跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Himanshu Mishra
研究生(外文):HIMANSHU MISHRA
論文名稱:电容耦合射频等离子体系统通过等离子体聚合工艺在管子的内表面进行涂层
論文名稱(外文):Coating on Tube’s Inner Surface by Plasma Polymerization Process through Capacitive Coupled RF Plasma System
指導教授:謝章興
指導教授(外文):HSIEH, JANG-HSING
口試委員:李泉聶波齊
口試委員(外文):LI,CHUANNIMA, BOLOUKI
口試日期:2019-11-25
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:75
中文關鍵詞:等離子體聚合內表面塗層聚(甲基丙烯酸甲酯)環丙胺
外文關鍵詞:PLASMA POLYMERIZATIONINNER SURFACE COATINGPOLY (METHYL METHACRYLATE)CYCLOPROPYLAMINE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
RECOMMENDATION LETTER FROM THE THESIS ADVISOR
THESIS/DISSERTATION ORAL DEFENSE COMMITTEE CERTIFICATION
ABSTRACT
LIST OF FIGURES
LIST OF TABLES
1. INTRODUCTION
2. CHARACTERIZATION METHODS FOR PLASMA POLYMER
2.1 Surface Analytical Techniques
2.2 Contact Angle Goniometry
2.3 Optical Emission Spectroscopy
2.4 Plasma Polymerization Chamber
3. PLASMA POLYMERIZATION OF POLY(METHYL METHACRYLATE) ON THE INNER SURFACE OF THE TUBE BY CAPACITIVE COUPLED RF PLASMA REACTOR
3.1 Experiment Procedure
3.2 Sheath Thickness Estimations Through Plasma Parameters
3.3 Material Characterizations
4. EFFECT OF CYCLOPROPYLAMINE GROUP ON POLY(METYL-METHACRYLATE) COATED INNER SURFACE OF THE TUBE IN LOW PRESSURE REGIME BY PLASMA POLYMERIZATION PROCESS
4.1 Experiment Procedure
4.2 Sheath Thickness Estimations Through Plasma Parameters
4.3 Material Characterizations
5. CONCLUSIONS
APPENDIX
REFERENCES
LIST OF FIGURES
Figure 1 Inductively Coupled Barrel
Figure 2 Capacitively Coupled Barrel
Figure 3 Parallel Plate Reactor
Figure 4 Reinburg Reactor
Figure 5 Reactive Ion Etch Configuration
Figure 6 - (A) A schematic of an RF plasma polymerization reactor, and (B) a simplified electrical model showing the sheath regions and the bulk plasma.
Figure 7 Schematic diagram of the bicyclic step-growth mechanism of plasma polymerization
Figure 8 Schematic diagram of the rapid step growth polymerization (RSGP) process
Figure 9 A schematic representation of the basic ATR-IR principle
Figure 10 A schematic representation of the contact angle measurement
Figure 11 A schematic representation of the plasma polymerization chamber
Figure 12 2D Structure of MMA
Figure 13 Plasma polymerization chamber for Poly (Methyl-Methacrylate) studies
Figure 14 Optical emission spectra with the (a) changing working pressure, (b) changing power, (c) changing monomer amount
Figure 15 Plasma discharges inside the tube for different power
Figure 16 Plasma discharges inside the tube for different working pressure
Figure 17 Plasma discharges inside the tube for different monomer amount
Figure 18 Deposition rate plot for various monomer amount on the silicon wafer
Figure 19 Deposition rate plot for various power ratings on the silicon wafer
Figure 20 Deposition rate plot for various working pressure on the silicon wafer
Figure 21 ATR-FTIR spectrum for PMMA coated silicon wafer in the range of 700 to 1500 cm-1
Figure 22 Schematic methodology of PMMA coated silicone tube for ATR-FTIR analysis. (a) The silicone tube of length 8 cm having internal radius of 3 mm. (b) Shows eight equal cut tube sections each of 1 cm. (c) Shows 1 cm tube section cut from the middle position for making flat sample regarding ATR-FTIR study. (d) Shows flat silicone tube for ATR-FTIR analysis.
Figure 23 ATR-FTIR spectrum for PMMA coating inside the silicone tube. (a) The whole ATR-FTIR spectrum for PMMA coated/uncoated silicone tube. (b) band depiction of PMMA on the inner surface of the silicone tube in the arange of 1460 to 1480 cm-1. (c) band depiction of PMMA on the inner surface of the silicone tube in the arange of 1800 to 1810 cm-1. (d) band depiction of PMMA on the inner surface of the silicone tube in the arange of 1505 to 1530 cm-1

Figure 24 Structure of CPA
Figure 25 Schematic representation of plasma grafting process
Figure 26 Schematic representation of plasma polymerization chamber with silicone tube attached at the powered electrode position
Figure 27 Optical emission spectra with changing the power ratings
Figure 28 Deposition rate plot for various power ratings on the silicon wafer
Figure 29 ATR-FTIR spectrum for PMMA coating inside the silicone tube for power rating of 70 W.
Figure 30 ATR-FTIR spectrum for PMMA coating inside the silicone tube for power rating of 85 W.
Figure 31 ATR-FTIR spectrum for PMMA coating inside the silicone tube for power rating of 100 W.
Figure 32 Contact angle measurement for different power rating.






LIST OF TABLES
Table 1 Densities and temperatures of various plasma types
Table 2 Research matrix for (a) Changing working pressure, (b) Changing power, (c) Changing monomer amount
Table 3 Summary for electron temperature and electron density for different power range
Table 4 Summary for electron temperature and electron density for different pressure range
Table 5 Summary for electron temperature and electron density for different monomer amount.
Table 6 Research matrix for different power range
Table 7 Summary for electron temperature and electron density for different power range.











References
[1]J Reece Roth, vol. 1. 1995.
[2]W. J. Van Ooij, “Plasma-polymerized coatings,” Handb. Adhes. Second Ed., pp. 322–325, 2005.
[3]H. Yasuda, PLASM A POLYMERIZATIO N. 1985.
[4]B. Bera, “Literature Review on Electrospinning Process (A Fascinating Fiber Fabrication Technique),” Imp. J. Interdiscip. Res. (IJIR, vol. 2, no. 8, pp. 972–984, 2016.
[5]P. K. Krishna, M. A. Srimanth, and P. S. Reddy, “A review on contemporary practices in Lithography,” IOSR J. Appl. Chem., vol. 7, no. 4, pp. 27–31, 2014.
[6]X. Tang and X. Yan, “Dip-coating for fibrous materials: mechanism, methods and applications,” J. Sol-Gel Sci. Technol., vol. 81, no. 2, pp. 378–404, 2017.
[7]M. D. Tyona, “A theoritical study on spin coating technique,” Adv. Mater. Res., vol. 2, no. 4, pp. 195–208, 2013.
[8]A. Moridi, S. M. Hassani-Gangaraj, M. Guagliano, and M. Dao, “Cold spray coating: Review of material systems and future perspectives,” Surf. Eng., vol. 30, no. 6, pp. 369–395, 2014.
[9]L. Kreethawate, S. Larpkiattaworn, S. Jiemsirilers, and T. Uchikoshi, “Inner surface coating of non-conductive tubular substrate using electrophoretic deposition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 18, no. SYMPOSIUM 3, 2011.
[10]B. Liu, G. Zhang, D. Cheng, C. Liu, R. He, and S.-Z. Yang, “Inner surface coating of TiN by the grid-enhanced plasma source ion implantation technique,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 6, p. 2958, 2001.
[11]J. M. Lackner, M. Wiesinger, R. Kaindl, W. Waldhauser, D. Heim, and P. Hartmann, “Plasma polymerization inside tubes in hexamethyldisiloxanes and ethyne glow discharges: Effects of deposition atmosphere on wetting and ageing in solvents,” Plasma Chem. Plasma Process., vol. 34, no. 2, pp. 259–269, 2014.
[12]A. Serov, A. Сhoukourov, D. Slavinska, and H. Biederman, “Preparation, Basic Properties, and Potential Application of Plasma Polymer-based Nanoclusters,” WDS’10 Proc. Contrib. Pap. Part III, pp. 31–35, 2010.
[13]M. Milosevic, Internal reflection and ATR spectroscopy, vol. 39, no. 3. 2004.
[14]D. Szyszka, “Study of contact angle of liquid on solid surface and solid on liquid surface,” Pr. Nauk. Inst. Gor. Politech. Wroclawskiej, no. 135, pp. 131–146, 2013.
[15]U. Fantz, “Basics of plasma spectroscopy,” Plasma Sources Sci. Technol., vol. 15, no. 4, 2006.
[16]F. J. Gordillo-Vázquez, M. Camero, and C. Gómez-Aleixandre, “Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H 2/CH4 plasmas used for the synthesis of nanocarbon structures,” Plasma Sources Sci. Technol., vol. 15, no. 1, pp. 42–51, 2006.
[17]X. Zhu and Y. Pu, “A simple collisional – radiative model for low- pressure argon discharges A simple collisional – radiative model for low-pressure argon discharges,” vol. 2533, no. March, pp. 6–12, 2016.
[18]C. Li, J. H. Hsieh, W. W. Hu, and Y. H. Lin, “Fabrication and characterization of polymethylmethacrylate (PMMA) thin film by plasma polymerization used for cell culture,” Surf. Coatings Technol., vol. 259, no. PA, pp. 20–26, 2014.
[19]V. Chan, C. Li, Y. H. Tsai, Y. H. Tseng, and Y. Chen, “Cyclopropylamine modified plasma polymerised poly(methyl methacrylate) thin films for cell culture,” Int. J. Nanotechnol., vol. 14, no. 12, pp. 1045–1065, 2017.
[20]S. Dirlikov and J. L. Koenig, “Infrared Spectra of Poly(Methyl Methacrylate) Labeled With Oxygen-18.,” Appl. Spectrosc., vol. 33, no. 6, pp. 551–555, 1979.
[21]S. T. C. Hsieh, J. H. Hsieh, and Y. Li, “PMMA and PMMA-Ag thin films deposited by a system combining inductively coupled plasma polymerisation and RF sputtering,” Int. J. Nanotechnol., vol. 14, no. 12, pp. 1020–1030, 2017.
[22]H. M. Xu et al., “Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet,” Appl. Surf. Sci., vol. 359, pp. 349–355, 2015.
[23]A. J. Choudhury, H. Kakati, A. R. Pal, D. S. Patil, and J. Chutia, “Synthesis and characterization of plasma polymerized styrene films by rf discharge,” J. Phys. Conf. Ser., vol. 208, pp. 1–9, 2010.
[24]G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, and X. Wang, “Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template,” Nanoscale Res. Lett., vol. 3, no. 3, pp. 118–122, 2008.
[25]R. M. Dukali et al., “Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers,” J. Serbian Chem. Soc., vol. 79, no. 7, pp. 867–880, 2014.
[26]M. F. Arendt, P. W. Browning, and L. J. Butler, “Emission spectroscopy of the predissociative excited state dynamics of acrolein, acrylic acid, and acryloyl chloride at 199 nm,” J. Chem. Phys., vol. 103, no. 14, pp. 5877–5885, 1995.
[27]A. N. Bhoj and M. J. Kushner, “Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges,” Plasma Sources Sci. Technol., vol. 17, no. 3, 2008.
[28]R. M. Ahmed, Optical Study on Poly ( methyl methacrylate )/ Poly ( vinyl acetate ) Blends, vol. 2009. 2009.
[29]A. Dazzi, A. Deniset-Besseau, and P. Lasch, “Minimising contributions from scattering in infrared spectra by means of an integrating sphere,” Analyst, vol. 138, no. 14, pp. 4191–4201, 2013.
[30]T. Shao, Y. Zhou, C. Zhang, W. Yang, Z. Niu, and C. Ren, “Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum,” IEEE Trans. Dielectr. Electr. Insul., vol. 22, no. 3, pp. 1747–1754, 2015.
[31]P. Favia, R. D’Agostino, and F. Palumbo, “Grafting of chemical groups onto polymers by means of RF plasma treatments: A technology for biomedical applications,” J. Phys. IV JP, vol. 7, no. 4, pp. 199–208, 1997.
[32]C. Oehr, M. Müller, B. Elkin, D. Hegemann, and U. Vohrer, “Plasma grafting - A method to obtain monofunctional surfaces,” Surf. Coatings Technol., vol. 116–119, pp. 25–35, 1999.
[33]F. Arefi-Khonsari and L. Amouroux, “Plasma for deposition, grafting or etching and the chemistry of the plasma-polymer interface involved,” vol. 195, pp. 195–212, 2008.
[34]L. Zajickova, A. Manakhov, P. Skladal, M. Elias, D. Necas, and J. Cechal, “Plasma polymerization of amine-rich films aimed at their bioapplications.,” Bull. - Soc. Vac. Coaters, no. Summer, pp. 26–30, 2014.
[35]A. Manakhov et al., “Optimization of cyclopropylamine plasma polymerization toward enhanced layer stability in contact with water,” Plasma Process. Polym., vol. 11, no. 6, pp. 532–544, 2014.
[36]A. Manakhov, D. Nečas, J. Čechal, D. Pavliňák, M. Eliáš, and L. Zajíčková, “Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization,” Thin Solid Films, vol. 581, pp. 7–13, 2015.
[37]V. Prysiazhnyi, V. F. B. Saturnino, and K. G. Kostov, “Transferred plasma jet as a tool to improve the wettability of inner surfaces of polymer tubes,” Int. J. Polym. Anal. Charact., vol. 22, no. 3, pp. 215–221, 2017.
[38]B. C. Smith, Fundamentals of fourier transform infrared spectroscopy, second edition. 2011.
[39]L. Bruno, Infrared spectral interpretations, vol. 53, no. 9. 2019.


電子全文 電子全文(網際網路公開日期:20250814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top