( 您好!臺灣時間:2023/01/28 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Po-Hsuan Wang
論文名稱(外文):Identify the geographical origins of tea and garlic by statistical methods using stable isotopes and chemical profiling by statistical methods
指導教授(外文):Tsung-Ren Peng
外文關鍵詞:stable isotopestrace elementsgarlicteaorigin identificationprincipal component analysiscorrespondents analysisdiscriminant analysis
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農產品的不實地理標籤是一個很嚴重的問題,它不僅圖利不肖廠商,也侵犯消費者的權益,因此尋找公正客觀且正確的產地鑑定技術一直是我們的目標。農產品的營養會因為生長環境、氣候條件、栽培方法及其他人為因素造成穩定同位素以及微量元素的組成不同,但相同的產品可能無法透過肉眼觀察到不同產地之間的差異。本實驗室在上一階段利用氫、氧、碳、氮同位素與22種微量元素試圖區分大蒜產地來源,本階段將進一步利用穩定同位素分析及31種微量元素,結合主成分分析(Principal Component Analysis)、對應分析(Correspondence analysis)判別分析(Discriminant Analysis)之多變量統計方法,嘗試區分茶葉與大蒜地理來源,並評估硫同位素在產地鑑定上的可行性,證明農產品的產地鑑定可以應用此方法。研究收集來自台灣、中國、越南、泰國及印尼的茶葉進行產地鑑定,並利用阿根廷、韓國、中國及越南的大蒜數據證明此方法的可行性。同位素分析結果顯示茶葉則是難以僅透過穩定同位素或是微量元素分析發現到其產地特徵。大蒜氫、氧穩定同位素具有區分阿根廷和亞洲地區的大蒜,台灣的硫穩定同位素則是明顯低於其他地區,因此硫穩定同位素在產地鑑定上應有一定的影響力。研究首先利用主成分分析與對應分析篩選變量後進行判別分析以建立不同產地之判別函數,結果發現茶葉的整體判別率達到91.8%,大蒜樣品則是達到96.2%。研究結果顯示了透過穩定同位素分析及微量元素分析結合判別分析能夠有效的區分大蒜及茶葉之產地來源,此技術將能夠幫助未來其他農產品產地鑑定或是食品摻假行為的認證。
The unrealistic geographic labeling of agricultural products is a very serious problem. It not only infringes on the manufacturers, but also infringes on the rights and interests of consumers. Therefore, it is always our goal to find a fair, objective and correct provenance technology. The nutrition of agricultural products will be different due to the growth environment, climatic conditions, cultivation methods, and other factors, but the composition of stable isotopes and trace elements will be different. The study uses stable isotope analysis and 31 kinds of trace elements in combination with principal components analysis, correspondence analysis and discriminant analysis for data statistics. It attempts to distinguish the geographic origin of garlic and tea, and proves that this method can be applied to the identification of agricultural products. The study collected tea from Taiwan, China, Vietnam, Thailand, and Indonesia, and garlic from Taiwan, Argentina, South Korea, China, and Vietnam. The isotope analysis results showed that the hydrogen and oxygen stable isotopes of garlic can distinguish garlic from Argentina and Asia, while the sulfur stable isotopes of Taiwan are significantly lower than other regions. Tea can''t be found by its stable isotope or trace element analysis. Further use of principal component analysis and corresponding analysis to select variables for discriminant analysis, the discriminant rate of tea reached 91%; garlic samples reached 95%. The research results show that through stable isotope analysis and trace element analysis combined with discriminant analysis can effectively distinguish the origin of garlic and tea, this technology will be able to help the identification of other agricultural products in the future or the certification of food adulteration.
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1-1 緣起 1
1-2茶葉性質背景 2
1-2-1茶葉栽培特性 2
1-2-2茶葉市場現況 2
1-2-3茶葉產地鑑別方法 3
1-3 大蒜性質背景 3
1-3-1 大蒜栽培特性 3
1-3-2 大蒜市場現況 4
1-3-3 大蒜產地鑑別方法 5
1-4穩定同位素與微量元素分析 6
1-5多變量分析 6
1-6前人研究 7
1-7研究目的 8
第二章 研究原理 10
2-1 穩定同位素 10
2-1-1 穩定同位素原理 10
2-1-2 氫、氧、碳、氮同位素 13
2-1-3 硫同位素 15
2-2 微量元素 18
第三章 材料與方法 19
3-1樣品收集 19
3-1-1 茶葉樣品收集 19
3-1-2大蒜樣品收集 20
3-2樣品前處理 22
3-2-1茶葉樣品前處理 22
3-2-2大蒜樣品前處理 22
3-3穩定同位素分析 22
3-3-1穩定同位素比值質譜儀 22
3-3-2氫、氧穩定同位素分析 24
3-3-3碳、氮、硫穩定同位素分析 25
3-4元素分析 27
3-5統計方法 28
3-5-1 主成分分析 (Principal Component Analysis, PCA) 28
3-5-2 對應分析(Correspondence analysis, COA) 29
3-5-3 變異係數(Coefficient of variation, CV) 29
3-5-4 判別分析(Discriminant Analysis, DA) 30
第四章 結果與討論 31
4-1 茶葉樣品分析結果 31
4-1-1 茶葉樣品穩定同位素分析結果 31
4-1-2 茶葉樣品元素分析結果 33
4-1-3 茶葉穩定同位素與產地關係探討 33
4-2 大蒜樣品分析結果 34
4-2-1 大蒜樣品同位素分析結果 34
4-2-2 大蒜樣品元素分析結果 39
4-2-3 大蒜氫、氧穩定同位素與產地關係探討 40
4-2-4 大蒜碳、氮穩定同位素與產地關係探討 41
4-2-5 大蒜硫穩定同位素與產地關係探討 42
4-3 茶葉統計分析結果 44
4-3-1 茶葉主成分分析結果 44
4-3-2 茶葉對應分析結果 46
4-3-3 茶葉變異係數結果 48
4-3-4 茶葉判別分析結果 50
4-4 大蒜統計分析結果 56
4-4-1 大蒜對應分析結果 56
4-4-2 大蒜變異係數結果 59
4-4-3大蒜判別分析結果 61
第五章 結論 67
參考文獻 69
附錄 75 
林經偉,陳水心,2011,大蒜合理化施肥,豐年,61(18): 31-35。
Abdi, H. 2003. Multivariate analysis. In M. Lewis-Beck, A. Bryman, & T. Futing (Eds):
Encyclopedia for research methods forthe social sciences. Thousand Oaks: Sage.
Ambrose, S. H. and DeNiro, M. J. 1986. Reconstruction of African human diet using
bone-collagen carbon and nitrogen isotope ratios. Nature. 319: 59–130.
Balling, H. P., and Rossmann, A. 2004. Countering fraud via isotope analysis—Case
report. Kriminalistik. 58(1): 44–47.
Barrie, A. and Prosser, S.J. 1996.Automated analysis of light-element stable isotopes
by isotope ratio mass spectrometry. In T.W. Boutton and S. Yamasaki (eds.), Mass
Spectrometry of Soils. Marcel Dekker, New York. 1-46.
Bowen, G.J. 2010. Statistical and geostatistical mapping of precipitation water isotope
ratios. In Isoscapes: Understanding Movement, Pattern, and Process on Earth
Through Isotope Mapping, ed. JB West, GJ Bowen, TE Dawson, KP Tu, 139-
60. New York: Springer.
Bowen, G.J. 2013. Waterisotopes.org.
Brewster, J.L. 2008. Onionsand Other Vegetable Alliums. CABI, Wallingford, UK.
Carter, J. and Barwick, V. 2011. Good practice guide for Isotope ratio mass spectrometry. National Measurement System.
Clausen, S.E. 1998. Applied correspondence analysis. Thousand Oaks (CA): Sage.
Coplen, T.B., Herczeg, A.L. and Barnes, C. 2000. Isotope engineering: using stable
isotopes of the water molecule to solve practical problems. Environmental Tracers
in Subsurface Hydrology. P.G. Cook and A.L. Herczeg, Kluwer Academic
Publishers, Boston.79-110.
Cabanero, A. I., Recio, J. L., and Ruperez, M. 2006. Liquid chromatography coupled
to isotope ratio mass spectrometry: A new perspective on honey adulteration
detection. Journal of Agricultural and Food Chemistry. 54: 9719–9727.
Chukhrov, F, Ermilova, L, Churikov, V and Nosik, L. 1980. The isotopic composition
of plant sulfur. Org. Geochem. 2:69-75
Drivelos, S. A. and Georgiou, C. A. 2012. Multi-element and multi-isotope-ratio
analysis to determine the geographical origin of foods in the European Union.
TrAC e Trends in Analytical Chemistry. 40:38-51.
Eric, J., Frederique, M., Rebeca, S. f., and Miche, L. L. 2005. Detection of exogenous
citric acid in fruit juices by stable isotope ratio analysis. Journal of Agricultural
and Food Chemistry. 53: 5130–5133.
Evans, R.D. 2001. Physiological mechanisms influencing plant nitrogen isotope
composition. Trends Plant Sci. 6:121–26.
Farquhar, G.D, Ehleringer, J.R and Hubick, K.T. 1989. Carbon isotope discrimination
and photosynthesis. Plant Physiol. 40:503–37.
Greenacre, M.J. 1984. Theory and applications of correspondence analysis. London:
Academic Press.
Greenacre, M.J. 1993. Correspondence analysis in practice. London: Academic Press.
GiovanniI, C., Norbert, N., Claude, G. and Fabiano, R. 2004. Characterization of
European wine glycerol: Stable carbon isotope approach. Journal of Agricultural
and Food Chemistry. 52: 5902–5906.
Hardle, W. and Simar, L. 2007. Canonical Correlation Analysis. Applied Multivariate
Statistical Analysis. 321–330.
Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H. 1990. Compound-specific
isotopic analyses: A novel tool for reconstruction of ancient biogeochemical
processes. Organic Geochemistry. 16: 1115–1128.
Hoefs, J. 1997. Stable Isotope Geochemistry, 4th ed., Springer-Verlag, Berlin.
Hoefs J. 2004. Stable Isotope Geochemistry. Berlin: Springer-Verlag.
Hobson, K.A and Wassenaar, L.I. 2008. Tracking animal migration with stable
isotopes. Amsterdam: Academic.
Jamin, E., Gonzalez, J., Bengoechea, I., Kerneur, G., Remaud, G. and Iriondo, C.1998.
Proteins as intermolecular isotope reference for detection of adulteration of fruit
juices. Journal of Agricultural and Food Chemistry. 46:5118–5123.
Kelly, S., Heaton, K. and Hoogewerff, J. 2005. Tracing the geographical origin of food:
The application of multi-element and multi-isotope analysis. Trends in Food
Science & Technology. 16: 555-567.
Kotseridis, Y., and Baumes, R. 2000. Identification of impact odorants in Bordeaux
red grape juice, in the commercial yeast used for its fermentation and in the
produced wine. Journal of Agricultural and Food Chemistry. 48: 400–406.
Krouse, H. and Herbert, M. 1988. Sulphur and carbon isotope studies of food webs. In
Diet and Subsistence:Current Archaeological Perspectives, ed. B Kennedy, G
LeMoine. Calgary: Univ. Calg. Archaeol. Assoc. 315–22.
Kohl, D. H., Shearer, G. B. and Commones, B. 1973. Variation of 15N in corn and soil
following applications of fertilizer nitrogen. Soil Science Society of America
Journal. 37: 888–892.
Kim, K. W., and Thornton, Y. 1993. Influence of Ordovician uraniferous black shales
on the trace element composition of soils and food crops, Korea. Applied
Geochemistry Supplement.2: 249–255.
Longobardi, F., Casiello, G., Sacco, D., Tedone, L., abd Sacco, A. 2011.
Characterisation of the geographical origin of Italian potatoes, based on stable
isotope and volatile compound analyses. Food Chemistry. 124: 1708–1713.
Moyers, S. 1996. Florida :Suncoast Press, St. Petersburg. Garlic in Health, History, and
World Cuisine.321-325.
Meints, V. W., Shearer, G., Kohl, D. H., and Kurtz, L. T. 1975. A comparison of
unenriched vs d15N enriched fertilizer as a tracer for N fertilizer uptake. Soil
Science. 119: 421–425.
O’Brien, D.M. 2015. Stable isotope ratios as biomarkers of diet for health research.
Annu. Rev. Nutr. 35: 565-594.
Ohmoto, H., and Rye, R.O., 1979, Isotopes of sulfur and carbon in Ohmoto, H., ed.,
Geochemistry of hydrothermal ore deposits: New York, NY, Wiley, p. 509-567.
Rossmann, A. 2001. Determination of stable isotope ratios in food analysis. Food
Reviews International. 17(3): 347-381
Rossmann, A., Haberhauer, G., Hölzl, S., Horn, P., Pichlmayer, F. and Voerkelius, S.
2000. The potential of multielement stable isotope analysis for regional origin
assignment of butter. European Food Research and Technology. 211(1):32-40.
Rozanski, K., Araguas-Araguas, L. and Gonfiantini, R. 1992. Relation between long
term trends of oxygen-18 isotope composition of precipitation and climate.
Science. 258: 981–985.
Smith, B. N. and Epstein, S. 1971. Influence of the diet on the distribution of carbon
isotope fractionation. Plant Physiology. 47: 380–384.
Shearer, G. and Legg, J. O. 1975. Variation in the natural abundance of δ15N of wheat
plants in relation to fertilizer nitrogen applications. Soil Science Society of
America Journal. 39: 896–901.
Schneider, R., Kotseridis, Y., Ray, J. L., Augier, C. and Baumes, R. 2003. Quantitative
determination of sulfur-containing wine odorants at sub parts per billion levels.2.Development and application of a stable isotope dilution assay. Journal of
Agricultural and Food Chemistry. 51: 3243–3248.
Trincherini, P.R., Baffi, C., Barbero, P., Pizzoglio, E. and Spalla, S. 2014. Precise
determination of strontium isotope ratios by TIMS to authenticate tomato
geographical origin. Food Chemistry. 145:349-355.
Trust, B. A. and Fry, B. 1992. Stable sulphur isotopes in plants: a review. Plant, Cell
and Environment. 15(9):1105–1110.
Tcherkez, G., Tea, I., 2013. 32S/34S isotope fractionation in plant Sulphur
metabolism. New Phytologist. 200: 44-53.
Valenzuela, L.O., Chesson, L.A., O’Grady, S.P., Cerling, T.E., Ehleringer, J.R., 2011.
Spatial distributions of carbon, nitrogen and sulfur isotope ratios in human hair
across the central United States. Rapid Communications in Mass Spectrometry. 25: 861-868.
Weller, S.C. and Romney, A.K.1990. Metric scaling: Correspondence analysis.
Thousand Oaks (CA): Sage.
White, J. W. and Winters, K. 1989. Honey protein as internal standard for stable
carbon isotope ratio detection of adulteration honey. Journal Association of
Official Analytical Chemists.72: 907–911.
Yaeko, S., Yoshito, C., Nanako, O. O., Naohiko, O.and Takashi, K. 2008. Geographical
origin of polished rice based on multiple element and stable isotope analyses. Food
Chemistry. 109: 470–475.
Zohary, D. and Hopf, M. 2000. Oxford: Oxford University Press. Domestication of
Plants in the Old World.976-1164.
電子全文 電子全文(全文開放日期20230731,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
第一頁 上一頁 下一頁 最後一頁 top