參考文獻
[1] Hong X.y., W.L.m., Wu F., Wu Z.z., Chen L.z., Liu Z.g., “Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine,” Development and Therapy, pp. 945, 2013
[2] S. Kaushik, A.H.H., D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen, M. R. Prausnitz, “Lack of pain associated with microfabricated microneedles,” Anesth. Analg, pp. 502-504, Feb. 2001
[3] H. S. Gill, D.D.D., B.A. Burris, M.R. Prausnitz, “ Effect of microneedle design on pain in human volunteers,”Clin. J. Pain, vol.24, pp. 585-594, Feb. 2008
[4] J. Gupta, S.S.P., B. Bondy, E.I. Felner, M.R. Prausnitz, “Infusion pressure and pain during microneedle injection into skin of human subjects,” Biomater, vol.32, pp. 6823-6831, Oct. 2011
[5] S.M. Bal, J.C., S. Pavel, J.A. Bouwstra,, “In vivo assessment of safety of microneedle arrays in human skin,” Eur. J. Pharm. Sci, vol.35, pp. 198-202, 2008
[6] M.I. Haq, E.S., D.N. John, M. Kalavala, C. Edwards, A. Anstey, A. Morrissey, J.C. Birchall, “Clinical administration of microneedles: skin puncture, pain and sensation,”Biomed. Microdevices, vol.11, pp. 35-47, 2009
[7] Y.-W. Noh, T.-H.K., J.-S. Baek, H.-H. Park, S.S. Lee, M. Han, S.-C. Shin, C.-W. Cho, “In vitro characterization of the invasiveness of polymer microneedle against skin,” Int. J. Pharm, vol.397, pp. 201-205, 2010
[8] J. Gupta, E.I.F., M.R. Prausnitz, “Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles,” Diab. Technol. Ther, vol.11, pp. 329-337, 2009
[9] J. Gupta, D.D.D., E.I. Felner, M.R. Prausnitz, “Rapid local anesthesia in humans using minimally invasive microneedles,” Clin. J. Pain, vol.28, pp. 129-135, 2012
[10] J. Gupta, E.I.F., M.R. Prausnitz, “Rapid pharmacokinetics of intradermal insulin administered using microneedles in type 1 diabetes subjects,” Diab. Technol. Ther, vol.13, pp. 451-456, 2011
[11] J. Beran, A.A., A. Laiskonis, N. Mickuviene, P. Bacart, Y. Calozet, E. Demanet, S. Heijmans, P. Van Belle, F. Weber, C. Salamand, “Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial,” BMC Med, vol.7, pp. 13, 2009
[12] I. Leroux-Roels, E.V., R. Freese, M. Seiberling, F. Weber, C. Salamand, G, Leroux-Roels, “Seasonal influenza vaccine delivered by intradermal microinjection: a randomised controlled safety and immunogenicity trial in adults,” Vaccine, vol.26, pp. 6614-6619, 2008
[13] R. Arnou, G.I., M. De Decker, A. Ambrozaitis, M.P. Kazek, F. Weber, P. Van Damme, “Intradermal influenza vaccine for older adults: a randomized controlled multicenter phase III study, Vaccine,” vol.27, pp. 7304-7312, 2009
[14] J. Gupta, S.S.P., B. Bondy, E.I. Felner, M.R. Prausnitz, “Infusion pressure and pain during microneedle injection into skin of human subjects,” Biomaterials, vol.32, pp. 6823-6831, 2011
[15] Belshe, R.B., “Current status of live attenuated influenza virus vaccine in the US,” Virus Res, vol.103, pp. 177-185, 2004
[16] D. Holland, R.B., F. De Looze, P. Eizenberg, J. McDonald, J. Karrasch, M. McKeirnan, H. Salem, G. Mills, J. Reid, F. Weber, M. Saville, “Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial,” J. Infect. Dis, vol.198, pp. 650-658, 2008
[17] P. Van Damme, F.O.-K., M. Van der Wielen, Y. Almagor, O. Sharon, Y. Levin, “Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults,” Vaccine, vol.27, pp. 454-459, 2009
[18] Y. Hutin, A.H., L. Chiarello, M. Catlin, B. Stilwell, T. Ghebrehiwet, J. Garner, B. , “Members Injection, Safety, best infection control practices for intradermal, subcutaneous, and intramuscular needle injections,” Bull. WHO, vol.81, pp. 491-500, 2003
[19] T.S. Kupper, R.C.F., “Immune surveillance in the skin: mechanisms and clinical consequences,” Nat. Rev. Immunol, vol.4, pp. 211-222, 2004
[20] R.F. Donnelly, T.R.R.S., M.M. Tunney, D.I.J. Morrow, P.A. McCarron, C. O'Mahony, A.D. Woolfson, “Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro,” Pharm. Res, vol.26, pp. 2513-2522, 2009
[21] R. Singh, S.S., J.W. Lillard, “Past, Present and future technologies for oral delivery of therapeutic proteins,” J. Pharm. Sci, vol.97, pp. 2497-2523, 2008
[22] D.J., D., “Deciphering metabolic messages from the gut drives therapeutic innovation: the 2014 Banting Lecture,” Diabetes, vol.64(2), pp. 317-26, 2015
[23] Liu S., J.M.N., Quan Y.S., Kamiyama F., Katsumi H., Sakane T., “The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin,” Journal of Controlled Release, vol.161(3), pp. 933-41, 2012
[24] Henry S., M.D.V., Allen M.G., Prausnitz M.R., “Microfabricated microneedles: a novel approach to transdermal drug delivery,” Journal of Pharmaceutical Sciences, vol.87(8), pp. 922-5., 1998
[25] Kim Y.C., P.J.H., Prausnitz M.R., “Microneedles for drug and vaccine delivery,” Advanced Drug Delivery Reviews, vol.64(14), pp. 1547-68, 2012
[26] Wang P.M., C.M., Prausnitz M.R., “Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles,” Diabetes Technology and Therapeutics, vol.7(1), pp. 131-41, 2005
[27] J. Ji, F.E.H.T., J.M. Miao, C. Iliescu, “Microfabricated silicon microneedle array for transdermal drug delivery,” International Mems Conf 2006, IOP Publishing Ltd., Bristol, pp. 1127-1131, 2006
[28] Y. Q. Qiu, Y.H.G., K. J. Hu, F. Li, “Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes,” J. Control Release, vol.129, pp. 144-150, 2008
[29] L. Wei-Ze, H.M.-R., Z. Jian-Ping, Z. Yong-Qiang, H. Bao-Hua, L. Ting, Z. Yong, “Super-short solid silicon microneedles for transdermal drug delivery applications,” Int. J. Pharm, vol.389, pp. 122-129, 2010
[30] R.F. Donnelly, R.M., T.R.R. Singh, D.I.J. Morrow, M.J. Garland, Y.K. Demir, K. Migalska, E. Ryan, D. Gillen, C.J. Scott, A.D. Woolfson, “Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique,” Pharm. Res, vol.28, pp. 41-57, 2011
[31] C.Y. Jin, M.H.H., S.S. Lee, Y.H. Choi, “Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery,” Biomed Microdevices, vol.11, pp. 1195-1203, 2009
[32] S.J. Moon, S.S.L., H.S. Lee, T.H. Kwon, “Fabrication of microneedle array using LIGA and hot embossing process,” Microsyst Technol, vol.11, pp. 311-318, 2005
[33] J.H. Park, M.G.A., M.R. Prausnitz, “Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery,” J. Control Release, vol.104, pp. 51-66, 2005
[34] G. H. Li, A.B., S. Nema, C.S. Kolli, A.K. Banga, “In vitro transdermal delivery of therapeutic antibodies using maltose microneedles,,” Int. J. Pharm, vol.368, pp. 109-115, 2009
[35] H. S. Gill, M.R.P., “Coated microneedles for transdermal delivery,” J. Controlled Release, vol.117, pp. 227-237, 2007
[36] W. Martanto, S.D., N. Holiday, J. Wang, H. Gill, M. Prausnitz, “Transdermal delivery of insulin using microneedles in vivo,” Pharm Res, vol.21, pp., 2003
[37] http://fshare.stust.edu.tw/retrieve/41876/index.html, S.S.E.M. scan., pp.,
[38] J. A. Matriano, M.C., J. Johnson, W. A. Young, M. Buttery, K. Nyam, P.E. Daddona, “Macroflux (R) microprojection array patch technology: a new and efficient approach for intracutaneous immunization,” Pharm. Res, vol.19, pp. 63-70, 2002
[39] S.P. Davis, W.M., M.G. Allen, M.R. Prausnitz, “Hollow metal microneedles for insulin delivery to diabetic rats,” IEEE Trans. Biomed. Eng, vol.52, pp. 909-915, 2005
[40] N. Roxhed, T.C.G., P. Griss, G.A. Holzapfel, G. Stemme, “Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery,” J. Microelectromech. S, vol.16, pp. 1429-1440, 2007
[41] H.J.G.E. Gardeniers, R.L., E.J.W. Berenschot, M.J. de Boer, S.Y. Yeshurun, M. Hefetz, R. van't Oever, A. van den Berg, “Siliconmicromachined hollowmicroneedles for transdermal liquid transport,” J. Microelectromech. S, vol.12, pp. 855-862, 2003
[42] R. Luttge, E.J.W.B., M.J. de Boer, D.M. Altpeter, E.X. Vrouwe, A. van den Berg, M. Elwenspoek, “Integrated lithographic molding for microneedle-based devices,” J. Microelectromech Syst, vol.16, pp. 872-884, 2007
[43] F. Perennes, B.M., M. Matteucci, M. Tormen, L. Vaccari, E. Di Fabrizio, “Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol,” J. Micromech. Microeng, vol.16, pp. 473-479, 2006
[44] B. Ma, S.L., Z. Gan, G. Liu, X. Cai, H. Zhang, Z. Yang, “A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery,” Microfluid. Nanofluid, vol.2, pp. 417-423, 2006
[45] Van der Maaden K., J.W., Bouwstra J., “Microneedle technologies for (trans) dermal drug and vaccine delivery,” Journal of Controlled Release, vol.161(2), pp. 645-55, 2012
[46] Vrdoljak A, M.M., Carey JB, et al., “Coated microneedle arrays for transcutaneous delivery of live virus vaccines,” J. Controlled Release, vol.159, pp. 34-42, 2012
[47] Van der Maaden K, J.W.B.J., “Microneedle technologies for transdermal drug and vaccine delivery,” J. Controlled Release, vol.161, pp. 645-655, 2012
[48] S. O. Choi, Y.C.K., J.H. Park, J. Hutcheson, H.S. Gill, Y.K. Yoon, M.R. Prausnitz, M.G. Allen, “An electrically active microneedle array for electroporation,” Biomed. Microdevices, vol.12, pp. 263-273, 2010
[49] Y. K. Yoon, J.H.P., M.G. Allen, “Multidirectional UV lithography for complex 3-D MEMS structures,” J. Microelectromech Syst, vol.15, pp. 1121-1130, 2006
[50] J.H. Park, Y.K.Y., S.O. Choi, M.R. Prausnitz, M.G. Allen, “Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery,” IEEE Trans. Biomed. Eng, vol.54, pp. 903-913, 2007
[51] Y.K. Yoon, J.H.P., M.G. Allen, “Multidirectional UV lithography for complex 3-D MEMS structures,” J. Microelectromech. Syst, vol.15, pp. 1121-1130, 2006
[52] S. Sugiyama, S.K., G. Kawaguchi, “Plain-pattern t cross-section transfer (PCT) technique for deep X-ray lithography and applications,” J. Micromech. Microeng, vol.14, pp. 1399, 2004
[53] M. Han, D.H.H., H.H. Park, S.S. Lee, C.H. Kim, C. Kim, “A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer,” J. Micromech. Microeng, vol.17, pp. 1184, 2007
[54] S.D. Gittard, A.O., B.N. Chichkov, A. Doraiswamy, R.J. Narayan, “Two-photon polymerization of microneedles for transdermal drug delivery,” Expert Opin. Drug Deliv., vol.7, pp. 513-533, 2010
[55] S.D. Gittard, A.O., N.A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B.N. Chichkov, R.J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diab. Sci. Technol, vol.3, pp. 304-311, 2009
[56] K.-S. Lee, R.H.K., D.-Y. Yang, S.H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci, vol.33, pp. 631-681, 2008
[57] S. Aoyagi, H.I., M. Fukuda, “Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis,” Sens. Actuators A Phys, vol.143, pp. 20-28, 2008
[58] M. Matteucci, M.F., M. Casella, F. Gramatica, L. Gavioli, M. Tormen, G. Grenci, F. De Angelis, E. Di Fabrizio, “Poly vinyl alcohol re-usable masters for microneedle replication,” Microelectron. Eng, vol.86, pp. 752-756, 2009
[59] M.R. Prausnitz, H.S.G., J.-H. Park, “Modified Release Drug Delivery,” Healthcare, New York, vol.2, pp. 295-309, 2008
[60] K. Migalska, D.I.J.M., M.J. Garland, R. Thakur, A.D. Woolfson, R.F. Donnelly, “Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery,” Pharm. Res, vol.28, pp. 1919-1930, 2011
[61] J.W. Lee, J.-H.P., M.R. Prausnitz, “Dissolving microneedles for transdermal drug delivery,” Biomaterials, vol.29, pp. 2113-2124, 2008
[62] J.-H. Park, S.-O.C., R. Kamath, Y.-K. Yoon, M.G. Allen, M.R. Prausnitz, “Polymer particle-based micromolding to fabricate novel microstructures,” Biomed. Microdevices, vol.9, pp. 223-234, 2007
[63] Q. Cui, C.L., X.F. Zha, “Study on a piezoelectric micropump for the controlled drug delivery system,” Microfluid. Nanofluid., vol.3, pp. 377-390,
[64] J.-H. Park, M.G.A., M.R. Prausnitz, “Polymer microneedles for controlled release drug delivery,” Pharm. Res., vol.23, pp. 1008-1019, 2006
[65] L.Y. Chu, S.-O.C., M.R. Prausnitz, “Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs,” J. Pharm. Sci., vol.99, pp. 4228-4238, 2010
[66] S.M. Bal, J.C., S. Pavel, J.A. Bouwstra, “In vivo assessment of safety of microneedle arrays in human skin,” J. Control. Release, vol.35, pp. 193-202, 2008
[67] L.Y. Chu, S.O.C., M.R. Prausnitz, “Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs,” J. Pharm. Sci, vol.10, pp. 4228-4238, 2010
[68] S.O. Choi, S.R., Y.K. Yoon, X. Wu, M.G. Allen, “3-D Metal patterned microstructure using inclined UV exposure and metal transfer micromolding technology, in: Hilton Head,” A Solid State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, pp., 2006
[69] S. Rajaraman, S.O.C., R. H. Shafer, J. D. Ross, J. Vukasinovic, Y.-S. Choi, S. P. DeWeerth, A. Glezer and M. G Allen, “Microfabrication technologies for a coupled three-dimensional microelectrode, microfluidic array,” J. Micromech. Microeng, vol.17, pp. 163-171, 2007
[70] S. Rajaraman, M.A.M., S. Choi, J. D. Ross, S. P. Deweerth, M. C. LaPlaca, M. G. Allen, “Threedimensional metal transfer micromolded microelectrode arrays (MEAs) for in-vitro brain slice recordings,” J. Microelectromechanical Systems, vol.20, pp., 2011
[71] P.C. Wang, B.A.W., S. Rajaraman, S.J. Paik, S.-H. Kim, and M. G. Allen, “Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique,” in Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Minneapolis, MN, USA, pp. 7026-7029, 2009
[72] J.W. Lee, J.H.P.M.R.P., “Dissolving microneedles for transdermal drug delivery,” Biomater., vol.29, pp. 2113-2124, 2008
[73] A.P. Raphael, T.W.P., M.L. Crichton, X.F. Chen, G.I.P. Fernando, M.A.F. Kendall, “Targeted, needle-free vaccinations in skin using multi layered, densely-packed dissolving microprojection arrays,” Small, vol.6, pp. 1785-1793, 2010
[74] Y. Ito, E.H., A. Saeki, N. Sugioka, K. Takada, “Sustained-release self-dissolving micropiles for percutaneous absorption of insulin in mice,” J. Drug Target, vol.15, pp. 323-326, 2007
[75] Y. Ito, Y.O., A. Saeki, N. Sugioka, K. Takada, “Antihyperglycemic effect of insulin from self-dissolving micropiles in dogs,” Chem. Pharm. Bull, vol.56, pp. 243-246, 2008
[76] Y. Ito, A.M., T. Maeda, N. Sugioka, K. Takada, “Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats,” Int. J. Pharm, vol.349, pp. 124-129, 2008
[77] K. Fukushima, A.I., H. Morita, R. Hasegawa, Y. Ito, N. Sugioka, K. Takada, “Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats,” Pharm. Res, vol.28, pp. 7-21, 2011
[78] Y. Ito, Y.O., K. Shiroyama, N. Sugioka, K. Takada, “Self-dissolving micropiles for the percutaneous absorption of recombinant human growth hormone in rats,” Biol. Pharm. Bull, vol.31, pp. 1631-1633, 2008
[79] Y. Ito, E.H., A. Saeki, N. Sugioka, K. Takada, “Feasibility of microneedles for percutaneous absorption of insulin,” Eur. J. Pharm. Sci, vol.29, pp. 82-88, 2006
[80] Y. Ito, J.I.Y., K. Shiroyama, N. Sugioka, K. Takada, “Self-dissolving microneedles for the percutaneous absorption of EPO in mice,” J. Drug Target, vol.14, pp. 255-261, 2006
[81] S.P. Sullivan, N.M., M.R. Prausnitz, “Minimally invasive protein delivery with rapidly dissolving polymer microneedles,” Adv. Mater, vol.20, pp. 933-938, 2008
[82] S.P. Sullivan, D.G.K., M.D. Martin, J.W. Lee, V. Zarnitsyn, S.O. Choi, N. Murthy, R.W. Compans, I. Skountzou, M.R. Prausnitz, “Dissolving polymer microneedle patches for influenza vaccination,” Nat. Med, vol.16, pp., 2010
[83] L.Y. Chu, S.O.C., M.R. Prausnitz, “Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: bubble and pedestal microneedle designs,” J. Pharm. Sci, vol.99, pp. 4228-4238, 2010
[84] L.Y. Chu, M.R.P., “Separable arrowhead microneedles,” J. Control. Release, vol.149, pp., 2011
[85] J.R. Wendorf, E.B.G.-T., S.C. Williams, E. Enioutina, P. Singh, G.W. Cleary, “Transdermal delivery of macromolecules using solid-state biodegradable microstructures,” Pharm. Res, vol.28, pp. 22-30, 2011
[86] J.H. Park, M.G.A., M.R. Prausnitz, “Polymer microneedles for controlled-release drug delivery,” Pharm. Res, vol.23, pp. 1008-1019, 2006
[87] S. Davis, B.L., Z. Adams, M. Allen, M. Prausnitz, “Insertion of microneedles into skin: measurement and prediction of in-sertion force and needle fracture force,” Biomechanics, vol.37, pp. 1155-1163, 2004
[88] 楊益成, 可溶性微針頭陣列形貌最佳化設計及製程研製, 新北市:明志科技大學機電工程研究所碩士論文, 2014[89] Woo Kyung Choa, James A. Ankruma, Dagang Guoa, Shawn A. Chestere, Seung Yun Yanga, Anurag Kashyapa, Georgina A. Campbella, Robert J. Woodh, Ram K. Rijala, Rohit Karnike, Robert Langerb, and Jeffrey M. Karpa, “Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal,” Applied Biological Sciences, Engineering, vol.109, pp. 21289-21294, 2012
[90] S. Henry, D.M., M.G. Allen, M.R. Prausnitz, “Microfabricated microneedles: a novel method to increase transdermal drug delivery,” J. Pharm. Sci, vol.87, pp. 922-925, 1998
[91] D. V. McAllister, P.M.W., S. P. Davis, J. H. Park, P. J. Canatella, M. G. Allen, and M. R. Prausnitz, “Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: novel fabrication methods and transport studies,” Proc. Natl. Acad. Sci, vol.24, pp. 13755-13760, 2003
[92] W. Ehrfeld, F.G., D. Munchmeyer, W. Schelb and D. Schmidt, “LIGA process: Sensor construction techniques via X-ray lithography,” Proc. of the Solid-State Sensor and Actuator Workshop, pp. 1-4, 1988
[93] P. Bley, J.G., M. Harmening, M. Himmelhaus, W. Menz, J. Mohr, C. Muller and U. Wallrabe, “The LIGA process for the fabrication of micromechanical and mirooptical components in Micro System Technologies,” Berlin, Germany, pp. 302-314, 1991
[94] Duignan, G.P.B.a.M.T., “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl Optics, vol.36, pp. 4666-4674, 1997
[95] H. Lorenz, M.D., N. Fahrni, N. LaBianca, P. Renaud and P. Vettiger, “SU-8: A low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol.7, pp. 121-124, 1997
[96] M. Despont, H.L., N. Fahrni, J. Brugger, P. Renaud and P. Vettiger, “High-aspect-ratio ultrathick, negative-tone near-UV photoresist for MEMS applications,” Proc. of the Micro Electro Mechanical Systems‘97, pp. 518-522, 1997
[97] Allen, F.C.a.M.G., “High aspect ratio structures achieved by sacrificial conformal coating,” Proc. of the Solid State Sensor and Actuator Workshop, pp. 261-264, 1998
[98] M. Han, W.L., S. K. Lee and S. S. Lee, “Microfabrication of 3D oblique structures by inclined UV lithography,” Proc. of the Micro Total Analysis Systems Symposium, pp. 106-108, 2002
[99] Y. K. Yoon, J.H.P., F. Cros and M. G. Allen, “Integrated vertical screen microfilter system using inclined SU-8 structures,” Proc. of the Micro Electro Mechanical Systems, pp. 227-230, 2003
[100] H. Sato, Y.H.a.S.S., “Three-dimensional micro-structures consisting of high aspect ratio in-clined micro-pillars fabricated by simple photolithography,” Microsyst Technol, vol.10, pp. 440-443, 2004
[101] K. Y. Hung, H.T.H., F. G. Tseng, “Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head,” J. micromech. microeng., vol.14, pp. 975-983, 2004
[102] T. Omatsu, K.C., K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express, vol.18, pp. 17967-17973, 2010
[103] K. Y. Hung, J.C.L., “The application of Fresnel equations and anti-reflection technology to improve inclined exposure interface reflection and develop a key component needed for Blu-ray DVD–micro-mirrors,” J. micromech. microeng., vol.18, pp. 075022, 2008
[104] Ren Yang, W.W., “A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures,” Sensors and Actuators. B: Chemical, vol.110, pp. 279-288, 2005
[105] Teh.W.H, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phy, vol.97, pp. 054907, 2005
[106] Greiner, A.d.C.a.C., “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng, vol.17, pp. 81-95, 2007
[107] www.microchem.com, S.-.-D.S.A.f., pp.,
[108] R.F. Donnelly, R.M., T.R.R. Singh, D.I.J. Morrow, M.J. Garland, Y.K. Demir, K. Migalska, E. Ryan, D. Gillen, C.J. Scott, A.D. Woolfson, “Design, optimization and characterisation of polymeric microneedle ar-rays prepared by a novel laser-based micromoulding technique,” Pharm. Res, vol.28, pp. 41-57, 2011