- 56
3.2.3 PMV-PPD方程式的數學模型---------------------------------- 60
第四章 結果與討論 -------------------------------------------------------------- 69
4.1 個案簡介------------------------------------------------------------------ 69
4.1.1規劃設計原則----------------------------------------------------- 69
1. 地貌架構之回應----------------------------------------------- 69
2. 場所精神的形塑------------------------------------------------ 71
3. 機能秩序的建立----------------------------------------------- 75
4.1.2大殿樣式設計說明及綠建築設計----------------------------- 77
1. 承襲木構造寺院建築風格_東方建築研究限制--------- 77
2. 臺基 柱列 屋頂----------------------------------------------- 79
3. 比例的調整----------------------------------------------------- 82
4.1.3 玄奘文化中心樣式設計說明及綠建築設計---------------- 83
1. 那爛陀寺意象.磚造寺院建築_東方建築---------------- 83
2. 那爛陀寺空間轉譯-------------------------------------------- 85
4.2 建築氣候要素分析------------------------------------------------------ 90
4.2.1架設小型氣象站-------------------------------------------------- 91
4.2.2 氣候條件分析---------------------------------------------------- 91
4.3 CFD模擬設定----------------------------------------------------------- 96
4.3.1風場模擬設定----------------------------------------------------- 96
1. 模型個案說明-------------------------------------------------- 97
2. 計算模型設定-------------------------------------------------- 98
3. 風場模擬環境設定-------------------------------------------- 98
4.3.2風場模擬結果----------------------------------------------------- 99
4.3.3熱環境模擬-------------------------------------------------------- 111
1. 建築物大殿的表面溫熱模擬分析-------------------------- 111
2. 建築物大殿室內溫熱模擬分析----------------------------- 115
4.4 建築物大殿舒適度模擬分析----------------------------------------- 118
4.4.1建築物大殿三月時室內自然通風舒適度模擬-------------- 121
1. 靜坐行為-------------------------------------------------------- 121
2. 拜佛行為-------------------------------------------------------- 125
4.4.2建築物大殿十一月時室內自然通風舒適度模擬----------- 130
1. 靜坐行為-------------------------------------------------------- 130
2. 拜佛行為-------------------------------------------------------- 134
4.4.3建築物大殿室內冷氣空調舒適度模擬----------------------- 139
4.5 被動式(自然通風)為主、主動式(空調)為輔的節能成效-------- 148
第五章 結論與建議--------------------------------------------------------------- 160
5.1 結論------------------------------------------------------------------------ 160
5.2 建議------------------------------------------------------------------------ 165
參考文獻 ------------------------------------------------------------------------------ 168
[1]林憲德,綠色建築,台北:詹氏書局,2014。
[2]何明錦等,“綠建築產業發展與推動策略研究”,內政部建築研究所協同研究報告,新北市:內政部建築研究所,2006。
[3]歐佩瑛,“綠天光~談天井之美與其綠色概念在建築上的運用”,台南:私立崑山科技大學機械工程研究所碩士論文,2015。
[4]于健、張本義,“台灣綠建築之發展現況分析”,遠東學報,第 25 卷,第 3 期,第443-452頁,2008。
[5]“淺析生態建築設計方法之被動式節能策略”,2018年8月1日,http://www.lunwen365.com/
[6]CRS新聞,“智慧綠建築-加速實踐SDGs與循環經濟”,2018年4月24日, https://www.pwc.tw/zh/news/press-release/press-20180424.html
[7]“牛津英文辭典”, Shorter Oxford English Dictionary ,Oxford, ISBN 0 19 860575 7, 1993.
[8]D. Rowland – T.N. Howe: Vitruvius. Ten Books on Architecture. Cambridge University Press, Cambridge, 1999.
[9]閔天怡,“生物氣候建築敘事,西部人居住環境學刊”,第32卷,第6期,第51-57頁,2017。
[10]邱英浩,“建築配置形式對戶外空間環境風場之影響”,都市與計劃第三十八卷 第三期 第303~325頁,2011。
[11]邱英浩、戴育澤、吳孟芳,“利用自然通風技術改善室內熱環境及通風效能之研究-以慈濟台中分會為例”,建築與規劃學報, 第十一卷第二期,第111-136頁,2010。
[12]江哲銘、陳清焰、周伯丞、賴啟銘,“空氣流場預測在輔助建築設計之應用— 採用CFD數值模擬技術”,中華民國建築學會第十二屆建築研究成果發表會論文集,2000/4/16。
[13]溫靖儒,“校園開放空間步行環境熱舒適性之研究- 以臺北市政治大學為例”,國立政治大學地政學系,私立中國地政研究所,碩士學位論文,2018。
[14]C. Croitoru, I. Nastase, F. Bode, A. Meslem, A. Dogeanu, Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renew. Sust. Energ. Rev. 44, 2015, pp.304–318.
[15]P.V. Nielsen, Computational fluid dynamics and room air movement. Indoor Air 14,2004, pp.134–143.
[16]B.E. Yuce, Pulat, E. Forced, natural and mixed convection benchmark studies for indoor thermal environments. Int. Commun. Heat Mass Transf. 2018, 92, pp. 1–14.
[17]A. Mistriotis, G. P. A. Bot, P. Picuno, and G. Scarascia. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agric. Forest. Meteorol. 85, 1997, pp. 217-228.
[18]B.W. Olesen, “Thermal Comfort”, Technical Review to Advance Techniques in Acoustical Electrical and Mechanical Measurement, 2, 1982, pp.3-37.
[19]ANSI/ASHRAE Standard 55-2004, Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2004.
[20]L. Sliwowski, Budownictwo Ogólne, Vol. 2: Fizyka budowli, Chapter 3, P. Klemm (editor), Arkady, Warszawa, 2009 (in Polish).
[21]N. Djongyang, R. Tchinda, D. Njomo, Thermal comfort: A review paper, Renewable and Sustainable Energy Reviews 14, 2010, pp. 2626-2640.
[22]Krzysztof Arendt, Marek Krzaczek, Indoor Thermal Comfort Modeling and Simulation Using Computational Fluid Dynamics, Politechnika Gdańsk, 2016.
[23]P.O. Fanger, “Thermal Comfort: Analysis and applications in environmental engineering”, McGraw Hill Book Company, 1970.
[24]J. V. Hoof, J. L. M. Hensen, “Quantifying the relevance of adaptive thermal comfort models in moderate thermal climate zones”, Building and Environment, 42(1), 2007, pp.156-170.
[25]ANSI/ASHRAE Standard 55-2004, “Thermal environmental conditions for human occupancy”, Atlanta: American Society of Heating, Refrigerating and Air-conditioning Engineering.
[26]ISO 7730-1994. “Moderate thermal environments—determination of the PMV and PPD indices and specification of the conditions for thermal comfort”, Geneva: International Standard Organization.
[27]ASHRAE, “Handbook—Fundamentals Chapter 9”, 2009.
[28]B.W. Olesen, “International standards and the ergonomics of the thermal environment”, Applied Ergonomics, 26(4), 1995, pp.293-302.
[29]C. Walgama, S. Fackrell, M. Karimi, A. Fartaj, G.W. Rankin Passenger thermal comfort in vehicles d a review. Proceedings of the institution of Mechanical Engineers. Vol. 220 [Part D: Journal of Automobile Engineering].
[30]B. Givoni, R. Goldman Predicting metabolic energy cost. Journal of Applied Physiology 1971;30:429e33.
[31]A.P. Gagge, J.A.J. Stolwijk, Y. Nishi, An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Transactions 1971;77(1):247e62.
[32]Y. Taniguchi, A. Hiroshi, F. Kenji, Study on car air conditioning system controlled by car occupants` skin temperatures-Part 1: research on a method of quantitative evaluation of car occupants` thermal sensations by skin temperature. SAE Technical Paper Series; 1992, No. 920169.
[33]N. Fergus, “Survey of Thermal Comfort in Pakistan: Towards New Indoor Air temperature Standards, 1994, pp.113-121.
[34]A. P. Gagge, “Comfort and thermal sensations and associate physiological responses at various ambient temperatures,” Environmental research, Vol. 46, No. 7, 1967, pp.125-132.
[35]M. Vesely’, W. Zeiler, Personalized conditioning and its impact on thermal comfort and energy performance—a review, Renewable Sustainable Energy Rev. 34, 2014, pp.401–408.
[36]K.F. Fong, T.T. Chow, C. Li, Comfort zone of air speeds and temperatures for air-conditioned environment in the subtropical Hong Kong, Indoor Built Environ. 19, 2010, pp.375–381.
[37]S. Atthajariyakul, C. Lertsatittanakorn, Small fan assisted air conditioner for thermal comfort and energy saving in Thailand, Energy Convers. Manage. 49, 2008, pp. 2499–2504.
[38]周伯丞,“亞熱帶氣候下室內環境品質對健康、舒適的影響與調控策略”,臺灣建築學會會刊雜誌,2012年10月,第58-62頁。
[39]J. Yu, Q. Ouyang, Y. Zhu, H. Shen, G. Cao, W. Cui, A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments, Indoor Air 22, 2012, pp. 110–118.
[40]L. Lan, Z. Lian, W. Liu, Y. Liu, Investigation of gender difference in thermal comfort for Chinese people, Eur. J. Appl. Physiol. 102, 2008, pp.471–480.
[41]T.T. Chow, K.F. Fong, B. Givoni, Z. Lin, A.L.S. Chan, Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment, Build. Environ. 45, 2010, pp. 2177–2183.
[42]L. Schellen, M.G.L.C. Loomans, M.H. de Wit, B.W. Olesen, W.D. van Marken Lichtenbelt, The influence of local effects on thermal sensation under non-uniform environmental conditions—gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling, Physiol. Behav. 107, 2012, pp.252–261.
[43]洪增淵,“演講廳之室內環境品質調查與分析”,朝陽科技大學,環境工程與管理系,碩士學位論文,2004。
[44]魏士閔,“室內熱舒適度之調查與分析-以焚化廠簡報室為例”,朝陽科技大學環境工程與管理系,碩士學位論文,2007。
[45]W. L. Tse, A. T. P. So, W. L. Chan and I. K. Y. Mak: The validity of predicted mean vote for air-conditioned offices. Facilities 23, 2005, pp.13-14, pp. 558-569.
[46]N. Nasrollahi, I. Knight and P. Jones: Workplace satisfaction and thermal comfort in air conditioned office buildings: Findings from a summer survey and field experiments in Iran. Indoor Built Environ 17(1), 2008, pp. 69-79.
[47]G. S. Brager and R. J. de Dear: Thermal adaptation in the built environment: a literature review. Energ Buildings 27(1), 1998, pp. 83-96.
[48]R.-L. Hwang, T.-P. Lin, C.-P. Chen, N.-J. Kuo, Investigating the adaptive model of thermal comfort for naturally ventilated school buildings in Taiwan, Int. J. Biometeorol. 53, 2009, pp. 189–200.
[49]F.R. d’Ambrosio Alfano, E. Ianniello, B.I. Palella, PMV–PPD and acceptability in naturally ventilated schools, Build. Environ. 67, 2013, pp. 129–137.
[50]C.-P. Chen, R.-L. Hwang, W.-M. Shih, Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage, Int. J. Biometeorol. 58, 2014, pp. 1941–1950.
[51]R.-L. Hwang, T.-P. Lin, N.-J. Kuo, Field experiments on thermal comfort in campus classrooms in Taiwan, Energy Build. 38, 2006, pp. 53–62.
[52]R.A. Memon, S. Chirarattananon, P. Vangtook, Thermal comfort assessment and application of radiant cooling: a case study, Build. Environ. 43, 2008, pp. 1185–1196.
[53]M.P. Deuble, R.J. de Dear, Is it hot in here or is it just me? Validating the post-occupancy evaluation, Intell. Build. Int. 6, 2014, pp. 112–134.
[54]W. Yang, G. Zhang, Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China, Int. J. Biometeorol. 52, 2008, pp. 385–398.
[55]莊振賢,“國人舒適感受調查研究”,國立臺北科技大學,冷凍與低溫科技研究所,碩士學位論文,2001。
[56]N.N. Shin-ichi Tanabe, Yuko Iwahashi, Sayana Tsushima, Thermal comfort and productivity in offices under mandatory electricity savings after the Great East Japan earthquake, Archit. Sci. Rev., 2014, pp. 4–13.
[57]W. Cui, G. Cao, J.H. Park, Q. Ouyang, Y. Zhu, Influence of indoor air temperature on human thermal comfort, motivation and performance, Build. Environ. 68, 2013, pp. 114–122.
[58]F.R.A. Alfano, B.W. Olesen, B. I. Palella, G. Riccio. Thermal comfort: design and assessment for energy saving. Energy Build 2014;81:326–36.
[59]L. Yang, H. Yan, J.C. Lam. Thermal comfort and building energy consumption implications–a review. Appl Energy 2014,115, pp. 164–173.
[60]“淺析生態建築設計方法之被動式節能策略”,2018年8月1日,http://www.lunwen365.com/
[61]資誠CSR論壇,“智慧綠建築-永續新生活會後報導”,2018,https://www.pwc.tw/zh/corporateresponsibility/assets/events/event-csr-180424.pdf
[62]P. V. Nielsen, Fifty years of CFD for room air distribution. Build. Environ. 2015, 91, pp. 78–90.
[63]J. Liu, M. Heidarinejad, G. Pitchurov, L. Zhang, J. Srebric, An extensive comparison of modified zero-equation, standard k-ε, and LES models in predicting urban airflow. Sust. Cities Soc., 2018, 40, pp. 28–43.
[64]P.G. Schild, P.O. Tjelflaat, D. Aiulfi, “Guidelines for CFD modelling of atria,” ASHRAE Transactions, 101(2), 1995, pp. 1311-1332.
[65]F. Ladeinde and M. Nearon, “CFD applications in the HVAC&R industry,” ASHRAE Journal, 39(1), 1997, pp. 44.
[66]Q. Chen, J. Srebric, A Procedure for Verification, Validation, and Reporting of Indoor Environment CFD Analyses. HVAC&R Res. 2002, 8, pp. 201–216.
[67]https://zhuanlan.zhihu.com/p/22425873
[68]Q. Chen, “Modeling Airflow and Contaminants in Buiildings”, Lecture notes for Ene-58.152 postgraduate seminar on HVAC, 1997.
[69]B.E. Launder and D.B. Spalding, “The numerical computation of turbulent flows,” In Computer Methods in Applied Mechanics and Energy, Vol. 3, 1974, pp. 269-289.
[70]C.M. Chiang, C.M. Lai, P.C. Chou, et al., The Influence of an Architectural Design Alternative (Transoms) on Indoor Air Environment in Conventional Kitchen in Taiwan, “Building and Environment”, 35(5), 2000.
[71]朱佳仁,風工程概論,台北:科技圖書股份有限公司,2006。
[72]王福軍,計算流體力學分析-CFD軟體原理與運用,北京:清華大學出版社,2007。
[73]N. Djongyang, R. Tchinda, D. Njomo, Thermal comfort: A review paper, Renewable and Sustainable Energy Reviews 14 , 2010 , pp. 2626-2640.
[74]B.W. Olesen, P.O. Fanger, The skin temperature distribution for resting man in comfort. Arch Sci Physiol, 1973, 27: pp. 385–393.
[75]J. Liu, R. Yao, R. McCloy , A method to weight three categories of adaptive thermal comfort. Energy Build, 2012, 47: pp. 312–320.
[76]José Antonio Orosa García, “A review of general and local thermal comfort models for controlling indoor ambiences”, University of A Coruña. Department of Energy and M.P., Spain, 2000.
[77]ISO 9920, Ergonomics of the Thermal Environment-Estimation of the thermal insulation and evaporative resistance of a clothing ensemble, International Standards Organisation, Geneva, 1995b.
[78]P. O. Fanger, Calculation of thermal comfort:Introduction of a basic thermal comfort equation, ASHRAE Trans, Vol. 73,1967, pp. 263-271.
[79]McNall Jr, P.E. Jaax, F. H. Rohles, R. G. Nevins, W. Springer, Thermal comfort (and thermally neutral) conditions for three levels of activity. ASHRAE Transactions, 1967, pp. 73.
[80]R.G. Nevins, F. H. Rohles, W. Springer, A. M. Feyerherm, A temperature-humidity chart for thermal comfort of seated persons. ASHRAE Transactions, 72(1), 1966, pp. 283-295.
[81]黃瑞隆“室內冷氣溫度操作管理之應用技術 -兼顧熱舒適與節能的綠色空調溫度管理思維”, https://www.ecct.org.tw/Knowledge/knowledge_more?id=7fd864bbb9774067a9ae6e2e4958cf32
[82]P. O. Fanger, Thermal comfort, McGraw-Hill book company, 1972.
[83]Andris Auliciems and Steven V. Szokolay, “Thermal Comfort”, Design Tools And Techniques, Passive and Low Energy Architecture International, 2007.
[84]ISO 7726, Thermal Environment-Instruments and method for measuring physical quantities, 1985.
[85]ISO 7730, Moderate Thermal Environments-Determination of the PMV and PPD indices and specification of the conditions for thermal comfort, International Standards Organisation, Geneva, 1994.
[86]Can Ekici, “A Review Of Thermal Comfort And Method Of Using Fanger’s PMV Equation “5Th International Symposium on Measurement, Analysis and Modeling of Human Functions, Vancouver, Canada, June, 2013, pp. 27-29.
[87]https://kknews.cc/zh-hk/culture/ez4e2q.html
[88]https://preetirt.wordpress.com20190218old-university-nalanda-mahavihara
[89]https://www.alamy.com/stock-photo-nalanda-university-ruins-bihar-india-43177341.html
[90]https://en.wikipedia.org/wiki/Nalanda
[91]https://kknews.cc/history/k8bq5rb.html
[92]https://connections.hanglung.com/zh-hant/node/3239
[93]https://kknews.cc/zh-hk/travel/n55549q.html
[94]http://www.msgt.org.tw/green_building_data.php?Type=9&Board_No=3
[95]https://kknews.cc/culture/maro3l2.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊