(3.238.7.202) 您好!臺灣時間:2021/03/03 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉建宏
研究生(外文):YE,JIAN-HONG
論文名稱:於不鏽鋼網上生長奈米碳管之研究
論文名稱(外文):The Study Of Growing Carbon Nanotubes On Stainless Steel Mesh
指導教授:謝建國謝建國引用關係
指導教授(外文):HSIEH,CHIEN-KUO
口試委員:林正裕謝建國蘇家弘
口試委員(外文):LIN, JENG-YUHSIEH,CHIEN-KUOSU,CHIA-HUNG
口試日期:2020-06-23
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:50
中文關鍵詞:奈米碳管化學水浴法化學氣象沉積法油水分離超疏水
外文關鍵詞:Carbon NanotubesChemical Bath DepositionChemical Vapor DepositionOil-Water SeparationSuperhydrophobic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用不鏽鋼網當作基材,首先於不鏽鋼網上鍍上生長奈米碳管觸媒層,接著使用化學氣相沉積法來成長奈米碳管薄膜,應用於疏水親油材料,作為油水分離薄膜材料。
所製備之油水分離膜使用場發射掃描電子顯微鏡來觀察薄膜表面形貌,薄膜之疏水親油性藉由水接觸角量測儀測量其疏水親油的程度,利用拉曼分析光譜儀進行奈米碳管分析鑑定,傅里葉轉換紅外光譜測量薄膜表面是否具有疏水之官能基,由場發射電子顯微鏡可以看出奈米碳管成功生長在的基材上,水接觸角證明此薄膜具有良好之疏水親油性,拉曼光譜證明我們在基材上生長了奈米碳管。
由於不同油水溶液有不同的黏稠度與環境,可以藉由控制奈米碳管生長疏密,與控制不鏽鋼網疏密程度,配合所示合的裝置來達到最佳油水分離效果。

This study uses metal mesh as the substrate, Depositing a layer of nickel on the substrate by chemical method as a catalyst for growing carbon nanotubes, Then use chemical vapor deposition to grow carbon nanotube film for hydrophobic and lipophilic materials .
As a material for oil-water separation film .We used a field emission scanning electron microscope to observe the surface morphology of the film. The hydrophobic/lipophilicity of the film is measured by the water contact angle meter to determine its hydrophobic/lipophilic level. Analysis of carbon nanotubes by Raman analysis spectrometer, Fourier transform infrared spectroscopy to measure whether the surface of the film has hydrophobic functional groups, From the field emission electron microscope, it can be seen that the carbon nanotubes were successfully grown on the substrate. The water contact angle proves that the film has good hydrophobic and lipophilic properties, and Raman spectroscopy proves that we have grown carbon nanotubes on the substrate.
Because different oil solutions have different viscosities and environments,Therefore, by controlling the growth density of the carbon nanotubes and the density of the stainless steel mesh and the device shown,Can get the best oil-water separation effect.

目 錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
致謝 iii
摘要 iv
Abstract vi
目錄 vi
圖目錄 viii
第一章 序論 1
1.1 前言 1
第二章 理論基礎與文獻回顧 5
2.1 油水分離材料簡介 5
2.2 基材選擇 6
2.2.1 吸油材料 6
2.2.2 過濾膜材料 8
2.3分離膜選擇 13
2.4油水分離機制 17
2.5水接觸角量測 17
2.6加熱系統 17
2.7分離裝置 20
第三章 實驗方法與步驟 21
3.1 實驗流程 21
3.2 實驗方法 22
3.2.1 利用化學沉積法製備鎳薄膜作為催化層 22
3.2.2 利用化學氣象沉積法於基材上製備奈米碳管 23
3.3 分析儀器 24
3.3.1 高解析場發掃瞄式電子顯微鏡(FE-SEM) 24
3.3.2能量光譜散射儀(EDS) 25
3.3.3 高解析穿透式電子顯微鏡(TEM) 26
3.3.4 X光繞射儀(XRD) 27
3.3.5 傅立葉轉換紅外線光譜(FTIR) 28
3.3.6 原子力顯微鏡(AFM) 29
3.3.7 水接觸角量測儀(WCA) 30
第四章 結果與討論 31
4.1 製備奈米碳管於不鏽鋼網 31
4.2 CVD生長奈米碳管在不同生長溫度下的影響 37
4.3將油水分離膜應用於加熱系統與油水分離設備 39
4.3.1 CNTs/Ti mesh製程 41
4.4油水分離膜應用於油水分離設備 44
第五章 結論 47
參考文獻 48


圖目錄
圖1-1德祥台北漏油事件 1
圖1-2石墨烯海綿吸收分離膜示意圖 2
圖1-3不鏽鋼過濾材料示意圖 2
圖2-1油水分離歷年之(a)論文發表數量長條圖(b)材料種類圖 3
圖2-2油水分離材料示意圖 4
圖2-3奈米碳管海綿之(a)尺寸圖(b)SEM圖(c)油水分離圖 5
圖2-4蠟燭膜沉積發泡鎳之(a)流程圖(b)實體圖 6
圖2-5蠟燭膜沉積發泡鎳油水分離圖 6
圖2-6 SEM圖之(a) steel mesh (b) steel@CS@PPy@SA mesh 7
圖2-7 steel@CS@PPy@SA mesh油水分離圖 8
圖2-8製備Ag於銅網上之示意圖 9
圖2-9 Ag/Copper mesh進行油水分離測試 9
圖2-10 PPy foma製程圖之(a)鍍上氟化物示意圖(b)海綿與PPy foma油水分 離示意圖(c)FPF疏水示意圖(d)FPF親油示意圖 10
圖2-11 SEM圖之(a)碳纖維表面結構圖(b)碳纖維表面生長奈米碳管結構圖 11
圖2-12 WCA圖之(a)CF (b)CNT/CF 11
圖2-13石墨稀海綿通電加熱示意圖 12
圖2-14石墨稀海綿不通電與通電升溫油水分離比較圖 12
圖3-1實驗流程圖 13
圖3-2化學水浴法流程圖 14
圖3-3化學氣象沉積法流程圖 15
圖3-4高解析場發掃瞄式電子顯微鏡 16
圖3-5 能量散射光譜儀 17
圖3-6高解析穿透式電子顯微鏡 18
圖3-7 X光繞射儀 19
圖3-8傅立葉轉換紅外線光譜儀(FTIR) 20
圖3-9原子力顯微鏡 21
圖3-10水接觸角量測儀 22
圖4-1 不鏽鋼製備奈米碳管SEM圖(a) 5K之SS mesh表面形貌(b) 5K之 Ni(OH)2/ SS mesh表面形貌 (c) 5K之 CNTs/ SS mesh表面形貌(d)25K之SS mesh表面形貌(e) 25K之 Ni(OH)2/ SS mesh 表面形貌(f) 25K之CNTs/ SS mesh表面形 23
圖4-2 SS mesh, Ni(OH)2/ SS mesh和CNTs/SS mesh之(a)拉曼光譜圖(b)水接觸角量測圖 24
圖4-3 SS mesh, Ni(OH)2/ SS mesh和CNTs/SS mesh之XRD圖 25
圖4-4 CNTs/SS mesh之CVD製程結束與放置於烘箱一天的(a)FTIR圖(b)WAC 26
圖4-5 Ni(OH)2/ SS mesh經過退火製程後之(a) TEM圖倍率為3K(b) TEM圖倍率為10K(c)EDS 27
圖4-6 Ni(OH)2/ SS mesh經過退火製程後之(a) AFM圖 (b) SEM圖 28
圖4-7 不同溫度生長奈米碳管之(a-d) 450度、550度、650度和750度低倍率(1K)FE-SEM圖(e-h) 450度、550度、650度和750度高倍率(10K)FE-SEM圖 30
圖4-8 不同溫度生長奈米碳管之WCA曲線圖 31
圖4-9油水分離膜應用於加熱系統之(a)電源供應器(b)電解腐蝕熔斷之CNTs/SS mesh (c) CNTs/Ti mesh通電前之溫度(d) CNTs/Ti mesh通電後之溫度 32
圖4-10 CNTs/Ti mesh製程 FE-SEM圖之(a) 1K之Ti mesh表面形貌(b) 1K之 Ni(OH)2/ Ti mesh表面形貌 (c) 1K之 CNTs/ Ti mesh表面形貌(d)10K之Ti mesh表面形貌(e) 10K之 Ni(OH)2/ Ti mesh 表面形貌(f) 10K之CNTs/ Ti mesh表面形貌 33
圖4-11 Ti mesh、Ni(OH)2/ Ti mesh與CNTs/ Ti mesh之拉曼曲線圖 34
圖4-12 Ti mesh、Ni(OH)2/ Ti mesh與CNTs/ Ti mesh之(a-c)WCA圖(d)WCA曲線圖(e-g)OCA圖(h) OCA曲線圖 35
圖4-13 油水分離系統之(a)第一代(b)第二代(c)第三代(d)第四代(e)第五代雛形 37


[1]徐文彬, 德祥台北漏油事件, 2016)
[2]Baiyu Zhang, Ethan J. Matchinski, Bing Chen, Xudong Ye, Liang Jing, Kenneth Lee. Marine Oil Spills—Oil Pollution, Sources and Effects. World Seas: an Environmental Evaluation , 2019 .21 : p. 391-406.
[3]J. Behin and M. Aghajari . Influence of water level on oil–water separation by residence time distribution curves investigations. Separation and Purification Technology, 2008. 64(1): p. 48-55.
[4]Sun, H., et al., Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem, 2013. 6(6): p. 1057-62.
[5]Khosravi, M. and S. Azizian, Preparation of superhydrophobic and superoleophilic nanostructured layer on steel mesh for oil-water separation. Separation and Purification Technology, 2017. 172: p. 366-373.
[6]Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025-58.
[7]Xuchun Gui, Jinquan Wei, Kunlin Wang, Anyuan Cao, Hongwei Zhu,Yi Jia, Qinke Shu, Dehai Wu . Carbon nanotube sponges. Adv Mater, 2010. 22(5): p. 617-21.
[8]Zhao, F., et al., Candle soot coated nickel foam for facile water and oil mixture separation. RSC Advances, 2014. 4(14).
[9]Xuchun Gui, Zhiping Zeng, Zhiqiang Lin, Qiming Gan, Rong Xiang, Yuan Zhu, Anyuan Cao,Zikang Tang . Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl Mater Interfaces, 2013. 5(12): p. 5845-50.
[10]Cailong Zhou, Jiang Cheng, Kun Hou, An Zhao, Pihui Pi, Xiufang Wen, Shouping Xu. Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chemical Engineering Journal, 2016. 301: p. 249-256.
[11]Maryam Khosravia, Saeid Aziziana, Rabah Boukherroubb.Efficient oil/water separation by superhydrophobic CuxS coated on copper mesh. Separation and Purification Technology, 2019. 215: p. 573-581.
[12]Zhu, Haiguang, et al. "Dual-layer copper mesh for integrated oil-water separation and water purification." Applied Catalysis B: Environmental 200 (2017): 594-600.
[13]An, Jin, et al. "Surface modification of polypyrrole-coated foam for the capture of organic solvents and oils." Journal of materials science 49.13 (2014): 4576-4582.
[14]Hsieh, Chien-Te, et al. "Hierarchical oil–water separation membrane using carbon fabrics decorated with carbon nanotubes." Surface and Coatings Technology 286 (2016): 148-154.
[15]Kang, Hongjun, et al. "Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation." Separation and Purification Technology 201 (2018): 193-204.
[16]Tommi, H., et al. "Surface-wetting characterization using contact-angle measurements." Nat. Protoc 13 (2018): 1521-1538.
[17]Ge J, Shi LA, Wang YC, Zhao HY, Yao HB, Zhu YB, et al. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat Nanotechnol. 2017;12(5):434-40.
[18]Taewoo Kim, Jeong Seok Lee, Geonhui Lee, Dong Kyun Seo, Youngbin Baek,Jeyong Yoon, Seung M. Oh, Tae June Kang, Hong H. Lee,Yong Hyup Kim . Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil,Sci Rep-Uk, 6, 2016). Taewoo Kim, Jeong Seok Lee, Geonhui Lee, Dong Kyun Seo, Youngbin Baek,Jeyong Yoon, Seung M. Oh, Tae June Kang, Hong H. Lee,Yong Hyup Kim . Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil,Sci Rep-Uk, 6, 2016).
[19]Lokhande, P.E. and U.S. Chavan, Nanoflower-like Ni(OH) 2 synthesis with chemical bath deposition method for high performance electrochemical applications. Materials Letters, 2018. 218: p. 225-228.
[20]S. W. Pattinson, B. Viswanath, D. N. Zakharov, J. J. Li, E. A. Stach, A. J. Hart, Mechanism and Enhanced Yield of Carbon Nanotube Growth on Stainless Steel by Oxygen-Induced Surface Reconstruction, Chem. Mater. 27 (2015) 932–937.
[21]Kozbial, A., et al., Are Graphitic Surfaces Hydrophobic? Acc Chem Res, 2016. 49(12): p. 2765-2773.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔