跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俞安
研究生(外文):LING,YU-AN
論文名稱:基金風格飄移與基金績效之關係:以台灣股票型基金為例
論文名稱(外文):The relationship between fund style drift and the performance of Taiwan Equity fund
指導教授:楊重任楊重任引用關係
指導教授(外文):YANG, CHING-JEN
口試委員:田峻吉蔡英哲
口試委員(外文):TIEN, JYUN-JITSAI, YING-CHE
口試日期:2020-06-24
學位類別:碩士
校院名稱:銘傳大學
系所名稱:財務金融學系碩士班
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:風格分析Carhart四因子模型風格飄移分數基金績效CART演算法
外文關鍵詞:style analysisCarhart four-factor modelstyle drift scorefund performanceCART algorithm
相關次數:
  • 被引用被引用:2
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
儘管大量文獻已經確定了基金流量對基金績效的敏感性,但是卻較少人考慮到基金風格是否會在時間的推移之下,產生風格飄移的現象,進而造成基金績效或是基金風險的改變。
本研究除了探討基金是否會產生風格飄移之現象,也將進一步討論風格飄移現象與基金績效之間的關係,使投資人能達到更高的投資效率。本研究以 Sharpe(1992)提出的以報酬為基礎的風格分析
(Return-Based style Analysis;簡稱 RBSA)方法結合 Carhart(1997)提出的四因子模型對國內股票型基金進行基金風格分析,並使用Idzorek&Bretsh(2004)的風格飄移分數(SDS),探討在時間的推移之下,基金風格是否會產生飄移的現象,並以 OLS 迴歸分析風格飄移現象與基金績效、基金風險之關係,最後以 CART 演算法,建構出最有效率的二元分類之決策樹模型。
本研究以台灣 211 檔股票型基金檢驗基金風格飄移的現象,研究結果發現,基金風格飄移現象普遍存在於各種基金當中。其風格飄移程度會影響當期基金績效,兩者呈現反向關係;與當期基金風險則較無明確關係;本研究也發現風格飄移程度會影響後一期的基金績效及後一期的基金風險,兩者之間的關係於本研究中使用的兩個方法中呈現不一樣的結果,另外,本文也發現不同屬性的基金也會產生不同程度的風格飄移現象。
Although a large amount of literature has determined the sensitivity of fund flow to fund performance, few people consider whether the style of the fund will drift over time, resulting in changes in fund performance or fund risk.
In addition to discussing whether the fund will generate style drift, this study will further discuss the relationship between style drift and fund performance, so that investors can achieve higher investment efficiency. This study uses the return-based style analysis (RBSA) method proposed by Sharpe (1992) and the four-factor model proposed by Carhart (1997) to analyze the fund style of domestic stock funds and use Idzorek & Bretsh's (2004) Style Drift Score (SDS) discusses whether the style of the fund will drift under time. Using OLS regression to analyze the relationship between style drift phenomenon, fund performance and fund risk, and finally using CART algorithm to
construct the most efficient binary classification decision tree model.
This study uses Taiwan’s 211 mutual funds to examine the phenomenon of fund style drift. The results of the study found that the phenomenon of fund style drift is common among various funds. The degree of style drift will affect the performance of the fund in the current period, and the two show an inverse relationship; and there is less clear relationship with the fund risk in the current period. This study also found that the degree of style drift will affect the performance of the fund in the latter period and the risk of the fund in the latter period. The relationship between the two shows different results in the two methods used in this study. In addition, this article also found funds with different attributes will also cause different degrees of style drift.
中文摘要 .............................................. III
Abstract ................................................ IV
表目錄 ............................................... VIII
圖目錄 ................................................ IIX
第壹章 緒論 ............................................. 1
第一節 研究背景與動機 ................................ 1
第二節 研究目的 ...................................... 1
第三節 研究架構與流程 ................................ 2
第貳章 文獻探討 ......................................... 4
第一節 風格投資(style investment) ........................ 4
(一) 投資組合特徵值(Portfolio characteristic) ....................... 4
(二) 歷史報酬(Return-based) ................................................. 5
第二節 多因子模型 .................................... 7
(一) 規模效應 .......................................................................... 9
(二) 淨值市價比效應 ............................................................ 11
(三) 動能效應 ........................................................................ 12
第三節 風格飄移(style drift) ............................ 14
第四節 CART 演算法 ................................. 15
第三章 研究方法 ........................................ 18
第一節 樣本與資料來源 ............................... 18
第二節 變數定義 ..................................... 18
第三節 實證模型 ..................................... 20
一、 基金風格計算 ................................ 20
二、 風格飄移分數(SDS)計算 ...................... 21
三、 基金績效與風格飄移(SDS)..................... 21
四、 基金風險(標準差)與風格飄移分數(SDS) ......... 22
第四節 實證流程 ..................................... 23
第四章 實證結果與分析 ................................... 24
第一節 敘述性統計分析 ............................... 24
第二節 普通最小平方法(OLS)迴歸模型結果 ............. 26
第三節 Cart 演算法分析 ............................... 30
第五章 結論 ............................................ 24
附錄一 ................................................. 41
參考文獻 ............................................... 48
一、 中文部分 ....................................... 48
二、 英文部分 ....................................... 48
參考文獻
一、中文部分
1. 邱顯比與林清珮,1999,共同基金分類與基金績效持續性之研究,財務金融學刊,7 卷 2 期:63-88。
2. 陳安琳、洪嘉苓與李文智,2001,共同基金經理團隊屬性與基金績效之研究,證券市場發展季刊,13 卷 3 期:1-27。
3. 洪榮華、雷雅淇(2002)。公司規模、股價、益本比、淨值市價比與股票報酬關係之實證研究。管理評論,21(3),25-48。
4. 鄭忠樑(2002)。運用分類樹於股價報酬率預測之研究。元智大學資訊管理學系學位論文,1-53。
5. 顧廣平(2005)。單因子、三因子或四因子模式?證券市場發展季刊,17(2),101-146。
二、英文部分
1. Ainsworth, A., Fong, K., & Gallagher, D. (2008). Style drift and portfolio management for active Australian equity funds. Australian Journal of Management, 32(3),387–418.
2. Ahmed, Nanda (2001). Style Investing. The Journal of Portfolio Management, 27 (3) 47-59.
3. Anthony W. Lynch, David K. Musto (2003). How Investors Interpret Past Fund Returns. The Journal of Finance, Volume58, Issue5. 4. Barberis, N., and Shleifer, A. (2003). Style investing. Journal of Financial Economics, 68(2): 161-199.
5. Brown, K., Van Harlow, W., & Zhang, H. (2004). Staying the Course: Performance Persistence and the Role of Investment Style Consistency in Professional Asset Management. Working Paper. Putman Institute Research.
6. Brown, K., Van Harlow, W., & Zhang, H. (2012). Investment style volatility and mutual fund performance. Working Paper. Putman Institute Research.
7. Bogle, John C. (1998), “The Implications of Style Analysis for Mutual Fund Performance Evaluation," The Journal 0f Portfolio Management,Summer, 34-41.
8. Brown, S. J., and W. N. (1997), Goetzmann. "Mutual Fund Styles," Journal 0f Financial Economies, 43,373-399.
9. Christopherson,Jon A. (1995), “Equity Style Classifications," Journal of Portfolio Management,24(3), Spring, 32-43.
10. Chan, Chen, Lakonishok (1999). “On mutual fund investment styles” NBER Working paper 7215.
11. Daniel, K., Grinblatt, M., Titman, S., and Wermers, R. (1997). Measuring mutual fund performance with characteristic-based benchmarks. The Journal of Finance, 52 (3):1035 -1058.
12. Dan DiBartolomeo, Erik Witkowski, (1997). Mutual Fund Misclassification: Evidence Based on Style Analysis, Financial Analysts Journal, Volume 53, Issue 5.
13. Eric H. Sorensen, Keith L. Miller, and Chee K. Ooi. (2000),The Decision Tree Approach to Stock Selection,The Journal of Portfolio Management,42-52.
14. Erdal, HI., & Karakurt, O. (2012). Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms.Journal of Hydrology,477, 119–128.
15. Fama, E., & French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56.
16. Froot, K., and Teo, M. (2008), Style investing and institutional investors. Journal of Financial and Quantitative Analysis, 43 (4): 883-906.
17. Gallo, John G and Larry Lockwood. (1997), “Benefits of proper style classification of equity portfolio managers,” Journal of Portfolio Management, 23, 3; 47-56.
18. Idzorek, T., & Bertsch, F , (2004). The style drift score. Journal of Portfolio Management,31(1), 76–83.
19. Jensen, M. C. (1968), The performance of mutual funds in the period 1945–1964.Journal of Finance, 23(2), 389–416.
20. Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,1993.
21. Questier, F., Put, R., Coomans, D., Walczak, B., & Vander-Heyden, Y. (2005), The use of CART and multivariate regression trees for supervised and unsupervised feature selection.Ch emometrics and Intelligent Laboratory Systems, 76, 45 –54.
22. Roll, R. (1992), A mean/variance analysis of tracking error. Journal of Portfolio Management, 18(1), 13–22.
23. Rokach, L., Maimon, O. (2008), Data mining with decision trees: theory and applications,World Sci entific Pub Co Inc.
24. Sharpe,w. F. (1966), “Mutual Fund Performance, “Journal of Business, 39, 119-139.
25. Sharpe,W.F. (1992), “Asset Allocation: Management Style and Performance Measurement,“Journal of Portfolio Management,7-19.
26. Speybroeck, N. (2012), “Classification and regression trees,” International Journal of Public Health,Vol . 57, pp.243-246.
27. Tierney,David E. (1991), and Kenneth Winston., “Using Generic Benchmark to Present Manager Styles, “The Journal 0f Portfolio Management, Summer, 33-36.
28. Wermers, R. (2000). Mutual fund performance: An empirical decomposition into stock picking talent, style, transactions costs, and expenses. The Journal of Finance, 55 (4): 1655 -1703.
29. Wermers, R. (2012). A Matter of Style: The Causes and Consequences of Style Drift in Institutional Portfolios. Working Paper. Robert H. Smith School of Business, University of Maryland.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top