(3.215.180.226) 您好!臺灣時間:2021/03/09 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張育慈
研究生(外文):CHANG, YU-TZE
論文名稱:操作變數對於脂質載體包埋精油乳化速率之影響
論文名稱(外文):Effects of Process Variables on the Emulsion Rate of Lipid Carriers Encapsuled Essential Oils
指導教授:陳寶祺陳寶祺引用關係
指導教授(外文):CHEN, PAO-CHI
口試委員:蕭瑞昌朱錦明陳寶祺
口試委員(外文):HSIAO, RUEY-CHANGCHU, CHIN-MINGCHEN, PAO-CHI
口試日期:2020-07-20
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:化工與材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:184
中文關鍵詞:乳化速率膠體奈米結構脂質載體
外文關鍵詞:emulsification ratecolloidnanostructured lipid carrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為以熱高壓均質法製備出包埋薄荷油脂奈米結構脂質載體,並藉由改變操作條件探討壓力及循環時間,探討變數對於粒徑、界面電位及乳化速率之影響。利用動態散射奈米團簇分析儀(DLS)檢測其粒徑約在220.0-396.1nm之間。以界面電位之量測來評估奈米結構脂質載體之物理穩定性,結果顯示其界面電位分佈約在∣-55mV∣至∣-30mV∣間,屬於穩定膠體體系。經乳化速率計算後發現,其乳化速率在8.90×1012~2.75×1018 no./L.s之間,並將所得之乳化速率經由縣性回歸分析得到下列經驗式 ,此式顯示,RE與P及tR均成正比的關係,其中以tR之影響最大,此式經回歸其誤差在9.78%,由此可知精緻乳化之循環時間會影響乳化速率之高低,而乳化速率會影響粒徑大小及界面電位。
其次為探討各成分、比例在本研究之配方中所扮演之角色,分別改變蠟濃度、界面活性劑種類、油濃度及薄荷油濃度皆使用熱高壓均質機,以操作壓力700bar、精緻乳化循環時間5分鐘之操作條件下進行實驗操作,並對粒徑、界面電位及載體之乳化速率等影響進行分析;發現蠟濃度的改變會影響粒徑及界面電位,且提高蠟之濃度,乳化速率也會上升;界面活性劑種類的不同,會影響粒徑及界面電位之值,也會改變乳化速率之高低;而油脂濃度的不同,對粒徑及乳化速率會產生影響,對界面電位則無太大差異;包埋薄荷油之濃度則對粒徑、界面電位及乳化速率皆會產生影響。

This study aims to prepare a nanostructured lipid carrier embedding peppermint oil with the thermal high-pressure homogenization method, discuss the pressure and cycle time by changing the operating conditions, and explore the effects of variables on particle size, interface potential and emulsification rate. The dynamic scattering nanometer cluster analyzer (DLS) detected that the particle size was about 220.0-396.1nm. The interface potential measurement was used to evaluate the physical stability of nanostructured lipid carriers. The results showed that the interface potential distribution was about from ∣-55mV∣ to ∣-30mV∣, and it belonged to a stable colloidal system. After calculating the emulsification rate, it was found that the emulsification rate was between 8.90×1012~2.75×1018 no./L.s, and the empirical formula was obtained via the linear regression analysis on the resulting emulsification rate. This formula showed that RE was directly proportional to P and tR, where, tR had the largest influence. The error of this formula was 9.78% after regression. It was found that the cycle time of delicate emulsification affected the emulsification rate, and the emulsification rate affected the particle size and interface potential.
Second, in order to discuss the role that each component and proportion ratio play in the formulation of this study, the wax concentration, surfactant type, oil concentration and peppermint oil concentration were changed respectively, the experimental operation was carried out with a thermal high-pressure homogenizer under the operating conditions of an operating pressure of 700 bar and a refined emulsification cycle of 5 minutes, and the effects on particle size, interface potential and emulsification rate of the carrier were analyzed. It was found that the change in wax concentration affected the particle size and interface potential, and the increase in the wax concentration resulted in the rise of emulsification rate. Moreover, different types of surfactants affected the value of particle size and interface potential, and changed the emulsification rate. Additionally, the difference in oil concentration had an effect on particle size and emulsification rate, but not much effect on interface potential; the concentration of embedded peppermint oil had an impact on particle size, interface potential and emulsification rate.

摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1脂質載體之發展史 1
1.1.1第四代脂質載體特色 2
1.1.2 第四代脂質載體之控制 3
1.1.3 探討以控制粒數、粒徑及界面電位之影響 3
1.2 研究動機 4
1.3 研究背景 5
1.4 研究目的 6
第二章 文獻回顧 7
2.1 脂質載體 7
2.2 奈米結構脂質載體之型態 13
2.2.1 缺陷型(Imperfect type) 13
2.2.2 無定形型(Amorphous type) 14
2.2.3 複合型(Multiple type) 14
2.3 複合式脂質載體特性 16
2.4 皮膚構造[78] 20
2.4.1 表皮層 21
2.4.1.1 角質層 22
2.4.1.2 透明層 22
2.4.1.3 顆粒層 22
2.4.1.4 有棘層 22
2.4.1.5 基底層(萌芽層/生發層) 23
2.4.2 基底膜 23
2.4.3 真皮層 23
2.4.3.1 乳頭層 24
2.4.3.2 網狀層 24
2.4.4 皮下組織 24
2.4.5 皮膚的附屬器官 25
2.4.5.1 毛髮 25
2.4.5.2 指甲 27
2.4.5.3 皮脂腺 27
2.4.5.4 汗腺 27
2.5 皮膚吸收途徑 29
2.6 複合式脂質載體製備方法 31
2.6.1 高壓均質法 31
2.6.2 微乳法 33
2.6.3 乳化溶劑蒸發法 33
2.6.4 高速剪切均質/超音波震盪法 33
2.6.5 W/O/W乳化法 34
2.7 奈米結構脂質載體脂組成 36
2.7.1 固態脂質 36
2.7.1.1 Compritol® ATO 888 36
2.7.2 液態脂質 36
2.7.2.1 乳油木果脂 37
2.7.2.2 薄荷油 38
2.8 界面活性劑 38
2.8.1 非離子型界面活性劑 39
2.8.2 兩性型界面活性劑 40
2.8.3 陰離子型界面活性劑 40
2.8.4 陽離子型界面活性劑 40
2.9 卵磷脂 41
2.10 戊二醇 42
第三章 實驗步驟及方法 43
3.1 實驗設計 43
3.1.1 操作變數探討實驗設計 43
3.1.2 改變蠟之濃度探討實驗設計 44
3.1.3 改變界面活性劑探討實驗設計 45
3.1.4 改變油之濃度探討實驗設計 46
3.1.5 改變薄荷油之濃度探討實驗設計 47
3.2 實驗藥品及儀器 48
3.2.1 實驗藥品 48
3.2.2 實驗設備 48
3.2.3 分析儀器 49
3.3 儀器分析原理 50
3.3.1 動態散射奈米團簇分析儀 50
3.3.2 界面電位分析儀 51
3.4 實驗裝置 53
3.4.1 熱高壓均質機(High Pressure Homogenization, HPH) 53
3.4.2 乳化均質機 55
3.5 實驗步驟與方法 56
3.5.1 脂質載體之製備方法 56
3.5.2 粒徑分析 57
3.5.3 界面電位分析 58
3.6 實驗流程圖 59
第四章 乳化速率之決定 60
4.1 粒數密度函數 60
4.2 乳化動力學 63
第五章 結果與討論 65
5.1 粒徑分佈 65
5.1.1 不同蠟濃度奈米結構脂質載體之粒徑分析 68
5.1.2 不同界面活性劑種類奈米結構脂質載體之粒徑分析 70
5.1.3 不同油脂濃度奈米結構脂質載體之粒徑分析 71
5.1.4 不同薄荷油濃度奈米結構脂質載體之粒徑分析 72
5.2 界面電位分析 73
5.2.1 不同成份、比例下奈米結構之質載體之界面電位分析 75
5.3 乳化動力學之計算 77
5.3.1 不同蠟濃度奈米結構脂質載體之乳化速率分析 84
5.3.2 不同界面活性劑濃度奈米結構脂質載體之乳化速率分析 86
5.3.3 不同油脂濃度奈米結構脂質載體之乳化速率分析 88
5.3.4 不同薄荷油濃度奈米結構脂質載體之乳化速率分析 90
第六章 結論 93
參考文獻 95
附錄 104
符號(公式)說明 184
[1]Richter, R. P., Bérat, R., & Brisson, A. R. (2006). Formation of solid-supported lipid bilayers: an integrated view.Langmuir,22(8), 3497-3505.
[2]Balazs, D. A., & Godbey, W. T. (2011). Liposomes for use in gene delivery.Journal of drug delivery,2011.
[3]Jesorka, A., & Orwar, O. (2008). Liposomes: technologies and analytical applications.Annu. Rev. Anal. Chem.,1, 801-832.
[4]吳政樺,秋葵多醣體萃取及凍晶微脂粒製備之研究,碩士論文,樹德科技大學應用設計系研究所,高雄(2010)。
[5]Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innovative Food Science & Emerging Technologies,19, 29-43.
[6]江雨璇,包覆維生素C棕櫚酸脂之奈米結構脂質載體之製備及穩定性研究,嘉南藥理科技大學化妝品科技所碩士論文(2007)。
[7]Müller, R. H., Radtke, M., & Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations.Advanced drug delivery reviews,54, S131-S155.
[8]Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.International journal of pharmaceutics,366(1-2), 170-184.
[9]Almeida, A. J., & Souto, E. (2007). Solid lipid nanoparticles as a drug delivery system for peptides and proteins.Advanced drug delivery reviews,59(6), 478-490.
[10]Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery.Advanced drug delivery reviews,56(9), 1257-1272.
[11]Gokce, E. H., Korkmaz, E., Dellera, E., Sandri, G., Bonferoni, M. C., & Ozer, O. (2012). Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications.International journal of nanomedicine,7, 1841.
[12]Chen, P. C., Huang, J. W., & Pang, J. (2013). An investigation of optimum NLC-sunscreen formulation using taguchi analysis.Journal of Nanomaterials,2013.
[13]簡敏宸,以奈米結構脂質載體包覆活性物質之製備與分析研究,碩士論文,龍華科技大學工程技術研究所(2013)。
[14]Souto, E. B., Wissing, S. A., Barbosa, C. M., & Müller, R. H. (2004). Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations.European journal of pharmaceutics and biopharmaceutics,58(1), 83-90.
[15]許綸中,化妝品皮膚學,萬能科技大學 (2017)。
[16]Karlsson, M., Nolkrantz, K., Davidson, M. J., Strömberg, A., Ryttsén, F., Åkerman, B., & Orwar, O. (2000). Electroinjection of colloid particles and biopolymers into single unilamellar liposomes and cells for bioanalytical applications.Analytical chemistry,72(23), 5857-5862.
[17]Bolinger, P. Y., Stamou, D., & Vogel, H. (2004). Integrated nanoreactor systems: triggering the release and mixing of compounds inside single vesicles.Journal of the American Chemical Society,126(28), 8594-8595.
[18]Kisak, E. T., Coldren, B., Evans, C. A., Boyer, C., & Zasadzinski, J. A. (2004). The vesosome-A multicompartment drug delivery vehicle.Current medicinal chemistry,11(2), 199-219.
[19]陳俊安,以超音波輔助探討微脂體包覆白藜蘆醇苷之最適化研究,中興大學化學工程研究所碩士學位論文(2015)。
[20]Gómez-Hens, A., & Fernández-Romero, J. M. (2005). The role of liposomes in analytical processes.TrAC Trends in Analytical Chemistry,24(1), 9-19.
[21]Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules.Innovative Food Science & Emerging Technologies,19, 29-43.
[22]Müller, R. H., Radtke, M., & Wissing, S. A. (2002). Nanostructured lipid matrices for improved microencapsulation of drugs.International journal of pharmaceutics,242(1-2), 121-128.
[23]黃裕傑,奈米載體包埋量子點於生物成像和抗癌治療上的劑型設計及評估,碩士論文,嘉南藥理科技大學藥物科技研究所(2012)。
[24]Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives.International journal of nanomedicine,2(3), 289.
[25]Hatziantoniou, S., Deli, G., Nikas, Y., Demetzos, C., & Papaioannou, G. T. (2007). Scanning electron microscopy study on nanoemulsions and solid lipid nanoparticles containing high amounts of ceramides.Micron,38(8), 819-823.
[26]Hu, F. Q., Jiang, S. P., Du, Y. Z., Yuan, H., Ye, Y. Q., & Zeng, S. (2006). Preparation and characteristics of monostearin nanostructured lipid carriers.International journal of pharmaceutics,314(1), 83-89.
[27]Pople, P. V., & Singh, K. K. (2013). Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II–In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis.European journal of pharmaceutics and biopharmaceutics,84(1), 72-83.
[28]Souto, E. B., & Müller, R. H. (2008). Cosmetic features and applications of lipid nanoparticles (SLN®, NLC®).International Journal of Cosmetic Science,30(3), 157-165.
[29]Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.International journal of pharmaceutics,366(1-2), 170-184.
[30]李淑斌,劉丹,宋健,鮑洁,寧紅,李明慧,郭志福,王宏,遇娜,李雷,一種新的包含紫杉醇類物質的注射用納米脂質載體及其製備方法,瀋陽萬愛普利德醫藥科技有限公司,CN101366697A,2009。
[31]徐照程,鐘薇箮,經奈米脂質載體包覆之防曬劑及其應用,綠祚國際有限公司,TW201321019,2013。
[32]趙仕芝,董義偉,一種複合美白劑納米結構脂質載體及其製備方法,上海韓束化妝品有限公司,CN103251539A,2013。
[33]Maibach, H. (1984). Dermatological formulations: Percutaneous absorption. By Brian W. Barry. Marcel Dekker, 270 Madison Avenue, New York, NY 10016. 1983. 479 pp. 16× 23.5 cm. Price $55.00 (2070 higher outside the US. and Canada).Journal of Pharmaceutical Sciences,73(4), 573.
[34]Wiechers, J. W. (2008). Science and applications of skin delivery systems.THE INNOVATION IN SKIN CLEANSING, 179.
[35]Wiechers, J. W. (1989). The barrier function of the skin in relation to percutaneous absorption of drugs.Pharmaceutisch Weekblad,11(6), 185-198.
[36]吳秉峰,「藥物經皮輸送系統」,中國藥訊,第11 卷,第2 期,45-55 (2006)
[37]Teeranachaideekul, V., Müller, R. H., & Junyaprasert, V. B. (2007). Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability.International journal of pharmaceutics,340(1-2), 198-206.
[38]Foldvari, M. (2000). Non-invasive administration of drugs through the skin: challenges in delivery system design.Pharmaceutical science & technology today,3(12), 417-425.
[39]Liedtke, S., Wissing, S., Müller, R. H., & Mäder, K. (2000). Influence of high pressure homogenisation equipment on nanodispersions characteristics.International Journal of Pharmaceutics,196(2), 183-185.
[40]Sjöström, B., & Bergenståhl, B. (1992). Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate.International journal of pharmaceutics,88(1-3), 53-62.
[41]Gasco, M.R., "Method for producing solid lipid microspheres having a norrow size distribution," USA Patent 188837 (1993).
[42]Gasco, M. R. (1993).U.S. Patent No. 5,250,236. Washington, DC: U.S. Patent and Trademark Office.
[43]Hu, F. Q., Yuan, H., Zhang, H. H., & Fang, M. (2002). Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization.International journal of pharmaceutics,239(1-2), 121-128.
[44]Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., & Benoit, J. P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers.Pharmaceutical research,19(6), 875-880.
[45]Pietkiewicz, J., & Sznitowska, M. (2004). The choice of lipids and surfactants for injectable extravenous microspheres.Die Pharmazie-An International Journal of Pharmaceutical Sciences,59(4), 325-326.
[46]Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery.Advanced drug delivery reviews,56(9), 1257-1272.
[47]Gasco, M. R. (1993).U.S. Patent No. 5,250,236. Washington, DC: U.S. Patent and Trademark Office.
[48]Teeranachaideekul, V., Müller, R. H., & Junyaprasert, V. B. (2007). Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability.International journal of pharmaceutics,340(1-2), 198-206.
[49]李凱琳,以幾丁聚醣或混合幾丁聚醣及卵磷脂為乳化劑製備南瓜籽油奈米乳滴乳化液及其性質之研究,東海大學食品科學系研究所食品科技組碩士論文(2017)
[50]趙坤山,張效銘,化妝品化學,台北:五南圖書出版股份有限公司(2006)。
[51]易光輝,歐明秋,徐照程,王曉芬,化妝品化學,華杏出版股份有限公 司, p. 36–38(2013)。
[52]Barthelemy, P., Laforet, J. P., Farah, N., & Joachim, J. (1999). Compritol® 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations.European journal of pharmaceutics and biopharmaceutics,47(1), 87-90.
[53]Begoun, P. (2004).The complete beauty bible: the ultimate guide to smart beauty. Rodale.
[54]郁仁貽,”最新化粧品學:基礎篇與應用篇”,復文書局,p194-198,2000。
[55]何雅祺,野薄荷葉精油抗氧化能力及美白活性之研究,弘光科技大學化妝品科技研究所碩士論文(2015)。
[56]Al-Bayati, F. A. (2009). Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq.Annals of clinical microbiology and antimicrobials,8(1), 20.
[57]Flamini, G., Cioni, P. L., Puleio, R., Morelli, I., & Panizzi, L. (1999). Antimicrobial activity of the essential oil of Calamintha nepeta and its constituent pulegone against bacteria and fungi.Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives,13(4), 349-351.
[58]劉紅杰、金若敏,薄荷油研究進展,山東醫藥大學學報(2006)。
[59]林岑芳,兩種歐薄荷精油之抗菌、抗氧化及抗發炎活性評估,嘉南藥理科技大學化妝品科技研究所(2011)。
[60]顏雅玟,分析三種薄荷精油之成分及其抗菌、抗氧化與抗發炎活性,嘉南藥理科技大學化妝品科技研究所(2012)。
[61]Müller, R. H., Petersen, R. D., Hommoss, A., & Pardeike, J. (2007). Nanostructured lipid carriers (NLC) in cosmetic dermal products.Advanced drug delivery reviews,59(6), 522-530.
[62]Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.International journal of pharmaceutics,366(1-2), 170-184.
[63]熱高壓均質法製備過程[鄭榮寶,種油加水乳化技術應用於十場生產之可行性研究,嘉南藥理科技大學環境工程學系碩士論文(2014)。
[64]蔡琦、蘇玉燕、張乃方、王月花、梁建成、官長慶,”新化妝品學”,新 文京開發出版股份有限公司,p66(2008)。
[65]易光輝、歐明秋、徐照程、王曉芬,”化妝品化學”,華杏出版股份有限 公司,p82-104(2014)。
[66]葛思齊,瓊崖海棠油奈米乳液最適化配方開發與石蓴多醣做為穩定劑之研究,雲林科技大學化工與材料工程系碩士論文(2016)。
[67]趙承琛,界面科學基礎,復文書局(1999)。
[68]Fang, J. Y., Fang, C. L., Liu, C. H., & Su, Y. H. (2008). Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC).European Journal of Pharmaceutics and Biopharmaceutics,70(2), 633-640..
[69]刈米孝夫,界面活性劑的原理與應用,高立圖書有限公司(1993)。
[70]邱鈺華,油脂應用於乳化系統之穩定性探討,嘉南藥理大學化粧品應用與管理系化粧品科技碩士班碩士論文(2019)
[71]羅怡倩,化粧品成分辭典,聯經出版公司(2005)。
[72]Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties.Journal of Physics: condensed matter,18(41), R635.
[73]陳賢政,以藍薊油製備奈米結構脂質載體最佳參數探討,碩士論文,龍華科技大學工程技術研究所,(2011)。
[74]Barthelemy, P., Laforet, J. P., Farah, N., & Joachim, J. (1999). Compritol® 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations.European journal of pharmaceutics and biopharmaceutics,47(1), 87-90.
[75]簡伊婷,利用體外皮膚滲透實驗探討化粧品比較含Silicone配方與傳統配方對Parabens皮膚滲透性的影響,嘉南藥理科技大學化粧品科技研究所碩士論文(2010)。
[76]Hu, F. Q., Jiang, S. P., Du, Y. Z., Yuan, H., Ye, Y. Q., & Zeng, S. (2005). Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system.Colloids and Surfaces B: Biointerfaces,45(3-4), 167-173.
[77]Dingler, A., Blum, R. P., Niehus, H., Muller, R. H., & Gohla, S. (1999). Solid lipid nanoparticles (SLNTM/LipopearlsTM) a pharmaceutical and cosmetic carrier for the application of vitamin E in dermal products.Journal of microencapsulation,16(6), 751-767.
[78]蘇芳儀、石佩巧,美容概論,台科大圖書(2008)

電子全文 電子全文(網際網路公開日期:20250825)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔