[1] Puglia, C., Blasi, P., Rizza, L., Schoubben, A., Bonina, F., Rossi, C., & Ricci, M. (2008). Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm, 357(1-2), 295-304.
[2] Teichmann, A., Jacobi, U., Weigmann, H. J., Sterry, W., & Lademann, J. (2005). Reservoir function of the stratum corneum: development of an in vivo method to quantitatively determine the stratum corneum reservoir for topically applied substances. Skin pharmacol physiol, 18(2), 75-80.
[3] Gallarate, M., Carlotti, M. E., Trotta, M., & Bovo, S. (1999). On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm, 188(2), 233-241.
[4] Coimbra, M., Isacchi, B., van Bloois, L., Torano, J. S., Ket, A., Wu, X., & Bilia, R. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm, 416(2), 433-442.
[5] Flanagan, J., & Singh, H. (2006). Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr, 46(3), 221-237.
[6] Müller, R. H., Radtke, M., & Wissing, S. A. (2002a). Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm, 242(1-2), 121-128.
[7] Müller, R. H., Mehnert, W., Lucks, J. S., Schwarz, C., & Zur Mühlen, A. (1995). Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm, 41(1), 62-69.
[8] Kokardekar, R., & Mody, H. (2011). Solid lipid nanoparticles: A drug carrier system. Chron Young Sci, 2(1), 26-26.
[9] Müller, R. H., Radtke, M., & Wissing, S. A. (2002b). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Delivery Rev, 54, S131-S155.
[10] Müller, R. H., Mäder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm, 50(1), 161-177.
[11] Freitas, C., & Müller, R. H. (1999). Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur J Pharm Biopharm, 47(2), 125-132.
[12] Teeranachaideekul, V., Müller, R. H., & Junyaprasert, V. B. (2007). Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. Int J Pharm, 340(1-2), 198-206.
[13] Hu, F. Q., Jiang, S. P., Du, Y. Z., Yuan, H., Ye, Y. Q., & Zeng, S. (2006). Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm, 314(1), 83-89.
[14] Saupe, A., Wissing, S. A., Lenk, A., Schmidt, C., & Müller, R. H. (2005). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)–structural investigations on two different carrier systems. Bio-Med Mater Eng, 15(5), 393-402.
[15] 趙仕芝,董義偉,(2013)一種複合美白劑納米結構脂質載體及其製備方法,上海韓束化妝品有限公司,CN103251539A。
[16] 劉祖惠,譚中岳,陳秋玲,鄭宇婷,陳玲玉,陳怡蓁,(2015),應用生技產業年鑑2015,財團法人生物技術開發中心,第86頁。
[17] Kalia, R., (2019). Transdermal drug delivery system market by type (patches and semisolid formulations), Applications (pain management, central nervous system disorders, hormonal applications, cardiovascular diseases), End User, and Region Global Forecast to 2023, Markets and Markets Research Private Ltd,.
[18] Balázs, B., Vizserálek, G., Berkó, S., Budai-Szűcs, M., Kelemen, A., Sinkó, B., & Csányi, E. (2016). Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J Pharm Sci, 105(3), 1134-1140.
[19] Oresajo, C., Yatskayer, M., & Hansenne, I. (2008). Clinical tolerance and efficacy of capryloyl salicylic acid peel compared to a glycolic acid peel in subjects with fine lines/wrinkles and hyperpigmented skin. J Cosmet Dermat, 7(4), 259-262.
[20] 李智軒,4-正丁基間苯二酚之包埋與分析技術開發,碩士論文,龍華科技大學化工與材料工程所,桃園(2015)。[21] Thornfeldt, C. (2005). Cosmeceuticals containing herbs: fact, fiction, and future. Dermatol Surg, 31, 873-881.
[22] Phatak, A. A., & Chaudhari, P. D. (2013). Development and evaluation of nanostructured lipid carrier (NLC) based topical delivery of an anti-inflammatory drug. J Pharm Res, 7(8), 677-685.
[23] Müller, R. H., Petersen, R. D., Hommoss, A., & Pardeike, J. (2007). Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Delivery Rev, 59(6), 522-530.
[24] Begoun Paula, Cosmetic Ingredient Guidebook, Dacombook publisher, (2008).
[25] Kaijser, A., Dutta, P., & Savage, G. (2000). Oxidative stability and lipid composition of macadamia nuts grown in New Zealand. Food Chem, 71(1), 67-70.
[26] Mitri, K., Shegokar, R., Gohla, S., Anselmi, C., & Müller, R. H. (2011). Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm, 414(1-2), 267-275.
[27] 陳賢政,以藍薊油製備奈米結構脂質載體最佳參數探討,碩士論文,龍華科技大學工程技術研究所,桃園 (2011)。[28] Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids Surf A, 315(1-3), 210-216.
[29] Lin, X., Li, X., Zheng, L., Yu, L., Zhang, Q., & Liu, W. (2007). Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids Surf A, 311(1-3), 106-111.
[30] Fang, J. Y., Fang, C. L., Liu, C. H., & Su, Y. H. (2008). Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm, 70(2), 633-640.
[31] Xia, Q., Saupe, A., Müller, R. H., & Souto, E. B. (2007). Nanostructured lipid carriers as novel carrier for sunscreen formulations. Int J Cosmet Sci, 29(6), 473-482.
[32] Bangham, A. D. (1993). Liposomes: the Babraham connection. Chem Phys Lipids, 64(1-3), 275-285.
[33] Souto, E. B., Wissing, S. A., Barbosa, C. M., & Müller, R. H. (2004). Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm, 58(1), 83-90.
[34] Hatziantoniou, S., Deli, G., Nikas, Y., Demetzos, C., & Papaioannou, G. T. (2007). Scanning electron microscopy study on nanoemulsions and solid lipid nanoparticles containing high amounts of ceramides. Micron, 38(8), 819-823.
[35] Radtke, M., & Müller, R. H. (2001). Nanostructured lipid drug carriers. New Drugs, 2, 48-52.
[36] Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Sci Emerging Technol, 19, 29-43.
[37] Liedtke, S., Wissing, S., Müller, R. H., & Mäder, K. (2000). Influence of high pressure homogenisation equipment on nanodispersions characteristics. Int J Pharm, 196(2), 183-185.
[38] Üner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed, 2(3), 289.
[39] Chen, P. C., Huang, J. W., & Pang, J. (2013). An investigation of optimum NLC-sunscreen formulation using taguchi analysis. J Nanomater, 9, 1-10.
[40] Sjöström, B., & Bergenståhl, B. (1992). Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm, 88(1-3), 53-62.
[41] Gasco, M. R. (1993). U.S. Patent No. 5,250,236. Washington, DC: U.S. Patent and Trademark Office.
[42] Hildebrand, G. E., & Tack, J. W. (2000). Microencapsulation of peptides and proteins. Int J Pharm, 196(2), 173-176.
[43] Hu, F. Q., Yuan, H., Zhang, H. H., & Fang, M. (2002). Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int J Pharm, 239(1-2), 121-128.
[44] Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., & Benoit, J. P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res, 19(6), 875-880.
[45] Pietkiewicz, J., & Sznitowska, M. (2004). The choice of lipids and surfactants for injectable extravenous microspheres. Die Pharmazie-An Int J Pharm Sci, 59(4), 325-326.
[46] Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Adv Drug delivery Rev, 56(9), 1257-1272.
[47] Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm, 366(1-2), 170-184.
[48] Misran, M. B., Tiew, S. X., & Woo, J. O. (2016). U.S. Patent Application No. 14/952,291.
[49] Blanco, A. R., Bondi, M. L., & Cavallaro, G. (2017). U.S. Patent Application No. 15/517,018.
[50] Faivre, V., Lesieur, S., Ollivon, M., Ouattara, M., & CONG, T. T. (2017). U.S. Patent No. 9,757,337. Washington, DC: U.S. Patent and Trademark Office.
[51] Chen, L. (2017). U.S. Patent No. 9,820,996. Washington, DC: U.S. Patent and Trademark Office.
[52] Tonge, S., & Harper, A. (2017). U.S. Patent Application No. 15/642,780.
[53] Harandi, O., & Kahvejian, A. (2019) U.S. Patent Application No. 2019-0062788A1.
[54] Prestidge, C. A., & Joyce, P. M. (2019). U.S. Patent No. 10,463,626. Washington, DC: U.S. Patent and Trademark Office.
[55] Duhalt, R. V., & Sanchez, L. P. S. (2019). U.S. Patent No. 10,480,012. Washington, DC: U.S. Patent and Trademark Office.
[56] Horstmann, M., Sameti, M., & Jung, T. (2019). U.S. Patent No. 10,292,942. Washington, DC: U.S. Patent and Trademark Office.
[57] 趙坤山,張效銘,(2006),化妝品化學,台北,五南圖書出版股份有限公司,第97-100頁。
[58] Gokce, E. H., Korkmaz, E., Dellera, E., Sandri, G., Bonferoni, M. C., & Ozer, O. (2012). Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomed, 7, 1841.
[59] Fathi, M., Varshosaz, J., Mohebbi, M., & Shahidi, F. (2013). Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: preparation, characterization, and modeling. Food Bioprocess Technol, 6(6), 1464-1475.
[60] Barthelemy, P., Laforet, J. P., Farah, N., & Joachim, J. (1999). Compritol® 888 ATO: an innovative hot-melt coating agent for prolonged-release drug formulations. Eur J Pharm Biopharmaceutics, 47(1), 87-90.
[61] 徐照程,鐘薇萱,(2013),經奈米脂質載體包覆之防曬劑及其應用,綠祚國際有限公司,TW201321019。
[62] Schwarz, J. C., Baisaeng, N., Hoppel, M., Löw, M., Keck, C. M., & Valenta, C. (2013). Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm, 447(1-2), 213-217.
[63] Mendes, A. I., Silva, A. C., Catita, J. A. M., Cerqueira, F., Gabriel, C., & Lopes, C. M. (2013). Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity. Colloids Surf B, 111, 755-763.
[64] Czajkowska-Kośnik, A., Sznitowska, M., & Mirkowska, K. (2012). Self-emulsifying oils for ocular drug delivery. II. In vitro release of indomethacin and hydrocortisone. Acta Pol Pharm, 69(2), 309.
[65] Kolbe, L., Mann, T., Gerwat, W., Batzer, J., Ahlheit, S., Scherner, C., & Stäb, F. (2013). 4‐n‐butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J Eur Acad Dermatol Venereol, 27, 19-23.
[66] Vielhaber, G., Schmaus, G., Jacobs, K., Franke, H., Lange, S., Herrmann, M., & Koch, O. (2007). 4‐(1‐Phenylethyl) 1, 3‐benzenediol: a new, highly efficient lightening agent. Int J Cosmet Sci, 29(1), 65-66.
[67] Kim, B. S., Na, Y. G., Choi, J. H., Kim, I., Lee, E., Kim, S. Y., & Cho, C. W. (2017). The improvement of skin whitening of phenylethyl resorcinol by nanostructured lipid carriers. Nanomater, 7(9), 241.
[68] Jayaprakasha, G. K., Rao, L. J., & Sakariah, K. K. (2006). Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food chem, 98(4), 720-724.
[69] Strimpakos, A. S., & Sharma, R. A. (2008). Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signaling, 10(3), 511-546.
[70] 孫啟棣,羥基苯酮及薑黃素脂質奈米載體特性分析,碩士論文,臺北醫學大學醫學科學研究所,臺北 (2009)。[71] Tao, W., Duan, J., Zhao, R., Li, X., Yan, H., Li, J., & Tang, Y. (2013). Comparison of three officinal Chinese pharmacopoeia species of Glycyrrhiza based on separation and quantification of triterpene saponins and chemometrics analysis. Food chem, 141(3), 1681-1689.
[72] Shabkhiz, M. A., Eikani, M. H., Sadr, Z. B., & Golmohammad, F. (2016). Superheated water extraction of glycyrrhizic acid from licorice root. Food Chem, 210, 396-401.
[73] Kitagawa, I. (2002). Licorice root. A natural sweetener and an important ingredient in Chinese medicine. Pure Appl Chem, 74(7), 1189-1198.
[74] Mukhopadhyay, M., & Panja, P. (2008). A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Sep Purif Technol, 63(3), 539-545.
[75] Liu, H. M., Sugimoto, N., Akiyama, T., & Maitani, T. (2000). Constituents and their sweetness of food additive enzymatically modified licorice extract. J Agric Food Chem, 48(12), 6044-6047.
[76] Chin, Y. W., Jung, H. A., Liu, Y., Su, B. N., Castoro, J. A., Keller, W. J., & Kinghorn, A. D. (2007). Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J Agric Food Chem, 55(12), 4691-4697.
[77] Cherng, J. M., Lin, H. J., Hung, M. S., Lin, Y. R., Chan, M. H., & Lin, J. C. (2006). Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur J Pharm, 547(1-3), 10-21.
[78] Li, X. H., Qi, Y., Cai, R. L., Liu, B., Song, Y., & Xie, C. (2010). Studies on the anti-inflammatory mechanism of total saponins of radix Glycyrrhiza in vitro. Chin J Exp Tradit Med Formulae, 5, 039.
[79] Li, P. (2010). Oleanane-type triterpene glucuronides from the roots of Glycyrrhiza uralensis Fischer. Planta Med, 76, 1457-1463 (2010).
[80] Ashfaq, U. A., Masoud, M. S., Nawaz, Z., & Riazuddin, S. (2011). Glycyrrhizin as antiviral agent against Hepatitis C Virus. J Transl Med, 9(1), 1-7.
[81] Gao, X., Zheng, Q., Sun, J., Wang, W., & Yang, X. (2011). Preparation of total licorice saponin and research on its hepatoprotective effect. Pharmacol Clin Chin Mater Med, 27, 79-81.
[82] 郁仁貽,(2000),最新化妝品學,復文書局。
[83] 羅怡倩,(2010),化妝品成分辭典,聯經出版事業股份有限公司。
[84] Garrand, V. A. (1985). Antimicrobial properties of a cocoamidopropyl betaine. Cosmet Toiletries, 100(2), 77-80.
[85] Egbaria, K., & Weiner, N. (1990). Liposomes as a topical drug delivery system. Adv Drug Delivery Rev, 5(3), 287-300.
[86] Otera, J. (2004). Toward ideal (trans) esterification by use of fluorous distannoxane catalysts. Acc Chem Res, 37(5), 288-296.
[87] Fiume, Z. (2001). Final report on the safety assessment of lecithin and hydrogenated lecithin. Int. J. Toxicol, 20(1), 21-45.
[88] Kydonieus, A. F., Wille, J. J., & Murphy, G. F. (2000). Fundamental concepts in transdermal delivery of drugs. Biochem Modulation Skin React. Transdermals, Topicals, Cosmetics. Boca Raton: CRC Press, Inc.
[89] 簡敏宸,以奈米結構脂質載體包覆活性物質之製備與分析研究,碩士論文,龍華科技大學,工程技術研究所,桃園 (2013)。[90] Kim, M. S., Jeong, Y. Y., Park, S. G., & Kang, N. G. (2020). Age-dependent facial subcutaneous fat thickness by high-frequency medical diagnostic ultrasound system. Skin Res Technol, 26, 1-3 (2020).
[91] 許世昌,(1991),解剖生理學初版,永大出版社,台北。
[92] Grégoire, S., Luengo, G. S., Hallegot, P., Pena, A. M., Chen, X., Bornschlögl, T., & Jeong, S. (2019). Imaging and quantifying drug delivery in skin–Part 1: Autoradiography and mass spectrometry imaging. Adv Drug Delivery Rev, 185, 162-193 (2019).
[93] Nasr, S., Rady, M., Gomaa, I., Syrovets, T., Simmet, T., Fayad, W., & Abdel-Kader, M. (2019). Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy. Int J Pharm, 568, 118528.
[94] Al Hanbali, O. A., Khan, H. M. S., Sarfraz, M., Arafat, M., Ijaz, S., & Hameed, A. (2019). Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm, 69(2), 197-215.
[95] Planz, V., Lehr, C. M., & Windbergs, M. (2016). In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J Controlled Release, 242, 89-104.
[96] Shahzad, Y., Louw, R., Gerber, M., & Du Plessis, J. (2015). Breaching the skin barrier through temperature modulations. J Controlled Release, 202, 1-13.
[97] Abd, E., Yousef, S. A., Pastore, M. N., Telaprolu, K., Mohammed, Y. H., Namjoshi, S., & Roberts, M. S. (2016). Skin models for the testing of transdermal drugs. Clin Pharmacol: Adv Appl, 8, 163.
[98] Raza, R., Mittal, A., Kumar, P., Alam, S., Prakash, S., & Chauhan, N. (2015). Approaches and evaluation of transdermal drug delivery system. Int J Drug Dev Res, 7(1), 222-233.
[99] 呂冠蓁,利用超臨界二氧化碳快速膨脹法製備奈米氧化物之研究,碩士論文,龍華科技大學,工程技術研究所,桃園 (2010)。[100] 李輝煌,(2004),田口方法品質設計的原理與實務,國立成功大學工程科學系。
[101] 小西省三,(1991),田口式品質工程講座3品質評價SN比,中國生產力中心。
[102] Galazka, V. B., Dickinson, E., & Ledward, D. A. (2000). Influence of high pressure processing on protein solutions and emulsions. Curr Opin Colloid Interface Sci, 5(3-4), 182-187.
[103] Chuang, S. Y., Lin, Y. K., Lin, C. F., Wang, P. W., Chen, E. L., & Fang, J. Y. (2017). Elucidating the skin delivery of aglycone and glycoside flavonoids: How the structures affect cutaneous absorption. Nutr, 9(12), 1304.
[104] Kim, B. S., Na, Y. G., Choi, J. H., Kim, I., Lee, E., Kim, S. Y., & Cho, C. W. (2017). The improvement of skin whitening of phenylethyl resorcinol by nanostructured lipid carriers. Nanomater, 7(9), 241-253.
[105] Sui, W., Zhou, M., Xu, Y., Wang, G., Zhao, H., & Lv, X. (2020). Hydrothermal deglycosylation and deconstruction effect of steam explosion: Application to high-valued glycyrrhizic acid derivatives from liquorice. Food Chem, 307, 125558.
[106] Peng, S., Zhou, L., Cai, Q., Zou, L., Liu, C., Liu, W., & McClements, D. J. (2020). Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids, 105963.
[107] Shen, C. H., & Springer, G. S. (1976). Moisture absorption and desorption of composite materials. J Compos Mater, 10(1), 2-20.
[108] Beringhier, M., Djato, A., Maida, D., & Gigliotti, M. (2018). A novel protocol for rapid identification of anisotropic diffusion properties of polymer matrix composite materials with complex texture. Compos Struct, 201, 1088-1096.
[109] Nadler, K. A., Kim, P., Huang, D. L., Xiong, W., & Continetti, R. E. (2019). Water diffusion measurements of single charged aerosols using H 2 O/D 2 O isotope exchange and Raman spectroscopy in an electrodynamic balance. Phys Chem Chem Phys, 21(27), 15062-15071.
[110] Kim, M. S., Jeong, Y. Y., Park, S. G., & Kang, N. G. (2020). Age-dependent facial subcutaneous fat thickness by high-frequency medical diagnostic ultrasound system. Skin Res Technol, 26, 1-3.
[111] Sakalauskienė, K., Valiukevičienė, S., Raišutis, R., & Linkevičiūtė, G. (2018). The significance of spectrophotometric image analysis for diagnosis of the melanocytic skin tumours in association with their thickness. Skin Res Technol, 24(4), 692-698.