跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韋雅萍
研究生(外文):WEI,YA-PING
論文名稱:牛樟木之總酚和類黃酮化合物最適化萃 取及其抗氧化特性分析
論文名稱(外文):Extraction optimization and antioxidant property of flavonoids and total phenolics from Cinnamomum kanehirai Hay.
指導教授:龍明有
指導教授(外文):LUNG,MING-YU
口試委員:夏一民吳璀谷龍明有
口試委員(外文):SHIAH,I-MINWU,CUI-GULUNG,MING-YU
口試日期:2020-07-03
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:50
中文關鍵詞:牛樟木類黃酮總酚液固比抗氧化
外文關鍵詞:Cinnamomum kanehirai HayTotal phenolicsFlavonoidsResponse surface methodologyAntioxidant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樟樹是著名的珍貴鄉土樹種和經濟樹種,是一種優良的樹種且具多用途,一直都是人們開發利用重要植物資源,樟樹外部形態、品系分類與分布、生態習性、木材性質、用途、生長潛能、生產力等等方面,樹主要生長區域以亞洲地區的台灣、日本、琉球、中南半島,以及中國的長江以南各省為主,在台灣主要生長在山區海拔 450~2,000m 間特有的牛樟樹幹腐朽之心材內壁,或枯死倒伏之牛樟樹幹表面,發現著實不易。目前產業界也陸續的發展相關附屬產品,如:牛樟芝,其作用有抗腫瘤、增加免疫能力、抗病毒、抗過敏、抗高血壓、抑制血小板凝集、降血糖、降膽固醇、抗細菌、保護肝臟等,對人體健康具有相當的提升作用。
本研究以牛樟木為主要萃取實驗之原料來源,作為探討類黃酮與總酚化合物最佳的萃取條件,進一步分析其抗氧化特性之效度(validity)。研究方向分別規劃以不同時間、不同溫度、不同萃取乙醇濃度與乙醇之液固比參數進行實驗分析,在過程中係利用單一實驗因子的交互作用,以尋求最適化的實驗條件。將上述所得的牛樟木粉末樣品進行分析類黃酮與總酚化合物在抗氧化之螯合能力、抗氧化還原能力與清除 DPPH自由基之效度。
研究顯示結果牛樟木的粉末最適化類黃酮化合物單因子萃取 4 小時、萃取溫度 60℃及液固比例 40 mL/g,可得最大化產率 11.1568 mg/g;總酚條件為萃取 4 小時、萃取溫度 50 ℃及液固比例 100 mL/g,可得最大化產率 37.9835 mg/g。在抗氧化分析類黃酮化合物萃取液螯合亞鐵離子能力分別為 88.64 %、85.68 %、清除 DPPH 自由基能力為88.62 %、還原力為 2.44 %;總酚化合物萃取液螯合亞鐵離子能力分別為 88.64 %、82.26%、清除 DPPH 自由基能力為 86.1 %、還原力為 2.35 %,未來若能應用在不同植物的抗氧化物質的研究將是一大突破,此研究希望對應用於醫療、保健食品及化妝品相關產業有所助益。

Camphor is a famous precious native and economic tree species with multiple purposes. People have been developing and utilizing it as important plant resources, such as camphor tree external form, classification and distribution of strains, ecological habits, wood properties, use, growth potential, productivity and so on. It mainly grows in Asian region, including Taiwan, Japan, Ryukyu, Indochina Peninsula, as well as China's provinces southern of the Yangtze River. In Taiwan, it mainly grows on unique decayed ingress inner
wall of cattle camphor trunk, or on dead-and-dead cow camphor tree trunk surface in the mountains between 450 and 2,000 meters above sea level That means, it is not easy to be found. At present, the industry has also been developing related ancillary products, such as ox changzhi which has features like anti-tumor, increase immunity, anti-viral, anti-allergy, antihypertensive, inhibition of platelet coagulation, blood sugar, cholesterol, anti-bacteria, liver protection, etc. and has a considerable role in human health.
In this study, the oxcamper served as the main raw material source of the extraction experiment is used to explore the ultimate extraction conditions of flavonoids and total phenolic compounds, and further to analyze its antioxidant properties (validity). The research direction is planned to carry out the experimental analysis with different time, different temperature, different extraction alcohol concentration and the liquid solid ratio parameters of alcohol. And, the interaction of a single experimental factor is used in the
process to seek the optimal experimental conditions. The samples obtained from the above-mentioned oxen camphor powder were analyzed in the anti-oxidation chelation capacity, antioxidant reduction capacity and the efficacy of removing DPPH free radicals of flavonoids and total phenolic compounds.
The results show that the optimal conditions for powder of ox camphor: flavonoid compounds for 4 hours, extraction temperature at 60 °C and liquid solid ratio of 40 mL/g led to the maximum yield of 11.1568 mg/g. In the antioxidant analysis, flavonoid extract chelating iron ion capacity was 88.64 % and 85.68 %, the removal of DPPH free radical sepsis was 88.62 % and the reducing force was 2.44 %; where the total phenolic compound extractant chelated iron ion capacity was 88.64 % and 82.26 %, the removal of DPPH free radical capacity was 86.1 %, and the reducing force was 2.35 %. If such results can be applied to different plants of antioxidant stakes research in the future, it will be a major breakthrough. Hopefully this research will be beneficial to medical, health food and cosmetics related industries.

中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第二章 文獻探討 3
2.1 認識牛樟 3
2.2牛樟木簡介 6
2.2.1 外觀分類 6
2.2.2 分子結構 7
2.2.3 作用與功效性 11
2.2.4 專利 12
2.3 抗氧化(antioxidant) 13
2.3.1 酚酸(Phenolic acids) 14
2.3.2 類黃酮(Flavonoid) 15
2.3.3 抗氧化性質分析 16
2.3.4 自由基(free radical) 17
2.3.5 清除DPPH(1,1-diphenyl-2-picryhydrozyl) 17
2.3.6 離子螯合能力(Ferrous ion chelating ability) 18
第三章 實驗步驟與方法 19
3.1 實驗藥品與設備 19
3.1.1 藥品 19
3.1.2 儀器與設備 20
3.2 實驗流程圖及設計 20
3.3 設備與分析儀器簡介 21
3.3.1 低溫恆溫循環水槽 21
3.3.2 微生物培養箱 22
3.3.3 真空減壓濃縮機 23
3.3.4 UV/VIS/NIR光譜儀 24
3.4 實驗步驟與分析 25
3.4.1 牛樟木的樣品與保存 25
3.4.2 總酚化合物含量分析 26
3.4.2.1 檢量線 26
3.4.2.2 改變萃取時間 26
3.4.2.3 改變萃取溫度 26
3.4.2.4 改變萃取乙醇濃度 26
3.4.2.5 改變萃取液固比 26
3.4.3 類黃酮含量分析 27
3.4.3.1 檢量線 27
3.4.3.2 改變前處理萃取時間 27
3.4.3.3 改變前處理萃取溫度 28
3.4.3.4 改變萃取乙醇濃度 28
3.4.3.5 改變萃取液固比 28
3.5抗氧化分析 29
3.5.1還原能力之測定 29
3.5.2清除1,1-dipheny1-2-picry 1 hydrazy1(DPPH)能力 30
3.5.3亞鐵離子螯合能力測定 30
第四章 結果與討論 31
4.1 牛樟木樣品與萃取 31
4.1.1 液態搖瓶萃取 31
4.2 總酚化合物含量分析 31
4.2.1沒食子酸檢量線 31
4.2.2改變萃取時間 31
4.2.3改變萃取乙醇濃度 32
4.2.4改變萃取溫度 33
4.2.5改變萃取液固比 34
4.2.6總酚萃取液最適化驗證 34
4.3 類黃酮化合物含量分析 35
4.3.1槲皮素檢量線 35
4.3.2改變萃取時間 35
4.3.3改變萃取乙醇濃度 36
4.3.4改變萃取溫度 37
4.3.5改變萃取液固比 37
4.3.6類黃酮萃取液最適化驗證 38
4.4抗氧化分析 39
4.4.1清除DPPH自由基能力比較 39
4.4.2還原能力測試 40
4.4.3螯合亞鐵離子能力 41
第五章 結論 43
參考文獻 44


1. 維基百科,牛樟,網址:www.zh.wikipedia.org/zh-tw/。
2. 每日頭條,牛樟樹,網址:www.kknews.cc/health/yv8o25k.htmL。
3. 特有生物研究保育中心,台灣灣野生植物資料庫-物種基本資料,網址:www.plant.tesri.gov.tw/plant106/index.aspx。
4. S. M. Chaw, Y. C. Liu, Y. W. Wu, H. Y. Wang, C. Y. Lin, C. S. Wu, H. M. Ke1, L. Y. Chang, C. Y. Hsu, H. T. Yang, E. Sudianto, M. H. Hsu, K. P. Wu, L. N. Wang, H. L. James, and I. J. Tsai (2019), Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution, Nature Plants, 5, 63-73, https://doi.org/10.1038/s41477-018-0337-0.
5. 台 灣 國 家 公 園 , 牛 樟 , 生 物 多 樣 性 資 料 庫 與 知 識 平 台 , 網 址 :
www.npgis.cpami.gov.tw。
6. 張靜茹 (1988),牛樟,台灣光華雜誌。
7. 馮豐隆、李宣德 (2009),台灣之樟樹資源現狀與展望,生物科學,第五十一卷,第二期,pp.37-51。
8. 維基百科,樟腦,網址:www.zh.wikipedia.org/zh-tw/。
9. 經濟部工業局,保健食品產業發展策略與措施,保健食品產業服務網,網址:
https://www.functionalfood.org.tw。
10. Y. W. Liu; K. H. Lu; C. T. Ho; L. Y. Sheen (2012), Protective Effects of Antrodia Cinnamomea Against Liver Injury, Journal Traditional and Complement Medicine , 2(4), 284-294, doi:10.1016/s2225-4110(16)30114-6.
11. M. Geethangili1; Y. M. Tzeng (2011), Review of Pharmacological Effects of Antrodia camphorate and Its Bioactive Compounds, Evidence-Based Complementary and Alternative Medicine, 2011, 17, https://doi.org/10.1093/ecam/nep108.
12. A. Szakiel; C. Paczkowski; F. Pensec, and C. Bertsch (2012), Fruit cuticular waxes as a source of biologi-cally active triterpenoids, National Center for Biotechnology Information, 11(2-3), 263-284, doi:10.1007 / s11101-012-9241-9.
13. Triterpenoid, National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/Triterpenoid.
14. Anne Marie Helmenstine, https://www.thoughtco.com/polysaccharide definition
-and-functions-4780155.
15. MOLEKUUL/Getty Images, https://www.thoughtco.com/polysaccharide -definition
-and-functions-4780155.
16. P. H. Shie; S. Y. Wang; H. L. Lay; G. J. Huang (2016), 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorate inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells, National Center for Biotechnology Information, 31, 186-194, doi:10.1016/j.intimp.2015.12.030.
17. M. Samsel; K. Dzierzbicka; P. Trzonkowski (2013), Adenosine, its analogues and conjugates, National Center for Biotechnology Information, 67, 1189-203, doi: 10.5604/17322693.1078588.
18. A+醫學百科,網址:www.cht.a-hospital.com/w/%E9%A6%96%E9%A1%B5。
19. H. Sies (1997), Oxidative stress: Oxidants and antioxidants, National Center for Biotechnology Information, 82(2), 291-5, doi: 10.1113/expphysiol.1997.sp004024.
20. How can antioxidants benefit our health? (2018), Medically News Today,
https://www.medicalnewstoday.com/articles/301506.
21. V. Lobo; A. Patil; A. Phatak; N. Chandra (2010), Free radicals, antioxidants and functional foods: Impact on human health, National Center for Biotechnology Information, 4(8), 118-126, doi: 10.4103/0973-7847.70902.
22. Ziaullah; HP V. Rupasinghe (2015), Application of NMR Spectroscopy in Plant
Polyphenols Associated with Human Health, 3-92, doi:10.2174 / 9781608059652115020003.
23. M. Goleniowski; R. Cusido; J. Palazón (2013), Phenolic acids, 1951-1973,
https://doi.org/10.1007/978-3-642-22144-6_64.
24. I. O. Minatel; C. V. Borges; M. I. Ferreira, H. A. G. Gomez; C. Y. O. Chen; G. P. P. Lima (2016), Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability, doi:10.5772/66368.
25. J. Chen; J. Yang; L. Ma; J. Li; N. Shahzad; K. K. Chan (2020), Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids, Scientific Reports, 10, 2611, https://www.nature.com/ articles/s41598 -020-59451-z.
26. S. Robertson (2018), What are Flavonoids?, https://www.news-medical.net
/health/What-are-Flavonoids.aspx.
27. F. M. Mohamad; G. F. Ameenah; H. S. Anwar (2005), Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius, Pharmaceutical Biology, 43(3), 237-242, https://doi.org/10.1080/13880200590928825.
28. A. K. Pandey (2007), Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parihenium histerophorus: an in vitro study, National Academy Science Letters, 30(11-12), 383-386.
29. E. H. Kelly; R. T. Anthony; J. B. Dennis (2002), Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships, The Journal of Nutritional Biochemistry, 13(10), 572-584, https://doi.org/10.1016/S0955-2863(02)00208-5.
30. S. Kumar; A. Mishra; A. K. Pandey (2013), Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models, National Center for Biotechnology Information, 13, doi:10.1186 / 1472-6882-13-120.
31. S. Kumar; A. K. Pandey (2013), Phenolic Content, Reducing Power and Membrane Protective Activities of Solanum xanthocarpum Root Extracts, International journal of plant research, 26(1), 301-307, doi:10.5958/j.2229-4473.26.1.043.
32. E. J. Middleton (1967), Effect of Plant Flavonoids on Immune and Inflammatory Cell Function, Advances in Experimental Medicine and Biology, 1224, 175-182, https://link.springer.com/chapter/10.1007/978-1-4615-5335-9_13.
33. S. Kumar; A. K. Pandey (2013), Chemistry and Biological Activities of Flavonoids:An Overview, 2013, 16, https://doi.org/10.1155/2013/162750.
34. K. R. Narayana; M. S. Reddy; M. R. Chaluvadi; D. R. Krishna (2001), Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential, Indian Journal of Pharmacology, 33(1), 2-16.
35. A. K. Pandey; A. K. Mishra; A. Mishra (2012), Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala, National Center for Biotechnology Information, 58(1), 142-7.
36. B. Halliwell and J. M. C. Gutteridge (2015), Free Radicals in Biology and Medicine, Oxford Scholarship Online, doi:10.1093 / acprof:oso / 9780198717478.001.0001.
37. A. Mishra; S. Kumar; A. K. Pandey (2012), Scientific validation of the medicinal efficacy of Tinospora cordifolia, The Scientific World Journal, 2013, 8, https://doi.org/ 10.1155/2013/292934.
38. 沈馨仙、郭旻奇、張思平、鍾佳玲、楊榮季(2010),抗氧化劑及常見之抗氧化活性
評估方法,藥學雜誌,第 26 卷第 2 期。
39. 黃毓清(2003),不同甘藷加工性質與抗氧化特性之探討,實踐大學食品營養研究所,
碩士論文。
40. 長庚生技,網址:www.cgb.com.tw/j2j0/cus/cus1/hel/hel8/80001.jsp。
41. 薛家強,醫藥人,醫藥健康雜誌,第 93 期,網址: www.3phk.com/v5article2as
p?id=1925&folder=hot_topics。
42. B. Williams; M.E. Cuvelier; C. Berset (1995), Use of free radical method to evaluate antioxidant activity, LWT-Food Science and Technology , 28(6), 25-30.
43. R. J. Ruch; S. J. Cheng; J. E. Klaunig (1989), Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea Carcinogenesis, 10(6), 1003-8, doi:10.1093 / carcin / 10.6.1003.
44. A. A. Dehpour; M. A. Ebrahimzadeh; S. F. Nabavi; S. M. Nabavi (2009), Antioxidant activity of methanol extract of Ferula assafoetida and its essential oil composition, Grasas Aceites, 60(4), 405-412, doi: 10.3989/gya.010109.
45. B. Matthäus (2002), Antioxidant activity of extracts obtained from residues of different oilseeds, Food Chem., 50(12), 3444-3452, https://doi.org/10.1021/jf011440s.
46. A. M. Aboul-Enein; F. K. El-Baz; G. S. El-Baroty; A. M. Youssef; H.H. Abd-El-Baky; (2003) Antioxidant activity of algal extracts on lipid peroxidation, Journal of Medical Sciences, 87-98, doi:10.3923/jms.2003.87.98.
47. V. Kukongviriyapan; N. Somparn; L. Senggunprai; A. Prawan; U. Kukongviriyapan; A. Jetsrisuparb (2008), Endothelial dysfunction and oxidant status in pediatric patients with hemoglobin E-β Thalassemia, Pediatric Cardiology, 29(1), 130-5.
48. C. R. Filburn; R. Kettenacker; D. W. Griffin (2007), Bioavailability of a
silybin-phosphatidylcholine complex in dogs, Journal of Veterinary Pharmacology and Therapeutics, 30(2), 132-8, doi:10.1111/j.1365-2885.2007.00834.x.
49. M. Oyaizu (1986), Studies on product of browning reaction prepared from glucose amine, The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315,
https://doi.org/10.5264/eiyogakuzashi.44.307.
50. T. S. Kujala; J. M. Loponen; K. D. Klika; K. Pihlaja (2000), Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds, Food Chem, 48(11), 5338-5342, https://doi.org/10.1021/jf000523q.
51. A. Arvouet-Grand; B. Vennat; A. Pourrat; P. Legret (1994), Standardisation d’uneextrait de propolis et identification des principaux constituants. Journal de Pharmacie de Belgigue, 49, 462-468.
52. K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura (1992), Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion, Food Chem, 40(5), 945-948, https://doi.org/10.1021/jf00018a005.
53. J. M. Lee; H. Chung; P. S. Chang; J. H. Lee (2007), Development of a Method
Predicting the Oxidative Stability of Edible Oils Using 2,2-Diphenyl-1-Picrylhydrazyl (DPPH), Food Chemistry. 103(2), 662-669, doi:10.1016 / j.foodchem.2006.07.052.
54. S. B. Kedare; R. P. Singh (2011), Genesis and Development of DPPH Method of
Antioxidant Assay, Journal Food Science and Technology. 48(4), 412-422, doi:
10.1007/s13197-011-0251-1.
55. R. F. Boyer; C. J. McCleary (1987), Superoxide Ion as a Primary Reductant in Ascorbate-Mediated Ferretin Iron Release, National Center for Biotechnology
Information, 3(6), 389-395, doi: 10.1016/0891-5849(87)90017-7.
56. 吳楚珍(2019),紫錐花之類黃酮化合物和總酚化合物最適化萃取及其抗氧化特性分
析,明新科技大學化學工程與材料科技系,碩士論文。
57. 游玉婷(2019),紫米花青素之類黃酮化合物和總酚化合物最適化萃取及其抗氧化特
性分析,明新科技大學化學工程與材料科技系,碩士論文。
58. 葉麗娟(2019),神秘果的枝葉黃酮類和總酚化合物最適化萃取及其抗氧化特性分析,
明新科技大學化學工程與材料科技系,碩士論文。
59. 彭正宇(2018),北蟲草黃酮類和總酚化合物最適化萃取及其抗氧化特性分析,明新
科技大學化學工程與材料科技系,碩士論文。
60. 林明正(2020),甜菜根之花青素最適化萃取及其抗氧化能力分析,明新科技大學化
學工程與材料科技系,碩士論文。

電子全文 電子全文(網際網路公開日期:20250729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊