跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝宜庭
研究生(外文):Hsieh, Yi-Ting
論文名稱:在虛擬實境中基於個人動暈敏感性以客製化機制減輕暈眩之可行性探討
論文名稱(外文):Reducing Motion Sickness in VR by Customized Mechanism According to Individual Susceptibility: A Feasibility Study
指導教授:李蔡彥李蔡彥引用關係陳宜秀陳宜秀引用關係
指導教授(外文):Li, Tsai-YenChen, Yi-Hsiu
口試委員:余能豪
口試委員(外文):Yu, Neng-Hao
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立政治大學
系所名稱:數位內容碩士學位學程
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:虛擬實境動暈症移動錯覺減輕暈眩動暈敏感性客製化
相關次數:
  • 被引用被引用:1
  • 點閱點閱:629
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
隨著虛擬實境蓬勃發展,VR的市場亦日漸龐大,但是其所帶來的暈眩問題卻始終存在,讓無數使用者苦不堪言,其中又以控制器為主之靜態虛擬實境系統最為嚴重。雖然目前學界、業界已發明出了許多減緩暈眩的機制,不過相對都有其缺點與限制,而其中最重要的是這些機制似乎是普世通用的,且大多限制在單一旋轉或平移情境中使用。然而,每個人的動暈敏感程度不盡相同,倘若都採用一樣的機制類型,可能會讓敏感的人無法真正受惠、達到舒適最大化,不敏感的人則要犧牲體驗、換取不必要的減暈效果。因此,本研究針對個人動暈敏感性、客製化的減暈機制類型、旋轉和平移並行之情境提出一個整合性的研究,希望探討在綜合情境下,是否能夠依照人們不同的動暈敏感程度,給定客製化的機制以降低其不適感,讓每位使用者都能在VR中擁有最舒適的狀態,以最少的暈眩感,獲得最好的體驗。
本研究總共分成兩階段的實驗,在第一階段的初步研究中,透過旋轉和平移情境各五種速度,分別找出一個能區分不同動暈敏感特性的臨界速度值,並且依照此結果設計一套前置測試系統,以用來量測移動錯覺的動暈敏感程度。在第二階段的正式實驗中,我們藉由此系統作為預試,將受試者依照其旋轉、平移敏感的高和低,分成四種動暈敏感組別,並導入學者發明的旋轉、平移減暈機制,分別給定開和關所組成的四種減暈模式,以了解各組別在各模式下的反應。從實驗結果的趨勢中,我們觀察到特定的動暈敏感組別、在特定的減暈模式下,確實有助於減輕暈眩,且每個人對於旋轉錯覺和平移錯覺在動暈敏感性上亦存在差異,證實了客製化減暈的可行性與必要性。透過此研究,我們期望能為日後的虛擬實境暈眩領域,提供新的發展方向和對客製化研究的相關建議與參考。
謝辭 I
摘要 II
目錄 III
圖目錄 VII
表目錄 IX
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 研究目標 3
1.3 研究範圍 4
第 2 章 相關研究 6
2.1 虛擬實境動暈症 6
2.2 動暈敏感性 8
2.3 減少暈眩之機制 9
2.4 小結 15
第 3 章 研究方法 16
3.1 研究問題 16
3.2 研究流程 16
3.3 第一階段:初步研究 18
3.3.1 實驗對象 19
3.3.2 實驗器材 20
3.3.3 實驗設計 20
3.3.4 實驗流程 22
3.3.5 結果與討論 24
3.3.6 建製前置測試系統 30
3.4 第二階段:正式實驗 31
3.4.1 實驗對象 31
3.4.2 實驗器材 33
3.4.3 實驗設計 35
3.4.4 實驗假設 37
3.4.5 實驗流程 38
第 4 章 結果分析 42
4.1 各變項間之相關分析 42
4.2 SSQ總分 43
4.2.1 描述性統計 43
4.2.2 雙因子多變量變異數分析 45
4.2.3 雙因子相依樣本變異數分析 45
4.3 不適程度量表分數 46
4.3.1 描述性統計 46
4.3.2 雙因子多變量變異數分析 48
4.3.3 雙因子相依樣本變異數分析 49
4.4 沉浸感 50
4.4.1 描述性統計 50
4.4.2 雙因子多變量變異數分析 51
4.4.3 雙因子相依樣本變異數分析 52
4.5 操作性 54
4.5.1 描述性統計 54
4.5.2 雙因子多變量變異數分析 56
4.5.3 雙因子相依樣本變異數分析 57
4.6 完成率 57
4.6.1 描述性統計 58
4.6.2 雙因子多變量變異數分析 59
4.6.3 雙因子相依樣本變異數分析 60
第 5 章 討論 61
5.1 各變項間之相關分析 61
5.2 暈眩程度 62
5.2.1 組間分析 62
5.2.2 組內分析 63
5.3 沉浸感 68
5.3.1 組間分析 68
5.3.2 組內分析 69
5.4 操作性與完成率 71
5.4.1 操作性 72
5.4.2 完成率 72
第 6 章 結論 74
6.1 結論 74
6.2 研究限制與未來建議 76
參考文獻 80
附錄一 、模擬器動暈症問卷(SSQ) 85
附錄二 、簡短版動暈敏感性問卷(MSSQ-Short) 86
附錄三 、遊戲體驗問卷 87
[1] R. S. Kennedy, K. M. Stanney, and W. P. Dunlap, “Duration and Exposure to Virtual Environments: Sickness Curves During and Across Sessions,” Presence Teleoperators Virtual Environ., vol. 9, no. 5, pp. 463–472, Oct. 2000.
[2] “ESSENTIAL FACTS About the computer and video game industry,” 2017.
[3] C. Boletsis, “The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology,” Multimodal Technol. Interact., vol. 1, no. 4, p. 24, Sep. 2017.
[4] C. Boletsis and J. E. Cedergren, “VR Locomotion in the New Era of Virtual Reality: An Empirical Comparison of Prevalent Techniques,” Adv. Human-Computer Interact., vol. 2019, 2019.
[5] J. J. LaViola, “A discussion of cybersickness in virtual environments,” ACM SIGCHI Bull., vol. 32, no. 1, pp. 47–56, Jan. 2000.
[6] L. Rebenitsch and C. Owen, “Review on cybersickness in applications and visual displays,” Virtual Reality, vol. 20, no. 2, pp. 101–125, 2016.
[7] Y. Y. Kim, H. J. Kim, E. N. Kim, H. D. Ko, and H. T. Kim, “Characteristic changes in the physiological components of cybersickness,” Psychophysiology, vol. 42, no. 5, pp. 616–625, Aug. 2005.
[8] M. S. Dennison, A. Z. Wisti, and M. D’Zmura, “Use of physiological signals to predict cybersickness,” Displays, vol. 44, pp. 42–52, Sep. 2016.
[9] M. E. McCauley and T. J. Sharkey, “Cybersickness: Perception of Self-Motion in Virtual Environments,” Presence Teleoperators Virtual Environ., vol. 1, no. 3, pp. 311–318, Jan. 1992.
[10] L. J. Hettinger and G. E. Riccio, “Visually Induced Motion Sickness in Virtual Environments,” Presence Teleoperators Virtual Environ., vol. 1, no. 3, pp. 306–310, Jan. 1992.
[11] J. Reason and J. Brand, Motion sickness. 1975.
[12] E. M. Kolasinski, “Simulator Sickness in Virtual Environments,” United States Army Research Institute for the Behavioral and Social Sciences, vol. 1027, no. 4. p. 68, 1995.
[13] J. C. Glover, “Vestibular System,” in Encyclopedia of Neuroscience, Elsevier Ltd, pp. 127–132, 2004.
[14] G. E. Riccio and T. A. Stoffregen, “An ecological Theory of Motion Sickness and Postural Instability,” Ecol. Psychol., vol. 3, no. 3, pp. 195–240, Sep. 1991.
[15] T. A. Stoffregen and L. J. Smart, “Postural instability precedes motion sickness,” Brain Res. Bull., vol. 47, no. 5, pp. 437–448, Nov. 1998.
[16] M. Treisman, “Motion sickness: an evolutionary hypothesis,” Science (80-. )., vol. 197, no. 4302, pp. 493–495, Jul. 1977.
[17] I. B. McIntosh, “Motion Sickness—Questions and Answers,” J. Travel Med., vol. 5, no. 2, pp. 89–91, Jun. 1998.
[18] S. Klosterhalfen, S. Kellermann, F. Pan, U. Stockhorst, G. Hall, and P. Enck, “Effects of ethnicity and gender on motion sickness susceptibility.,” Aviat. Space. Environ. Med., vol. 76, no. 11, pp. 1051–1057, Nov. 2005.
[19] L. L. Arns and M. M. Cerney, “The relationship between age and incidence of cybersickness among immersive environment users,” in IEEE Proc. VR 2005. Virtual Reality, 2005., pp. 267–268, 2005.
[20] Z. H. Taha, Y. H. Jen, R. A. R. Gadzila, and A. P. T. Chai, “The effect of body weight and height on incidence of cyber sickness among immersive environment malaysian users,” in Proc. of 17th World Congress on Ergonomics, 2009.
[21] K. M. Stanney, K. S. Hale, I. Nahmens, and R. S. Kennedy, “What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience.,” Hum. Factors, vol. 45, no. 3, pp. 504–20, Sep. 2003.
[22] L. Rebenitsch and C. Owen, “Individual variation in susceptibility to cybersickness,” in Proc. 27th Annu. ACM Symp. User Interface Softw. Technol. (UIST 2014), pp. 309–318, 2014.
[23] S. Weech, J. P. Varghese, and M. Barnett-Cowan, “Estimating the sensorimotor components of cybersickness,” J. Neurophysiol., vol. 120, no. 5, pp. 2201–2217, Nov. 2018.
[24] B. Keshavarz, B. E. Riecke, L. J. Hettinger, and J. L. Campos, “Vection and visually induced motion sickness: how are they related?,” Front. Psychol., vol. 6, no. APR, Apr. 2015.
[25] L. C. Trutoiu, B. J. Mohler, J. Schulte-Pelkum, and H. H. Bülthoff, “Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection,” Comput. Graph., vol. 33, no. 1, pp. 47–58, Feb. 2009.
[26] A. Kemeny, P. George, F. Mérienne, and F. Colombet, “New VR navigation techniques to reduce cybersickness,” in Proc. of International Symposium on Electronic Imaging Science and Technology, pp. 48–53, 2017.
[27] R. H. Y. So, W. T. Lo, and A. T. K. Ho, “Effects of Navigation Speed on Motion Sickness Caused by an Immersive Virtual Environment,” Hum. Factors J. Hum. Factors Ergon. Soc., vol. 43, no. 3, pp. 452–461, Sep. 2001.
[28] S. Hu, R. M. Stern, M. W. Vasey, and K. L. Koch, “Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum.,” Aviat. Space. Environ. Med., vol. 60, no. 5, pp. 411–414, 1989.
[29] C. Mueller, G. Wiest, and L. Deecke, “Vertically moving visual stimuli and vertical vection: A tool against space motion sickness,” in Proc. of Fourth European Symposium on Life Sciences Research in Space p 157-161(SEE N 91-19572 11-51), 1990.
[30] R. S. Kennedy, L. J. Hettinger, D. L. Harm, J. M. Ordy, and W. P. Dunlap, “Psychophysical Scaling of Circular Vection (CV) Produced by Optokinetic (OKN) Motion: Individual Differences and Effects of Practice,” J. Vestib. Res., vol. 6, no. 5, pp. 331–341, 1996.
[31] A. S. Fernandes and S. K. Feiner, “Combating VR sickness through subtle dynamic field-of-view modification,” in Proc. of 2016 IEEE Symposium on 3D User Interfaces, 3DUI 2016, pp. 201–210, 2016.
[32] P. Budhiraja, M. R. Miller, A. K. Modi, and D. Forsyth, “Rotation Blurring: Use of Artificial Blurring to Reduce Cybersickness in Virtual Reality First Person Shooters,” arXiv:1710.02599, Oct. 2017.
[33] Y. Farmani and R. J. Teather, “Viewpoint snapping to reduce cybersickness in virtual reality,” in Proc. of Graph. Interface, vol. 2018-May, pp. 159–166, 2018.
[34] E. Bozgeyikli, A. Raij, S. Katkoori, and R. Dubey, “Point & Teleport locomotion technique for virtual reality,” in Proc. of the 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY 2016), pp. 205–216, 2016.
[35] Y. Farmani and R. J. Teather, “Evaluating discrete viewpoint control to reduce cybersickness in virtual reality,” Virtual Real., Jan. 2020.
[36] J. Plouzeau, J.-R. Chardonnet, and F. Merienne, “Using Cybersickness Indicators to Adapt Navigation in Virtual Reality: A Pre-Study,” in Proc. of 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), vol. 14, pp. 661–662, 2018.
[37] W. T. Lo and R. H. Y. So, “Cybersickness in the presence of scene rotational movements along different axes,” Appl. Ergon., vol. 32, no. 1, pp. 1–14, Feb. 2001.
[38] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness,” Int. J. Aviat. Psychol., vol. 3, no. 3, pp. 203–220, Jul. 1993.
[39] S. Davis, K. Nesbitt, and E. Nalivaiko, “Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters,” in Proc. of 11th Australasian Conference on Interactive Entertainment (IE 2015), pp. 27–30, 2015.
[40] K. Rahimi Moghadam, C. Banigan, and E. D. Ragan, “Scene Transitions and Teleportation in Virtual Reality and the Implications for Spatial Awareness and Sickness,” IEEE Transactions on Visualization and Computer Graphics, IEEE Computer Society, 2018.
[41] J. F. Golding, “Predicting individual differences in motion sickness susceptibility by questionnaire,” Pers. Individ. Dif., vol. 41, no. 2, pp. 237–248, Jul. 2006.
[42] T. Schubert, F. Friedmann, and H. Regenbrecht, “The experience of presence: Factor analytic insights,” Presence Teleoperators Virtual Environ., vol. 10, no. 3, pp. 266–281, Jun. 2001.
[43] S. Weech, S. Kenny, and M. Barnett-Cowan, “Presence and cybersickness in virtual reality are negatively related: A review,” Frontiers in Psychology, vol. 10, no. FEB. Frontiers Media S.A., 04-Feb-2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top