跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾柏恩
研究生(外文):TSENG, PO-EN
論文名稱:以反應式射頻磁控濺鍍(HfNbSiTaZr)CxNy多元碳氮化物薄膜之微結構與特性分析
論文名稱(外文):A study of the microstructure and characterization of the Multi-element (HfNbSiTaZr)CxNy thin films prepared by reactive radio frequency magnetron sputtering
指導教授:廖信德廖信德引用關係林俊銘林俊銘引用關係
指導教授(外文):Hsin-Te LiaoChun-Ming Lin
口試委員:廖信德林俊銘謝傑任
口試委員(外文):Hsin-Te LiaoChun-Ming LinShie, Jie-Ren
口試日期:2020-07-22
學位類別:碩士
校院名稱:明新科技大學
系所名稱:機械工程系精密機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:反應式射頻磁控濺鍍高熵合金硬質薄膜分析
外文關鍵詞:RF reactive magnetron sputteringHigh-entropy alloysAnalysis of hard coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2. 1 硬質薄膜 3
2.1.1 表面薄膜介紹 3
2.1.2 氮化物薄膜發展 4
2.2 高熵合金 7
2.2.1 高熵合金定義 7
2.2.2 高熵合金的特點 8
2.2.3 高熵合金薄膜之研究 9
2.3 射頻磁控濺鍍原理 11
2.3.1 濺鍍原理 11
2.3.2 射頻濺鍍 13
2.3.3 磁控濺鍍 13
2.3.4 反應式濺鍍 15
第三章 實驗方法 16
3.1 實驗設計 16
3.2 材料準備 18
3.2.1 靶材 18
3.2.2 基板 18
3.2.3 製程氣體 18
3.2.4 磨球 18
3.3 實驗參數及步驟 20
3.4 薄膜性質分析與量測 22
3.4.1 靶材與薄膜成份分析 22
3.4.2 靶材晶體結構分析 22
3.4.3 薄膜晶體結構分析 22
3.4.4 薄膜表面及截面形貌分析 22
3.4.5 薄膜硬度及楊氏模數分析 23
3.4.6 薄膜鍵結分析 23
3.4.7 薄膜抗氧化分析 23
3.4.8 薄膜附著性質分析 24
3.4.9 薄膜抗磨耗性質分析 24
第四章 結果與討論 26
4.1 碳氮化物薄膜之結構與性質 27
4.1.1 高熵合金靶材之成份與結構分析 27
4.1.2 高熵合金碳氮化物薄膜之鍍率分析 28
4.1.3 高熵合金碳氮化物薄膜之成份分析 28
4.1.4 高熵合金碳氮化物薄膜之晶體結構 29
4.1.5 高熵合金碳氮化物薄膜之表面形貌 31
4.1.6 高熵合金碳氮化物薄膜之鍵結分析 32
4.1.7 高熵合金碳氮化物薄膜之硬度與楊氏模數 35
4.2 高熵合金碳氮化物薄膜在不同基板偏壓下之結構與性質 36
4.2.1 高熵合金碳氮化物薄膜在不同基板偏壓下之鍍率分析 36
4.2.2 高熵合金碳氮化物薄膜在不同基板偏壓下之成份分析 37
4.2.3 高熵合金碳氮化物薄膜在不同基板偏壓下之晶體結構 37
4.2.4 高熵合金碳氮化物薄膜在不同基板偏壓下之表面形貌 38
4.2.5 高熵合金碳氮化物薄膜在不同基板偏壓下之硬度及楊氏模數 39
4.3 碳氮化物薄膜在不同基板偏壓下之抗氧化性質 40
4.4 高熵合金碳氮化物薄膜之附著性質 42
4.4.1 高熵合金碳氮化物薄膜在未加基板偏壓之附著性質 42
4.4.2 高熵合金碳氮化物薄膜在不同基板偏壓下之附著性質 45
4.5 高熵合金碳氮化物薄膜之抗磨耗性質 48
4.5.1 未加基板偏壓下碳氮化物薄膜之抗磨耗性質 48
4.5.2 基板偏壓對碳氮化物薄膜磨耗性質的影響 52
第五章 結論 56
參考文獻 57


1.J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, “Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Advanced Engineering Materials, Vol. 6, No. 5, 2004, pp. 299-303.
2.葉均蔚、陳瑞凱,“高熵合金”,科學發展,377期,民93年,16-21頁。
3.蔡銘洪,多元高熵合金薄膜微結構及電性演變之研究,國立清華大學,材料科學工程研究所碩士論文,民92年。
4.G.Zhang, B.Li, B.Jiang, F.Yan, and D.Chen,“Microstructure and tribological properties of TiN, TiC and Ti(C, N) thin films prepared by closed-field unbalanced magnetron sputtering ion plating” ,Applied Surface Science, Vol. 255, No. 21, 2009, pp. 8788-8793.
5.劉庭瑋,多元碳化物薄膜及多元碳氮化物薄膜之結構與性質研究,國立清華大學,材料科學工程研究所碩士論文,民98年。
6.林季薇,多元碳化物 (CrNbSiTiZr)Cx 鍍膜之結構與性質研究,國立清華大學,材料科學工程研究所碩士論文,民99年。
7.黃志維,不同甲烷流率對反應式濺鍍 (CrNbSiTiZr)Cx 鍍膜結構與性質之影響,國立清華大學,材料科學工程研究所碩士論文,民100年。
8.陳思寰,(CrNbTaTiZr)Cx 薄膜的機械性質與微結構之研究,國立清華大學,材料科學工程研究所碩士論文,民101年。
9.許凱閔,(HfNbSiTaZr)CXNy 多元碳氮化物薄膜之結構與性質研究,國立清華大學,材料科學工程研究所碩士論文,民104年。

10.T. Zehnder, J. Matthey, P. Schwaller, A. Klein, P.-A. Steinmann, and J. Patscheider, “Wear protective coatings consisting of TiC–SiC–aC: H deposited by magnetron sputtering”, Surface and Coatings Technology, vol. 163-164, 2003, pp. 238-244.
11.D.Martínez-Martínez, C.López-Cartes, A.Fernández, and J.Sánchez-López, “Influence of the microstructure on the mechanical and tribological behavior of TiC/aC nanocomposite coatings”, Thin Solid Films, vol. 517, No. 5, 2009, pp. 1662-1671.
12.J. Musil and J. Vlček,“Magnetron sputtering of hard nanocomposite coatings and their properties” , Surface and Coatings Technology, vol. 142-144, 2001, pp. 557-566.
13.S. PalDey and S. Deevi,“Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review”, Materials Science and Engineering: A, vol. 342, No. 1-2, 2003, pp. 58-79.
14.R.Wuhrer and W.Yeung,“A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings”, Scripta materialia, vol. 50, No. 12, 2004, pp. 1461-1466.
15.D.Monaghan, D.Teer, K.Laing, I.Efeoglu, and R. Arnell, “Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering”, Surface and coatings technology, vol. 59, No. 1-3, 1993, pp. 21-25.
16.J.Musil, P.Zeman, H. Hrubý, and P.Mayrhofer,“ZrN/Cu nanocomposite film—a novel superhard material”, Surface and Coatings Technology, vol. 120-121, 1999, pp. 179-183.
17.M.Shinn, L.Hultman, and S.Barnett,“Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, Journal of materials research, vol. 7, No. 4, 1992, pp. 901-911.
18.D.J.Kim, Y.R.Cho, M.J.Lee, J.M. Hong, Y.K.Kim, and K.H.Lee,“Properties of TiN–TiC multilayer coatings using plasma-assisted chemical vapor deposition”, Surface and Coatings Technology, vol. 116-119, 1999, pp. 906-910.
19.J.Vacı́k, J.Červená, V.Hnatowicz, S.Pošta, D.Fink, R.Klett, et al.,“Simple technique for characterization of ion-modified polymeric foils”, Surface and Coatings Technology, vol. 123, No. 2-3, 2000, pp. 97-100.
20.C.L.Chang, J.H.Chen, P.C.Tsai, W.-Y.Ho, and D.Y.Wang,“Synthesis and characterization of nano-composite Ti–Si–N hard coating by filtered cathodic arc deposition”, Surface and Coatings Technology, vol. 203, No. 5-7, 2008, pp. 619-623.
21.S.Vepřek, S.Reiprich, and L.Shizhi,“Superhard nanocrystalline composite materials: the TiN/Si3N4 system”, Applied physics letters, vol. 66, No. 20, pp. 2640-2642, 1995.
22.H.Holleck, C.Kühl, and H.Schulz,“Wear resistant carbide–boride composite coatings”, Journal of Vacuum Science & Technology A, vol. 3, No. 6, 1985, pp. 2345-2347.
23.J. Musil, P. Karvankova, and J. Kasl,“Hard and superhard Zr–Ni–N nanocomposite films”, Surface and Coatings Technology, vol. 139, No. 1, 2001, pp. 101-109.
24.J.Wheeler, R.Raghavan, V.Chawla, M.Morstein, and J.Michler,“Deformation of Hard Coatings at Elevated Temperatures”, Surface and Coatings Technology, vol. 254, 2014, pp. 382-387.
25.A.Hörling, L.Hultman, M.Odén, J.Sjölén, and L.Karlsson,“Mechanical properties and machining performance of Ti 1− x Al x N-coated cutting tools”, Surface and Coatings Technology, vol. 191, No. 2, 2005, pp. 384-392.
26.M.Lindquist, O.Wilhelmsson, U.Jansson, and U.Wiklund,“Tribofilm formation from TiC and nanocomposite TiAlC coatings, studied with focused ion beam and transmission electron microscopy”, Wear, vol. 266, No. 9-10, 2009, pp. 988-994.
27.O.Wilhelmsson, M.Råsander, M.Carlsson, E.Lewin, B.Sanyal, U.Wiklund, et al., “Design of Nanocomposite Low‐Friction Coatings”, Advanced Functional Materials, vol. 17, No. 10, 2007, pp. 1611-1616.
28.M.Lindquist, O.Wilhelmsson, U.Jansson, and U.Wiklund,“Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings”, Wear, vol. 266, No. 3-4, 2009, pp. 379-387.
29.V.Braic, A.Vladescu, M.Balaceanu, C.Luculescu, and M.Braic,“Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C hard coatings”, Surface and Coatings Technology, vol. 211, No. 25, 2012, pp. 117-121.
30.辜文柏,(AlCrTaTiZr)(CN) 薄膜結構及性質之研究,清華大學,材料科學工程學系學位論文,民97年。
31.R.K.Waits,“Planar magnetron sputtering”, Journal of Vacuum Science & Technology, vol. 15, 1978, pp. 179-187.
32.賴加瀚,Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究,清華大學,材料科學工程學系學位論文,民96年。
33.R.Mason and M.Pichilingi,“Sputtering in a glow discharge ion source-pressure dependence: theory and experiment”, Journal of Physics D: Applied Physics, vol. 27, No. 11, 1994, pp. 2363.
34.F.R.De Boer, W.Mattens, R.Boom, A.Miedema, and A.Niessen, Cohesion in Metals: Transition Metal Alloys, North Holland, 1988.
35.蔡佳凌,反應式直流磁控濺鍍法製備 (Al, Cr, Nb, Si, B, C) 100-xNx 高熵薄膜之研究,清華大學,材料科學工程學系學位論文,2014。
36.W.C.Oliver and G.M. Pharr,“An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of materials research, vol. 7, No. 6, 1992, pp. 1564-1583.
37.M.E.Schlesinger,“The Si-Ta (silicon-tantalum) system”, Journal of phase equilibria, vol. 15, No. 135, 1994, pp. 90-95.
38.A.Voevodin and J.Zabinski,“Load-adaptive crystalline–amorphous nanocomposites”, Journal of materials Science, vol. 33, No. 319-327, 1998, pp. 319-327.
39.J.Lin, J.Moore, B.Mishra, M.Pinkas, and W.Sproul,“Syntheses and characterization of TiC/a: C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)”, Thin Solid Films, vol. 517, No. 3, 2008, pp. 1131-1135.
40.C.H.Lai, S.J.Lin, J.W.Yeh, and A.Davison,“Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings”, Journal of Physics D: Applied Physics, vol. 39, No. 21, 2006, p. 4628-4633.
41.D.Mattox,“Particle bombardment effects on thin‐film deposition: A review”, Journal of Vacuum Science & Technology A, vol. 7, No. 3, 1989, pp. 1105-1114.
42.F.Vaz, L.Rebouta, S. Ramos, M. da Silva, and J. Soares,“Physical, structural and mechanical characterization of Ti1− xSix Ny films”, Surface and Coatings Technology, vol. 108, 1998, pp. 236-240.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊