(3.237.97.64) 您好!臺灣時間:2021/03/04 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖英廷
研究生(外文):LIAO, YING-TING
論文名稱:毫米波頻帶介電特性之量測技術開發與無源天線溫度感測器應用
論文名稱(外文):Development of Measurement for Millimeter Wave Dielectric Properties and Passive Antenna Temperature Sensor Application
指導教授:陳逸謙陳逸謙引用關係
指導教授(外文):CHEN, YIH-CHIEN
口試委員:黃正亮尤正祺施權峰許正興陳逸謙
口試委員(外文):HUANG, CHENG-LIANGYU, CHENG-CHISHIH, CHUAN-FENGHSU, CHENG-HSINGCHEN, YIH-CHIEN
口試日期:2020-07-10
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:128
中文關鍵詞:毫米波基板電氣特性量測無源天線溫度感測器
外文關鍵詞:Millimeter Wave SubstrateElectrical Characteristics MeasurementPowerless Temperature Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究內容分為三個部分,第一部分,基於雷射雕刻製程,對RO3003基板以及Mg2SnO4基板獲得其最佳製程參數。RO3003基板之最佳製程參數,重複次數為3 次,功率為2.0 W。Mg2SnO4基板之最佳製程參數,重複次數為4 次,功率為3.2 W。第二部分,透過平面式共平面波導饋入微帶線的設計與實現,分別萃取RO3003基板以及Mg2SnO4基板之電氣特性參數。RO3003基板於30 GHz時,有效介電常數為2.44;介電常數為2.87;損失因數為1.67 × 10-2。Mg2SnO4基板於29.5 GHz時,有效介電常數為3.06;介電常數為3.97;損失因數為5.42 × 10-2。第三部分,將RO3003基板以及Mg2SnO4基板,分別做為收發天線與感測天線,以實現無源天線溫度感測器。無源天線溫度感測器以正交極化之方式量測感測天線之反射訊號,靈敏度為-1.210 MHz/℃;線性度為0.06 %;最大工作溫度為225 ℃。
In this thesis, the researches are divided into three parts. In the first part, based laser ablation determine the best process parameters on RO3003 substrate and Mg2SnO4 ceramic substrate. The repetition 3 times and 2.0 W power is the best process parameters for RO3003 substrate. The repetition 4 times and 3.2 W power is the best process parameters for Mg2SnO4 ceramic substrate. In the second part, obtain the millimeter wave dielectric properties of RO3003 substrate and Mg2SnO4 ceramic substrate, by microstrip line of coplanar waveguide feeding. When the frequency is 30 GHz, the effective dielectric constant , dielectric constant and loss factor of the RO3003 substrate are 2.44, 2.87 and 1.67 × 10-2, respectively. When the frequency is 29.5 GHz, the effective dielectric constant , dielectric constant and loss factor of the Mg2SnO4 ceramic substrate are3.06, 3.97 and 5.42 × 10-2, respectively. In the third part, manufacture antenna transceiver and antenna sensor with RO3003 substrate and Mg2SnO4 ceramic substrate. The antenna transceiver uses orthogonal polarization technology to measure the backscattered signal of the antenna sensor. The results are measured at the 25 ℃ to 225 ℃. The sensitivity and linearity are -1.210 MHz/℃, 0.06 %, respectively.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
第二章 原理 6
2.1 介電原理 6
2.1.1 微波介電特性 6
2.1.1.1 介電常數(Dielectric Constant : εr) 6
2.1.1.2 品質因數(Quality Factor : Q) 7
2.1.1.3 諧振頻率溫度係數(Temperature Coefficient of Resonate Frequency:τf) 10
2.1.2 介電原理 12
2.2 平面式傳輸線原理 15
2.2.1 平面式共平面波導饋入結構 15
2.2.2 微帶線原理 16
2.2.2.1 微帶線原理及結構 16
2.2.2.2 微帶線傳播模態 17
2.2.3 微帶線公式分析及考量 18
2.2.3.1 有效介電常數及特性阻抗 18
2.2.3.2 微帶線公式分析 18
2.2.3.3 微帶線各項參數 20
2.2.3.4 微帶線的損失 21
2.3 天線原理 22
2.3.1 天線功能與參數 22
2.3.1.1 輸入阻抗(Input Impedance) 23
2.3.1.2 諧振頻率(Resonant Frequency) 24
2.3.1.3 頻寬(Bandwidth) 25
2.3.1.4 輻射場型(Radiation Pattern) 25
2.3.1.5 極化(Polarization) 28
2.3.1.6 輻射效率(Radiation Efficiency) 31
2.3.1.7 指向性(Directional) 31
2.3.1.8 增益(Gain) 33
2.3.2 微帶天線原理 33
2.3.2.1 微帶天線概述 33
2.3.2.2 空腔模型理論 34
2.3.2.3 微帶平面天線結構 36
2.3.2.4 微帶平面天線設計方式 37
第三章 實驗方法 42
3.1 陶瓷基板的製備步驟 42
3.1.1 粉末的配置與球磨 42
3.1.2 粉末的煆燒與二次球磨 42
3.1.3 加入黏著劑、過篩及壓模 43
3.1.4 去除黏著劑與燒結 43
3.1.5 研磨、拋光與銀膠塗佈 44
3.2 毫米波線路之結構化 45
3.2.1 雷射雕刻燒蝕製程 45
3.2.2 切片分析 49
3.3 平面式共平面波導饋入微帶線設計及量測 50
3.4 基板電氣特性參數萃取 53
3.4.1 有效介電常數萃取 54
3.4.2 損失因數萃取 54
3.5 無源天線溫度感測器的量測 56
第四章 結果與討論 59
4.1 雷射雕刻製程參數最佳化 59
4.1.1 RO3003基板 59
4.1.2 Mg2SnO4基板 65
4.2 平面式共平面波導饋入微帶線 70
4.2.1 平面式共平面波導饋入微帶線設計於RO3003基板 70
4.2.1.1 模擬及量測結果 74
4.2.1.2 基板電氣特性參數萃取結果 76
4.2.2 平面式共平面波導饋入微帶線設計於Mg2SnO4基板 84
4.2.2.1 模擬及量測結果 88
4.2.2.2 基板電氣特性參數萃取結果 90
4.3 無源天線溫度感測器 99
4.3.1 感測天線設計於Mg2SnO4基板 99
4.3.1.1 感測天線雛形設計及模擬結果 99
4.3.1.2 平面式共平面波導饋入感測天線雛形設計及模擬與量測結果 103
4.3.1.3 感測天線結構設計及模擬結果 106
4.3.2 收發天線設計於RO3003基板 110
4.3.2.1 模擬與量測結果 112
4.3.3 無源天線溫度感測器 116
4.3.3.1 無源天線溫度感測器設計模擬及量測結果 116
第五章 結論 120
參考文獻 122
[1]張嘉諳,藍柏荏,林彥均,羅亭竣,呂承鴻,劉人豪,陳斌魁,智慧電網及推動再生能源面臨的挑戰,臺灣能源期刊,第一卷,第二期,第259-281頁 (2014)。
[2]Nguessan, K., Jouseau, E., Rostaing, G., Francois, F., "A New Approach for Local Detection of Failures and Global Diagnosis of LV Switchboards," IEEE International Conference on Industrial Technology, Mumbai, December (2006).
[3]Childs, P. R. N., Greenwood, J. R., Long, C. A., "Review of Temperature Measurement," Review of Scientific Instruments, 71, 8, 2959-2978 (2000).
[4]Lee, B., "Review of the Present Status of Optical Fiber Sensors," Optical Fiber Technology, 9, 2, 57-79 (2003).
[5]Sanders, J. W., Yao, J., Huang, H., "Microstrip Patch Antenna Temperature Sensor," IEEE Sensors Journal, 15, 9, 5312-5319 (2015).
[6]Mandel, C., Kubina, B., Schüßler, M., Jakoby, R., "Metamaterialinspired Passive Chipless Radio-Frequency Identification and Wireless Sensing," in Annals of Telecommunications, 68, 7-8, 385-399 (2013).
[7]Kubina, B., Mandel, C., Schüßler, M., Sazegar, M., Jakoby, R., "A Wireless Chipless Temperature Sensor utilizing an Orthogonal Polarized Backscatter Scheme," in Proceedings of the 42nd European Microwave Conference, 61-64 (2012).
[8]Melik, R., Unal, E., Perkgoz, N. K., Santoni, B., Kamstock, D., Puttlitz, C., Demir, H. V., "Nested Metamaterials for Wireless Strain Sensing," IEEE Journal of Selected Topics in Quantum Electronics, 16, 2, 450-458 (2010).
[9]Thai, T. T., Aubert, H., Pons, P., Plana, R., Tentzeris, M. M., DeJean, G. R., "A Newly Developed Radio Frequency Wireless Passive Highly Sensitive Strain Transducer," in IEEE Sensors Conference, 211–214 (2011).
[10]Hoffmann, K. H., Functional Micro and Nano Systems, Springer (2003).
[11]Greve, D. W., Chin, T. L., Zheng, P., Ohodnicki, P., Baltrus, J., Oppenheim, I. J., "Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing," Research Gate, 13, 6910-6935 (2013).
[12]Ye, X., Wang, Q., Fang, L., Wang, X., Liang, B., "Comparative Study of SAW Temperature Sensor Based on Different Piezoelectric Materials and Crystal Cuts for Passive Wireless Measurement," IEEE Sensors 2010 Conference, 585-588 (2010).
[13]Scott, S., Peroulis, D., "A Capacitively-Loaded MEMS Slot Element for Wireless Temperature Sensing of up to 300 oC," IEEE MTT-S International Microwave Symposium Digest, 1161-1164(2009).
[14]Boccard, J. M., Aftab, T., Hoppe, J., Yousaf, A., Hutter, R., Reindl, L. M., "High-Resolution, Far-Field, and Passive Temperature Sensing Up to 700 oC Using an Isolated ZST Microwave Dielectric Resonator," IEEE Sensors Journal, 16, 3, 715-722 (2016).
[15]Yao, J., Tchafa, F. M., Jain, A., Tjuatja, S., Member, S., Huang, H., "Far-Field Interrogation of Microstrip Patch Antenna for Temperature Sensing Without Electronics," IEEE Sensors Journal, 16, 19, 7053-7060 (2016).
[16]杜岳軒,高品質因數毫米波陶瓷介電特性之研究與應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2019)。
[17]Shih, C. G., Li, W. M., Lin, M. M., Hsiao, C. Y., Hung, K. T., "Low-Temperature Sintered Zn2TiO4:TiO2 with Near-Zero Temperature Coefficient of Resonant Frequency at Microwave Frequency," Journal of Alloys and Compounds, 485, 1, 408-412 (2009).
[18]Chen, Y. C., Su, C. F., Weng, M. Z., You, H. M., Chang, K. C., "Improvement Microwave Dielectric Properties of Zn2SnO4 Ceramics by Substituting Sn4+ with Si4+," Journal of Materials Science, 25, 5, 2120-2125 (2014).
[19]Chen, Y. C., Wang, Y. N., Hsu, C. H., "Elucidating the Dielectric Properties of Mg2SnO4 Ceramics at Microwave Frequency," Journal of Alloys and Compounds, 509, 40, 9650-9653 (2011).
[20]Chen, Y. C., Li, C. H., "Improving Quality Factor of Mg2SnO4 Ceramics by Removing Moisture Content from Starting Raw Materials," Ceramics International, 42, 8, 9749-9751 (2016).
[21]Agilent Application Note, "Basics of Measuring the Dielectric Properties of Materials," Agilent Technologies.
[22]Chang, S. H., Kuan, H., Wu, H. W., Yang, R. Y., Weng, M. H., "Determination of Microwave Dielectric Constant by Two Microstrip Line Method Combined with EM Simulation," Microwave and Optical Technology Letters, 48, 11,2199-2201, (2006).
[23]Das, N. K., Voda, S. M., Pozar, D. M., "Two Methods for the Measurement of Substrate Dielectric Constant," IEEE Transactions on Microwave Theory and Techniques, 35, 636-642, (2009).
[24]Bosman, A. J., Havinga, E. E., "Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds," Physical Review Letter, 129, 4, 1593-1600 (1963).
[25]Shannon, R. D., "Dielectric Polarizabilities of Ions in Oxides and Fluorides," Journal of Applied Physics, 73, 1, 348-366 (1993).
[26]李偉晟,La(Mg0.5Sn0.5)O3陶瓷微波介電特性之改善極高K值天線之應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2012)。
[27]郭仁財譯,微波工程,台北:高立圖書館有限公司 (2001)。
[28]Huppmann, W. J., Petzow, G., "The Elementary Mechanisms of Liquid Sintering," Sintering Processes. Materials Science Research, New York, 189-201 (1980).
[29]Kingery, W. D., "Densification During Sintering in The Presence of A Liquid Phase," Journal of Applied Physics, 30, 3, 301-306 (1959).
[30]邱碧秀,電子陶瓷材料,台北:徐氏基金會 (1997)。
[31]魏炯權,電子材料工程,台北:全華圖書公司 (2005)。
[32]Kingery, W. D., Bowen, H. K., Uhlmann, D. R., Introduction to Ceramics, 2nd Ed., New York: John Wiley & Sons (1976).
[33]Firooz, A. A., Mahjoub, A. R., Khodadadi, A. A., Movahedi, M., "High Photocatalytic Activity of Zn2SnO4 Among Various Nanostructures of Zn2xSn1-xO2 Repared by a Hydrothermal Method," Chemical Engineering Journal, 165, 2, 735-739 (2010).
[34]Zhu, X. J., Geng, L. M., Zhang, F. Q., Liu, Y. X., Cheng, L. B., "Synthesis and Performance of Zn2SnO4 as Anode Materials for Lithium Ion Batteries by Hydrothermal Method," Journal of Power Sources, 189, 1,828-831 (2009).
[35]Liu, M., Yang, J., Feng, S., Zhu, H., Zhang, J., Li, G., Peng, J., "Composite Photoanodes of Zn2SnO4 Nanoparticles Modified SnO2 Hierarchical Microspheres for Dye-Sensitized Solar Cells," Materials Letters, 76, 215-218 (2012).
[36]Chen, Y. C., Weng, M. Z., Du, Y. X., Hsiao, C. L., "Microwave Dielectric Properties of Nd(Ti0.5-xZrx)W0.5O4 Ceramics for Application in Antenna Temperature Sensor," Journal of Materials Science: Materials in Electronics, 29, 6,4714-4723 (2018).
[37]Tharsika, T., Haseeb, A. S. M. A., Akbar, S. A., Sabri, M. F. M., Wong, Y. H., "Gas Sensing Properties of Zinc Stannate (Zn2SnO4) Nanowires Prepared by Carbon Assisted Thermal Evaporation Process," Journal of Alloys and Compounds, 618, 455-462 (2015).
[38]Moon, W. J., Yu, J. H., Choi, G. M., "Selective CO Gas Detection of SnO2-Zn2SnO4 Composite Gas Sensor," Sensors and Actuators B: Chemical, 80, 1, 21-27 (2001).
[39]Jiang, Y. Q., Chen, X. X., Sun, R., Xiong, Z., Zheng, L. S., "Hydrothermal Syntheses and Gas Sensing Properties of Cubic and Quasi-Cubic Zn2SnO4," Materials Chemistry and Physics, 129, 1-2, 53-61 (2011).
[40]Chen, Y. C., Shen, Y. R., Hsiao, C. L., "A Carbon Monoxide Interdigitated-Capacitor Gas Sensor Based upon a n-type Zn2SnO4 Thin Film," Journal of Materials Science: Materials in Electronics, 29, 2, 1658-1663 (2018).
[41]Dunsmore, J. P., Handbook of Microwave Component Measurements with Advanced VNA Techniques, John Wiley & Sons, Inc, (2012).
[42]Kajfez, D., "Computed Modal Field Distribution for Isolated Dielectric Resonators," Microwave Symposium Digest, 32, 12, 1609-1616 (1984).
[43]Kajfez, D., Guillon, P., Dielectric Resonators, New York: Artech House (1989).
[44]白光弘,天線原理及應用,台北:明文出版社 (1992)。
[45]Warren, L. S., Gary, A. T., Antenna Theory and Design, New York: John Wiley & Sons (1998).
[46]Constantine, A. B., Antenna Theory, New York: John Wiley & Sons (2005).
[47]Gupta, K. C., Garg, R., Bahl, I., Bhartis, E., Microstrip Lines and Slotlines, 2nd Ed., Artech House, Boston (1996).
[48]Hammerstard, E. O., Proceedings of the European Microwave Conference, 268-272 (1975).
[49]Pucel, R. A., Masse, D. J., Hartwin, C. E., "Losses in Microstrip," IEEE Trans., MIT-16, June, 342-350 (1968).
[50]Gupta, K. C., Abouzahra, M. D., Analysis and Design of Planar Microwave Components, ISBN 0-7803-0437-3, Chap. 11 (1994).
[51]Deschamps, G. A., Microstrip Microwave Antennas, presented at the 3rd. USAF Symp. on Antennas (1953).
[52]Derneryd, A., "A Theoretical Investigation of the Rectangular Microstrip Antenna Element," IEEE Trans. Antennas Propagat., 26, 4, 532-535 (1978).
[53]Jung, D., Woo, Y., Ha, C., "Modified Inset Fed Microstrip Patch Antenna," APMC., 3, 346-1349 (2011).
[54]何英吉,射頻接收電路設計與無線功率傳輸之智慧生活應用,碩士論文,龍華科技大學電機工程系碩士班,桃園 (2014)。
[55]Carver, K., Mink, J., "Microstrip Antenna Technology," IEEE Trans. Antennas Propagat., 29, 1, 2-24 (1981).
[56]Driggers, R. G., "Encyclopedia of Optical Engineering," Marcel Dekker, (2003).
[57]Hamad, A. H., "Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution," High Energy and Short Pulse Lasers, 305-325 (2016).
電子全文 電子全文(網際網路公開日期:20250812)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔