(18.210.12.229) 您好!臺灣時間:2021/03/05 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李御豪
研究生(外文):LI, YU-HUA
論文名稱:以微弧氧化法在不銹鋼表面製備陶瓷膜之研究
論文名稱(外文):Fabrication of Ceramic Film on the Surface of Stainless Steel by Micro-Arc Oxidation Method
指導教授:李九龍李九龍引用關係
指導教授(外文):LEE, JEOU-LONG
口試委員:李九龍宋大崙楊木榮陳信良
口試委員(外文):LEE, JEOU-LONGSUNG, TA-LUNYANG, MU-RONGCHEN, XIN-LIANG
口試日期:2020-07-12
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:化工與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:不銹鋼微弧氧化陶瓷膜耐蝕性耐磨耗
外文關鍵詞:Stainless SteelMicro-Arc OxidationCeramic MembraneCorrosion ResistanceWear Resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從21世紀鋼鐵工業的現狀來看,科技含量和產品附加價值低的普通鋼鐵品種產能過剩,已達到市場飽和,而使用高科技研發新的鋼鐵合金不銹鋼也無法滿足現今各科研產業的現況,而且市場仍在不斷拓展。此外,鋼鐵材料給人傳統成熟的印象,然而其在性能提升上仍有極大的發展空間,為達到高品質的提升及附加價值,諸多高級鋼品的開發及其生產製程亦不斷精進,如融合合金工程鋼品。但是融合合金工程鋼品的價格高昂且精煉過程耗費較高的能源,無法達到簡化製程,減少成本,行較環保之效益。因此,從科技研發發展的角度看,探索出新的方法,改善鋼鐵表面結構性能,鋼鐵材料之表面抗蝕與耐磨耗性能若能同時有效提升,則能廣泛應用在汽車、家電、機密機械、光電、半導體及生醫器材等高價值之終端產品及其相關零附件上,將可取代製程繁瑣成本高昂之各種合金鋼鐵。優化製備方法是該方面研究的首要任務,而電漿方面增強電化學表面陶瓷技術,即微弧氧化技術,為該方面的研究提供了一個全新的研究階段。本研究試圖為微弧氧化技術開闢新的領域,也為鋼材的表面處理探索一條新途徑將提供一個全新的研究階層。
本研究針對不銹鋼表面利用單極與雙極脈衝電源模式微弧氧化技術在鋁酸鹽電解質中製備具有高硬度耐磨耗及耐蝕性之陶瓷氧化膜,由研究結果顯示:微弧氧化生成之不銹鋼表面陶瓷氧化膜主要由氧化鋁(Al2O3)和剛玉(α-Al2O3)及鐵鋁尖晶石(FeAl2O4)組成;由單極脈衝電源模式(頻率150Hz、佔空比40%)結果發現,所製備的陶瓷氧化膜表面最佳結果:硬度為(1783Hv);膜層厚度21.60μm;平均粗糙度為Ra=12.055;摩擦係數及磨耗損失量0.4149及0.0065mg/100m ;耐蝕性較基材約高1500倍,而以相同實驗參數雙極脈衝電源模式陶瓷氧化膜表面最佳結果為:結果發現,陶瓷氧化膜最佳硬度為(1532 Hv),膜層厚度達53.97μm;平均粗糙度Ra=14.135;摩擦係數及磨耗損失量分別為0.5643及0.0245 mg/100m;耐蝕性較基材約高300倍。

The current status of the steel industry in the 21st century shows the overcapacity of ordinary steel varieties with low technological content and product added value has reached market saturation but new stainless alloy steel market is still expanding. However, the use of high-tech and development of new stainless alloy steel cannot meet the current demand of various industries. In addition, steel materials give people the impression of traditional maturity but actually, there is still a lot of room for improvement in performance. In order to achieve high-quality enhancement and added value, the development of many high-end steel products and their production processes are constantly improving, such as fusion alloy engineering steel products. However, the price of fusion alloy engineering steel products is high and its refining process consumes high energy, which cannot achieve simplified manufacturing processes, reduced costs, and more environmentally friendly benefits. Therefore, from the perspective of scientific research and development, new methods have been explored to improve the structural properties of steel surfaces. If the surface corrosion resistance and wear resistance of steel materials can be effectively improved at the same time, they can be widely used in automobiles, home appliances, precision machinery, optoelectronics, semiconductor, biomedical equipment and other high-value end products and related parts and accessories, and will be able to replace all kinds of tedious and costly alloy steel. Optimizing the preparation method is the primary task of the research in this area and the enhancement of electrochemical surface ceramic technology in the plasma aspect, that is the micro-arc oxidation technology, provides a new research stage in this area. This research attempts to open up a new field for micro-arc oxidation technology and to explore a new way for the surface treatment of steel, and will provide a brand-new research level.
The research aims at using unipolar and bipolar pulse power mode of micro-arc oxidation technology on the surface of stainless steel to prepare a ceramic oxide film with high hardness, wear resistance and corrosion resistance in aluminate electrolyte. The research results show that stainless steel produced by micro-arc oxidation to form the ceramic oxide film on the surface is mainly composed of aluminum oxide (Al2O3), corundum (α-Al2O3) and iron-aluminum spinel (FeAl2O4). It is found that by the unipolar pulse power mode (frequency 150Hz, duty cycle 40%), the best result on the surface of the ceramic oxide film is hardness 1783Hv, film thickness 21.60μm, average roughness Ra=12.055; friction coefficient and abrasion loss are 0.4149 and 0.0065 mg/100m; corrosion resistance is about 1500 higher than that of the base material. The best result of the ceramic oxide film surface by the bipolar pulse power mode with the same experimental parameters shows the hardness of the ceramic oxide film is 1532 Hv; the film thickness is 53.97μm; the average roughness is Ra=14.135; the friction coefficient and abrasion loss are 0.5643 and 0.0245 mg/100m respectively; the corrosion resistance is about 300 times higher than that of the base material.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1前言 1
1.2研究目的 4
第二章 文獻回顧 5
2.1鐵及鐵合金之介紹 5
2.1.1鋼鐵腐蝕的探討 7
2.2鐵鋁合金之介紹 9
2.3鐵鋁尖晶石之介紹 11
2.4微弧氧化 13
2.4.1陽極氧化之方法及應用 13
2.4.2微弧氧化技術之理論 16
第三章 實驗方法與原理 22
3.1實驗流程 22
3.2實驗藥品 24
3.3實驗步驟 24
3.3.1試片前處理 26
3.4微弧氧化處理步驟 26
3.4.1微弧氧化處理 27
3.5鍍膜分析及量測 28
3.5.1場發射掃描式電子顯微鏡(SEM) 28
3.5.2能量發散光譜儀(EDS) 30
3.5.3 X光繞射儀(XRD) 32
3.5.4表面膜層厚度測量 34
3.5.5表面粗糙度測量儀 35
3.5.6顯微硬度儀(Microhardness Tester) 37
3.5.7耐蝕性測試 40
3.5.8磨耗試驗 43
第四章 結果與討論 45
4.1除鉻處理的影響 45
4.2先期研究 46
4.3以單極脈衝電源模式微弧氧化處理之結果 49
4.3.1單極脈衝電源模式微弧氧化陶瓷氧化膜之表面分析 49
4.3.2單極脈衝電源模式微弧氧化陶瓷氧化膜之橫截面分析 54
4.3.3單極脈衝電源模式微弧氧化陶瓷氧化膜之XRD分析 57
4.3.4單極脈衝電源模式微弧氧化陶瓷氧化膜之粗糙度分析 58
4.3.5單極脈衝電源模式微弧氧化陶瓷氧化膜之硬度分析 59
4.3.6單極脈衝電源模式微弧氧化陶瓷氧化膜之電位極化耐蝕性分析 60
4.3.7單極脈衝電源模式微弧氧化陶瓷氧化膜之摩擦係數及磨耗損失量分析 62
4.4以雙極脈衝電源模式微弧氧化處理之結果 65
4.4.1雙極脈衝電源模式微弧氧化陶瓷氧化膜之表面分析 65
4.4.2雙極脈衝電源模式微弧氧化陶瓷氧化膜之橫截面分析 70
4.4.3雙極脈衝電源模式微弧氧化陶瓷氧化膜之XRD分析 73
4.4.4雙極脈衝電源模式微弧氧化陶瓷氧化膜之粗糙度分析 74
4.4.5雙極脈衝電源模式微弧氧化陶瓷氧化膜之硬度分析 75
4.4.6雙極脈衝電源模式微弧氧化陶瓷氧化膜之電位極化耐蝕性分析 76
4.4.7雙極脈衝電源模式微弧氧化陶瓷氧化膜之摩擦係數及磨耗損失量分析 78
第五章 結論 82
5.1結論 82
5.2未來建議 84
參考文獻 85

[1]雷明凱,朱雪梅,袁力江,張仲麟,「奧氏體不銹鋼表面改性層耐蝕性實驗研究」,金屬學報,第35卷,第10期,第1081-1084頁(1999)。
[2]侯亞麗、劉忠德,「微弧氧化技術的研究現況」,Plating and Finishing,第23卷,第3期,第24-28頁(2005)。
[3]Yankun Li, Minfang Chen, Wei Li, Qi Wang, Yansong Wang, Chen You,“Preparation, characteristics and corrosion properties of α-Al2O3 coatings on 10B21 carbon steel by micro-arc oxidation, ”Surface and Coatings Technology, 358,18,637-645(2019).
[4]Mathias Kamp, Jonas Bartsch, Roman Keding, Mike Jahn, Ralph Müller, Markus Glatthaar, Stefan W. Glunz, Ingo Krossing,“Plating Processes on Aluminum and Application to Novel Solar Cell Concepts, ”Energy Procedia, 55,679-687(2014).
[5]Shannon Poges, Jing Jin, Curtis Guild, Wei-Na Li, Michael Birnkrant, Steven L. Suib,“Preparation and characterization of aluminum coatings via electroless plating onto nickel nanowires using ionic liquid plating solution, ”Materials Chemistry and Physics,207,303-308(2018).
[6]Wen Wang, Dan Wang, Fusheng Han,“Improvement of corrosion resistance of twinning-induced plasticity steel by hot-dipping aluminum with subsequent thermal diffusion treatment, ”Materials Letters,248,60-64(2019).
[7]Lina Grineviciute, Ceren Babayigit, Darius Gailevičius, Emre Bor, Mirbek Turduev, Vytautas Purlys, Tomas Tolenis, Hamza Kurt, Kestutis Staliunas,“Angular filtering by Bragg photonic microstructures fabricated by physical vapour deposition, ”Applied Surface Science,481,353-359(2019).
[8]Mirine Leem, Hyangsook Lee, Taejin Park, Wonsik Ahn, Hoijoon Kim, Eunha Lee, Hyoungsub Kim,“Intriguing morphological evolution during chemical vapor deposition of HfS2 using HfCl4 and S on sapphire substrate, ”Applied Surface Science,509,144701 (2019).
[9]Chuanmin Zhu, Hailang Wan, Junying Min, Yu Mei, Jianping Lin, Blair E. Carlson, Surender Maddela, “Application of pulsed Yb: Fiber laser to surface treatment of Al alloys for improved adhesive bonded performance, ”Optics and Lasers in Engineering,119, 65-76 (2019).
[10]Gnedenkov, S.V., Khrisanfoca, O.A., Zavidnaya, A.G., Sinebrukhov, S.L., Kovryanov, A.N., Scorobogatova, T.M., Gordienko, P.S. “Production of hard and heat-resistant coatings on aluminum using a plasma micro-discharge,” Surface and Coatings Technology, 123, 1, 24-28 (2000).
[11]Wu, H.H., Wang, J.B., Long, B.Y., Long, B.H., Jin, Z.S., Wang, N.D., Yu, F.R., Bi, D.M. “Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminum alloy,” Applied Surface Science, 252, 5, 1545-1552 (2005).
[12]Dittrich, K.-H., Krysmann, W., Kurze, P., Schneider, H.G. “Structure and properties of ANOF layers ,” Crystal Research and Technology, 19, 1, 93-99 (1984).
[13]薛文斌、鄧志威、來永春、陳如意、張通和,「有色金屬表面微弧氧化技術評述」,金屬熱處理,第1期,第3-5頁(2000)。
[14]鐘濤生,蔣百靈,李均明,「微弧氧化技術的特點、應用前景及其研究方向」電鍍與塗飾,第24卷,第6期,第47-50頁(2005)。
[15]高殿奎、沈德久、王玉林,「低碳鋼熱浸鍍鋁微弧氧化陶瓷層厚度研究」材料保護,第34卷,第5期,第26-27頁(2001)。
[16]張宇、閆康平、王偉、田間,「電流密度對不銹鋼熱浸鍍鋁層微弧氧化的影響」,電鍍與精飾,第30卷,第2期,第1-3頁(2008)。
[17]杜繼紅、李爭顯、慕偉意,「不銹鋼-鋁複合材料表面微弧氧化陶瓷膜的研究」,表面技術,第33卷,第1期,第35-36頁(2004)。
[18]Jung-Chou Hung, Yi-Ren Liu, Hai-Ping Tsui, Zhi-Wen Fan,“Electrode insulation layer for electrochemical machining fabricated through hot-dip aluminizing and microarc oxidation on a stainless-steel substrate,”Surface and Coatings Technology,378,124995(2019).
[19]V. Malinovschi, A. Marin, S. Moga, D. Negrea,“Preparation and characterization of anticorrosive layers deposited by micro-arc oxidation on low carbon steel,”Surface and Coatings Technology, 253,14,194-198(2014).
[20]Läpple, Volker, “Wärmebehandlung des Stahls Grundlagen,”Verfahren und Werkstoffe,8Auflage,55(2010).
[21]朱祖芳,鋁合金陽極氧化工藝技術應用手冊,北京:冶金工業出版社,第1-4頁(2007)。
[22]金重勳,機械材料,台南:復文書局,第98-103頁(1995)。
[23]劉品均(2005)。《材料科學概論》。施佑蓉譯。臺北。高立圖書有限公司。
[24]楊斌,顧華志,汪厚植,「原位合成方鎂石-鐵鋁尖晶石材料」,稀有金屬材料與工程,第38卷,第2期,第1229-1232頁(2009)。
[25]張君博,張剛,肖國慶,「鐵鋁尖晶石的製備」,矽酸鹽通報,第26卷,第5期,第1003-1006頁(2007)。
[26]Kobayashi, S., Yakou, T. “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment,” Materials Science and Engineering: A, 338, 1-2, 44-53 (2002).
[27]Johnson, M., Mikkola, D.E., March. P.A., Wright, R.N. “The resistance of nickel and iron aluminides to cavitation erosion and abrasive wear,” Wear, 140, 2, 279-289 (1990).
[28]Knibloe, J.R., Wright, R.N., Trybus, C.L., Sikka, V.K. “Microstructure and mechanical properties of Fe3Al alloys with chromium,” Journal of Materials Science, 28, 8, 2040-2048 (1993).
[29]McKamey, C.G., DeVan, J.H., Tortorelli, P.F., Sikka, V.K. “A review of recent developments in Fe3Al-based alloys,” Journal of Materials Research, 6, 8, 1779-1805 (1991).
[30]Baligidad, R.G., Radhakrishna, A.“Effect of alloying additions on structure and mechanical properties of high carbon Fe-16 wt.% Al alloy,” Materials Science and Engineering: A, 287, 1, 17-24 (2000).
[31]Stoloff, N.S. “Iron aluminides:present status and future prospects,” Materials Science and Engineering: A, 258, 1-2, 1-14 (1998).
[32]Yeremenko V.N., Natanzon, Y.V., Dybkov, V.I.“The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminium system,” Journal of Materials Science, 16, 7, 1748-1756 (1981).
[33]Wang, D., Shi, Z. “Aluminizing and oxidation treatment of 1Cr18Ni9Ti stainless steel,” Applied Surface Science, 227, 255-260 (2004).
[34]Stein-Fechner, K., Konys, J., Wedemeyer, O. “Investigations on the transformation behavior of the intermetallic phase (Fe,Cr)2Al5 formed on MANET II steel by aluminizing,” Journal of Nuclear Materials, 249, 33-38 (1997).
[35]Bahadur, A., Mohanty, O.N. “Structural Studies of Hot Dip Aluminized Coatings on Mild Steel”, Materials Transactions, JIM, 32, 11, 1053-1061 (1991).
[36]許芷寧,碳鋼中顯微組織對熱浸鍍鋁之作用,碩士論文,國立台灣科技大學機械工程系,台北 (2011)。
[37]張玉梅,「關於鋼鐵氧化處理和磷化處理的實驗研究及應用」,遼寧師專學報,第5卷,第1期,第0103-0105頁(2003)。
[38]曹楚南,「腐蝕電化學原理(第三版)」,腐蝕科學與防護技術,第3期,第165頁(2008)。
[39]尹小三、趙占西、趙建華,「鋁合金陽極氧化的除灰工藝」,電鍍與環保,第29卷,第2期,第22-24頁(2009)。
[40]蔣百靈、李均明,「鋁鎂合金微弧氧化處理技術的工程應用」,新技術新工藝,第2期,第16-18頁 (2009)。
[41]祁和義,「鋁合金硬質陽極氧化膜厚度及顯微硬度測試方法研究」,材料保護,第39卷,第7期,第73-75頁(2006)。
[42]薛文斌、鄧志威、來永春、陳如意、張通和,「有色金屬表面微弧氧化技術評述」,金屬熱處理,第1期,第1-3頁(2000)。
[43]Petrov, P., Dimitroff, D. “Electron beam alloying of aluminum alloys,” Vacuum, 44, 8, 857-861 (1993).
[44]馮克林,「輕金屬微電弧電漿電化學技術-輕金屬專題」,工業材料,第221期,第104-109頁 (2004)。
[45]楊文斌、肖乾、梁軍、李青彪,「碳鋼表面微弧氧化膜的製備及摩擦磨損性能研究」,摩擦學學報,第35卷,第3期,第328 -334頁(2015)。
[46]Y. Z. Shen, X. Z. Guo, Y. B. Lin, J. Tao, “Al2O3 coatings fabricated on stainless steel/aluminium composites by microarc oxidation”,Surface Engineering,30,10,735-740(2014).
[47]Ridvan Gecu, Yakup Yurekturk, Emre Tekoglu, Faiz Muhaffel, Ahmet Karaaslan, “Improving wear resistance of 304 stainless steel reinforced AA7075 aluminum matrix composite by micro-arc oxidation,”Surface and Coatings Technology, 368,15-24(2019).
[48]Zhenqiang Wu, Yuan Xia, Guang Li, Fangtao Xu,“Structure and mechanical properties of ceramic coatings fabricated by plasma electrolytic oxidation on aluminized steel, ”Applied Surface Science,253, 20,8398-8403(2007).
[49]盧立紅,「 Q235鋼表面熱浸鍍鋁層微弧氧化的研究」,腐蝕與防護,第28卷,第8期,第425-426頁(2007)。
[50]卜海濤,姜兆華,姚忠平,「工藝參數對Q235鋼微弧氧化膜層厚度及粗糙度的影響」,金屬熱處理,第40卷,第5期,第107-112頁(2015)。
[51]楊鍾時,賈建峰,田軍,賀德衍,「不銹鋼表面Al2O3膜的微弧氧化製備」,無機材料學報,第19卷,第6期,第1446-1450頁(2004)。
[52]何繼全,「鋼鐵表面微弧氧化技術的研究」,碩士論文,哈爾濱工業大學,機電工程學院機械製造及其自動化研究所(2006)。
[53]邱然鋒,李久勇,賀玉剛,石紅信,SATONAKAS,「鋁合金/低碳鋼點焊界面反應物生長機制」,中國有色金屬學報,第27卷,第6期,第1176-1181頁(2017)。
[54]丁志敏,陳凱敏,沈長斌,閻穎,高宏,「微弧氧化處理對Q235鋼電鍍鋁層相結構和性能的影響」,材料熱處理學報,第29卷,第5期,第0169-0172頁(2008)。
[55]Lan Chen, Brodan Richter, Xinzhou Zhang, Xudong Ren, Frank E. Pfefferkorn,
“Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing,”Additive Manufacturing,8604,19,31033-31037(2019).
[56]Rumana Hossain, Farshid Pahlevani, Veena Sahajwalla,“Surface modification of high carbon steel through microstructural engineering,”Materials Characterization,148,116-122(2019).
[57]宋潤濱,左洪波,吉澤升,「輕合金等離子體增強電化學表面陶瓷化進展」,輕合金加工技術,第31卷,第2期,第8-11頁(2003)。
[58]李淑華,尹玉軍,程金生,李樹堂,「微弧氧化技術與材料表面陶瓷化」,特種鑄造及有色合金,第1卷,第1期,第36-38頁(2001)。
[59]劉耀輝,李頌,「微弧氧化技術國內外研究進展」,材料保護,第36卷,第6期,第36-40頁(2005)。
[60]王德慶,於金龍,段旭東,「鋼鐵表面熱浸鍍鋁技術回顧」,大連鐵道學院學報,第24卷,第3期,第77-83頁(2003)。

電子全文 電子全文(網際網路公開日期:20250824)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔