跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/27 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉勝雄
研究生(外文):LIU SHENG-HSIUNG
論文名稱:啤酒酵母類黃酮和總酚類化合物最適化萃取及其抗氧化特性分析
論文名稱(外文):Extraction optimization and antioxidant property of total phenolics and flavonoids from Saccharomyces cerevisiae
指導教授:龍明有
指導教授(外文):LUNG MING-YU
口試委員:徐敬衡夏一民龍明有
口試委員(外文):SYU,JING-HENGSHIAH I-MINLUNG MING-YU
口試日期:2020-06-15
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技系碩士在職專班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:83
中文關鍵詞:啤酒酵母總酚化合物類黃酮化合物抗氧化
外文關鍵詞:Saccharomyces cerevisiaetotal phenol compoundsflavonoid compoundsantioxidant
相關次數:
  • 被引用被引用:4
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以自釀手工啤酒的啤酒酵母(Saccharomyces cerevisiae)為萃取原料,分別改變(1)時間(2)溫度(3)萃取乙醇濃度(4)液固比等四項因子,探討啤酒酵母的總酚化合物及類黃酮化合物最佳萃取條件,並進一步以單因子最適化萃取條件,提取啤酒酵母內含的總酚化合物與類黃酮化合物並進行抗氧化特性分析。
根據實驗結果,啤酒酵母萃取總酚化合物最適化條件為萃取3小時、0%乙醇濃度、萃取溫度為60℃及液固比100,可得最大化產率30.66mg/g。啤酒酵母萃取類黃酮化合物最適化條件則為萃取3小時、20%乙醇濃度、萃取溫度50℃及液固比50 ml/g,可得最大化產率8.68 mg/g。
利用單因子最適化萃取條件所得到的萃取液,進行抗氧化特性分析,結果顯示啤酒酵母萃取液總酚化合物及類黃酮化合物在10000 ppm時,還原能力之吸收值為1.4及1.2,清除DPPH自由基能力佳,清除率均為100%,總酚化合物螯合亞鐵離子能力為100%,類黃酮化合物螯合亞鐵離子能力為91.21%。本研究所得到的啤酒酵母總酚化合物及類黃酮化合物最適化萃取條件及抗氧化能力,可作為開發保健食品及化妝品等相關產品的參考。

In this study, brewing yeast (Saccharomyces cerevisiae) for brewing artisan beer was used as the extraction raw material, and four factors (1) time (2) temperature (3) extraction ethanol concentration (4) liquid-solid ratio were changed to discuss the total beer yeast. The optimal extraction conditions of phenol compounds and flavonoid compounds, and further optimized the extraction conditions with a single factor to extract the total phenol compounds and flavonoid compounds from Saccharomyces cerevisiae were examined and their antioxidant properties were also determined.
According to the experimental results, the optimal conditions for extracting total phenolic compounds from S. cerevisiae were 3 hours of extraction, 0% ethanol concentration, 60° C. extraction temperature and 100% liquid-solid ratio, and the maximum yield was 30.66 mg/g. The optimal conditions for extracting flavonoids from Saccharomyces cerevisiae are extraction for 3 hours, 20% ethanol concentration, extraction temperature of 50°C and liquid-solid ratio of 50 ml/g. The maximum yield for flavonoids is 8.68 mg/g.
The antioxidant properties of the extract obtained from the single-factor optimized extraction conditions were analyzed. The results showed that when the total phenolic compounds and flavonoid compounds of the beer yeast extract were 10000 ppm, the absorption values of the reducing power were 1.4 and 1.2, and DPPH free radical scanning rate is 100%, the total phenol compound and flavonoid compound in chelate ferrous ion capacity are 100% and 91.21%, respectively. Total phenolic compounds and flavonoid compounds with the excellent antioxidant capacity obtained from the optimized extraction conditions. Therefore, the extraction process can be used as a reference for the development of health foods and cosmetics and other related products.

摘要 I
Abstract II
誌 謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒 論 1
1.1 研究背景與動機 2
1.1.1 啤酒酵母的營養成份 2
1.1.2 啤酒酵母的用途 4
1.1.2.1 活性酵母用途 4
1.1.2.2 非活性酵母用途 5
1.2 研究的內容 6
第二章 文獻回顧 8
2.1 啤酒的演進史 8
2.1.1 台灣的啤酒歷史 9
2.1.2 啤酒的定義 9
2.1.3 啤酒的四大原料 10
2.1.4 啤酒的種類及分類法 11
2.2 啤酒酵母的概述 13
2.2.1 酵母菌的生物學名與科別 13
2.2.2 酵母菌的結構與形態 13
2.2.3 啤酒酵母的增殖 14
2.2.4 啤酒酵母成分的應用 15
2.3 啤酒酵母的發酵 18
2.3.1 酵母的代謝作用 18
2.3.2 酵母恢復階段 18
2.3.3 酵母可發酵糖 19
2.3.4 醣類的代謝 20
2.3.5 糖解作用 20
2.3.6 丙酮酸分解 21
2.3.7 TCA cycle 21
2.3.8 脂肪的代謝 21
2.3.9 蛋白質的代謝 22
2.3.10 脫羧作用 22
2.3.11 脫胺作用 22
2.3.12 轉胺作用 22
2.4 自由基 23
2.4.1 自由基的種類 23
2.4.2 氧化壓力和氧化傷害 25
2.4.3 抗氧化機制 26
2.4.4 啤酒酵母和抗氧化 27
2.4.4.1 酚類化合物 28
2.4.4.2 類黃酮化合物 30
2.4.4.3 超氧化物歧化酶(SOD) 32
2.4.4.4 谷胱甘肽 33
2.5 單因子實驗法 34
第三章 材料與方法 35
3.1 實驗步驟 35
3.2 實驗材料與設備 36
3.2.1 手工啤酒製作材料 36
3.2.2 手工啤酒的製作步驟 38
3.2.3 實驗藥品 45
3.2.4 實驗儀器 46
3.3 實驗設計與分析方法 51
3.3.1 單因子實驗設計 51
3.3.2 總酚化合物含量分析 52
3.3.2.1 總酚化合物檢量線 52
3.3.2.2 改變萃取時間 52
3.3.2.3 改變萃取乙醇濃度 52
3.3.2.4 改變萃取溫度 52
3.3.2.5 改變萃取液固比 53
3.3.3 類黃酮化合物含量分析 54
3.3.3.1 類黃酮化合物檢量線 54
3.3.3.2 改變萃取時間 54
3.3.3.3 改變萃取乙醇濃度 54
3.3.3.4 改變萃取溫度 54
3.3.3.5 改變萃取液固比 55
3.3.4 抗氧化能力分析 55
3.3.4.1 還原能力之測定 55
3.3.4.2 清除1,1-diphenyl-2-picryl hydrazyl(DPPH)能力之測定 56
3.3.4.3 亞鐵離子螯合能力測定 56
第四章 結果與討論 58
4.1 啤酒酵母樣品萃取 58
4.1.1 液態搖瓶萃取 58
4.2 總酚化合物含量分析 59
4.2.1 沒食子酸檢量線 59
4.2.2 改變萃取時間 60
4.2.3 改變萃取乙醇濃度 61
4.2.4 改變萃取溫度 62
4.2.5 改變萃取液固比 63
4.2.6 總酚萃取液最適化驗證 64
4.3 類黃酮化合物含量分析 65
4.3.1 槲皮素檢量線 65
4.3.2 改變處理萃取時間 66
4.3.3 改變萃取乙醇濃度 67
4.3.4 改變萃取溫度 68
4.3.5 改變萃取液固比 69
4.3.6 類黃酮萃取液最適化驗證 70
4.4 抗氧化分析 71
4.4.1 還原力測定 71
4.4.2 清除DPPH自由基能力比較 72
4.4.3 亞鐵離子螯合能力 73
第五章 結論 74
參 考 文 獻 75


Ahsan H, Ali A, Ali R. Oxygen free radicals and systemic autoimmunity. Clinical and Experimental Immunology 2003, 131, 398-404.
Andreea S.. Brewer's yeast: an alternative for heavy metal biosorption from waste waters. ProEnvironment 2013, 6: 457-64
Axcell BC R&D in brewing: the importance of underpinning knowledge. Proc Eur Brew Conv 2007,31: 173.
Aruoma, O.I. Nutrition and health aspects of free radicals and antioxidants. Food Chem Toxicol 32(7)1994, 671-683.
Aust, S. D., Chignell, C. F., Bray, T. M., Kalyanaraman, B. Mason, R. P..Free radicals in toxicology. Toxicol. Appl. Pharmacol. 1993, 120: 168–178.
Bartosz G. Generation of Reactive Oxygen Species in Biological Systems. Comments on Toxicology 2003, 9, 5-21.
Bakkaloglu I, Butter TJ, Evison LM, Holland FS, Hancock IC. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Sci Technol 1998, 38: 269-77.
Biendl M, Pinzl, C. Hops and health. Technical Quarterly 2009, 46, 416-422.
Block G. The data support a role for antioxidants in reducing cancer risk. Nutrition Reviews 1992, 50, 207-213.
Cadenas E, Basic mechanisms of antioxidant activity, - Biofactors 1997, 6:391~397
Chae HJ, Joo H, In M-J.. Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: Effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour Technol 2001, 76: 253-8.

Chan, S. H.; Tai, M. H.; Li, C. Y.; Chan, J. Y., Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free radical biology & medicine 2006, 40, 2028-39.
Chen W, Becker T, Qian F, Ring J. Beer and beer compounds: Physiological effects on skin health. Journal of the European Academy of Dermatology and Venereology 2014, 28, 142-150.
Choi JI, Kim WM, Lee HG, Kim YO, Yoon MH. Role of neuronal nitric oxide synthase in the antiallodynic effects of intrathecal EGCG in a neuropathic pain rat model. Neuroscience Letters 2012, 510, 53-57.
Dat NT, Binh PT, Quynh le TP, Van Minh C, Huong HT, Lee JJ.. Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia 2010, 81: 1224-7.
Đorđević, T. M.; Šiler-Marinković, S. S.; Dimitrijević-Branković, S. I., Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chemistry 2010, 119, 957-963.
Gadd GM. Interactions of fungi with toxic metals. New Phytol 1993.124: 25-60.
Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. Annual Review of Plant Biology, 2013, 64, 429-450.
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011,51: 257-81.
Forster A, Beck B, Schmidt R. Investigations on hop polyphenols. Proceeding 25th Congress. European Brewery Convention 1995, 143-151.
García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 2009,58: 537-52.
Giese J. Antioxidants: Tools for preventing lipid oxidation. Food Technology 1996, 50, 73-81.
Gill, S. S.; Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale 2010, 48, 909-30.
Harman, D., The biologic clock: the mitochondria? Journal of the American Geriatrics Society 1972, 20, 145-7.
Hernandez-Saavedra, N. Y.; Ochoa, J. L., Copper-zinc superoxide dismutase from the marine yeast Debaryomyces hansenii. Yeast (Chichester, England) 1999, 15, 657-68.
Halliwell B. Free radicals and antioxidants: A personal view. Nutrition Reviews 1994, 52, 253-265.
Hall AJ, Babish JG, Darland GK, Carroll BJ, Konda VR, Lerman RH, Bland JS, Tripp ML. Safety, efficacy and anti-inflammatory activity of rho iso-alpha-acids from hops. Phytochemistry 2008, 69, 1534-1547.
https://event.ttl.com.tw/台灣菸酒公賣局,酒廠故事,歷史沿革
https://www.sk-ii.com.tw/tc/the-miracle-of-pitera.aspx,吉井隆
Karakaya S. Bioavailability of phenolic compounds.Crit ez1Rev Food Sci Nutr 2004, 44:453~64
Katz SH Maytag F Brewing an ancient beer. Archaeology 1991, 44: 24–27.
Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013, 162750.
Lamy V, Roussi S, Chaabi M, Gossé F, Schall N, Lobstein A, Raul F. Chemopreventive effects of lupulone, a hop β-acid, on human colon cancer-derived metastatic SW620 cells and in a rat model of colon carcinogenesis. Carcinogenesis 2007, 28, 1575-1581.

Liu MC, Xu Y, Chen YM, Li J, Zhao F, Zheng G, Jing JF, Ke T, Chen JY, Luo WJ. The effect of sodium selenite on lead induced cognitive dysfunction. Neurotoxicology 2013, 36: 82-8.
Martins S,Mussatto SI,Martinz-Avila G,Montanez-Saenz J,Aguilar CN,Teixeira JA.Bioactive phenolic compounds:Production and extraction by solid-state fermentation.A review.Biotechnol Adv.2011, 29:365-73
Marques PA,Helena MP, Teixeira JA, Rosa MF. Removal efficiency of Cu2+, Cd2+ and Pb2+ by waste brewery biomass: pH and cation association effects. Desalination 1999, 124: 137-44.
Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacological Reviews 1991, 43, 109-142.
Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. The Journal of Biological Chemistry 2003, 278, 31426-31433.
Oyaizu M., “Antioxidative activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography”, Nippon Shokuhin Kogyo Gakkaishi, 1988, 35:771-775 .
Pietta, P.G. “Flavonoids as Antioxidants. Institute of Advanced Biomedical Technologies”, 2000, 63 (7):1035–1042.
Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proceedings of the National Academy of Sciences 1996, 93, 4565-4571.
Romero R, Gomez-Basauri J. Yeast and yeast products, past, present and future: From flavors to nutrition and health. In: Lyons TP, Jacques KA (eds) Nutritional Biotechnology in the Food and Feed Industries. Proceedings of Alltech’s 19th International Symposium. Nottingham University Press, Loughborough, Leics, UK: 2003. 365-78.
Robbins RA, Grisham MB. Nitric oxide. The International Journal of Biochemistry and Cell Biology 1997, 29, 857-860.
Rehberger AJ Luther GE Brewing. Handbook of Brewing, 1st edn (Hardwick WA, ed), 1995,247–322.
Robbins R.J ,“Phenolic Acids in Foods: An Overview of Analytical Methodology”, J. Agric. Food Chem . 2003, 51 (10), 2866-2887
Sieja K, Talerczyk M. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecologic Oncology 2004, 93, 320-327.
Simpson WJ Studies on the sensitivity of lactic acid bacteria on hop bitter acids. J Inst Brew 1993, 99: 405–411.
Shimada, K.,Fujikawa, K.,Yahara, K.and Nakamura, T.,“Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion” Journal of Agricultural and Food Chemistry, 1992, 40: 945-948.
Stadtman ER. Protein oxidation and aging. Science 1992, 257, 1220-1224.
Tagasgira M, Watanabe M, Uemitsu N. Antioxidative activity of hop bitter acids and their analogues. Bioscience, Biotechnology and Biochemistry 1995, 59, 740-742.
Teixeira, S “Bioflavonoids: Proanthocyanidins and Quercetin and Their Potential Roles in Treating Musculoskeletal Conditions”, Orthopaedic & Sports Physical Therapy, . 2002,32 (7 ):357–363.
Thammakiti S, Suphantharika M, Phaesuwan T. Preparation of spent brewer’s yeast-glucans for potential applications in the food industry. Int J Food Sci Technol 2004. 39: 21-9.
Van Cleemput M, Cattoor K, De Bosscher K, Haegeman G, De Keukeleire D, Heyerick A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. Journal of Natural Products 2009, 72, 1220-1230.
Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition 2004, 44, 275-295.
Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochemical Journal 1996, 313, 17-29.
Whanger P. Selenium in the treatment of heavy metal poisoning and chemical carcinogenesis. J Trace Elem Electrolytes Health Dis 1992, 6: 209-21.
Xie DD, Liu YY, Wu CL, Fu JK, Xue R. Studies on biosorption of Pd2+ by the immobilized Saccharomyces cerevisiae waste biomass. Microbiology 2003, 30: 29-34.
Xu M, Dong J, Zhang M, Xu X, Sun L. Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. Postharvest Biology and Technology 2012, 65, 5-12.
Yao J, Li C, Zhang J, Liu S, Feng J, Wang R, Li Y, Jiang C, Song L, Chen A. Expression of nitric oxide synthase (NOS) genes in channel catfish is highly regulated and time dependent after bacterial challenges. Developmental and Comparative Immunology 2014, 45, 74-86.
王三郎,應用微生物學,第一版,高立圖書有限公司,1994。
王文甫,啤酒生產工藝,第一版,中國輕工業出版社,1997。
王光輝,啤酒發酵製程標準操作規範,台灣菸酒股份有限公司,竹南啤酒廠員工教育訓練授課教材,2002。
石濤,環境微生物,第五版,鼎茂圖書出版有限公司,2001。
內政部統計處,臺灣地區簡易生命表,2018。
白彥逢,釀酒酵母的分類學研究進展,中國科學院微生物研究所真菌地衣系統學開放研究實驗室,1999
宋旭鷺、趙國崢、張洪林等.濃塩法提取啤酒酵母中核苷酸的生產條件研究,釀酒科技,2006
宋培宏,自釀啤酒完全指南,精誠資訊股份有限公司,2018
邱怜瑋、丁秀玉、張淑微、賴雅韻、黃和全、汪慧娟、黃文盈等著,天然中草藥化粧品學,華格那企業有限公司,2016
呂憶君,啤酒酵母抗氧化及美白功效分析之研究,明新科技大學,碩士論文,2017
毛慶豐,啤酒的科學,科技部科技大觀園《科學發展》2019年1月,553期,51~57頁
李驥,孟小林.自溶一堿法提取啤酒酵母,葡聚糖工藝研究,釀酒,2008
周德青,微生物學教程 第二版,北京高等教育出版社,2005年5月: 57–62
林宗儀,機能性成分於啤酒花、啤酒及釀造副產品中之含量與種類,輔仁大學,碩士論文,2016
胡瑛,啤酒酵母的簡單介紹及其在食品中的應用與開發,現代測量與實驗室管理,江西省產品質量監督檢測院,南昌,2007 年第4 期
林明正,甜菜根之花青素最適化萃取及其抗氧化能力分析,明新科技大學,碩士論文,2020
段國仁,基礎啤酒釀造學,大同大學生物工程系授課教材,1999
段國仁,釀酒工藝與文化講義,大同大學生物工程研究所授課教材,2008。
吳楚珍,紫錐花之類黃酮化合物和總酚化合物最適化萃取及其抗氧化特性分
析,明新科技大學,碩士論文,2019
游玉婷,紫米花青素之類黃酮化合物和總酚化合物最適化萃取及其抗氧化特性分
析,明新科技大學,碩士論文,2019
徐永年、陳嘉鴻、Gather四合院,大人的釀酒學:發酵、蒸餾與浸泡酒的科普藝術,2018
徐文龍,啤酒的種類,中華民國酒業發展協進會季刊,第十一期2002,22~28。
梁崇明,素食者的雞精-啤酒酵母,大喜文化有限公司,2018。
財團法人食品工業發展研究所,剖析營養食品─啤酒酵母,2002
孫正博,啤酒酵母多糖抗氧化活性研究,湖北工業大學,碩士論文,2007
孫偉峰,周索梅,王強.廢啤酒酵母綜合利用研究進展,化工進展,2008
陳師瑩,周志輝,黃進發,林士民,湯雅理,陳惠英,高尚德,王玟玲、楊山明等著,王進崑總校閱,保健食品概論,華格那企業有限公司,108,3-26
陳芳智譯,Lester Packer、Carol Colman著,抗氧化物的奇蹟,原水文化出版社,2016
曾文忠、曾婷,淺論啤酒釀造中的酚類物質,燕京啤酒股份有限公司,SCI TECH 專題論述2006.02
楊慶和,啤酒酵母培養增殖條件的探討,大同大學,碩士論文,2009
楊燕萍,啤酒大麥和麥芽中的酚類物質及其抗氧化特性分析,碩士論文,2010
管敦儀,啤酒工業手冊,第二版,中國輕工業出版社,1998
鄭建瑋,超越千年的釀造工藝—啤酒,科學月刊,2018.10
鄭甯,啤酒釀造副產品對鉛中毒小鼠影響及啤酒花粕之28天餵食毒性試驗,輔仁大學,碩士論文,2018
廖湘萍。徐功瑾,付三喬,利用啤酒酵母生產SOD的提取條件研究.釀酒科技,2007
葉莉娟,神秘果枝葉黃酮和總酚類化合物最適化萃取及其抗氧化特性分析,明新科技大學,碩士論文,2019
衛生福利部國民健康署,第七版國人膳食營養素參考攝取量表
盧起恆,啤酒酵母及其代謝,台灣菸酒股份有限公司員工訓練所,啤酒釀造技術研習班授課教材,1~21,2002。
蔣愛英,多酚物質對啤酒質量和風味的影響,啤酒科技,北京燕京啤酒集團公司科研技術中心,2004.10

電子全文 電子全文(網際網路公開日期:20250627)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊