|
[1] D.J.T.J.o.P.C. Stigter, Micelle formation by ionic surfactants. II. Specificity of head groups, micelle structure, The Journal of Physical Chemistry 78(24) (1974) 2480-2485. [2] J. Fang, H. Nakamura, H.J.A.d.d.r. Maeda, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Advanced drug delivery reviews 63(3) (2011) 136-151. [3] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K.J.J.o.c.r. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of controlled release 65(1-2) (2000) 271-284. [4] X. Huang, C.S.J.J.o.c.r. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems, Journal of controlled release 73(2-3) (2001) 121-136. [5] G. Bindea, B. Mlecnik, M. Tosolini, A. Kirilovsky, M. Waldner, A.C. Obenauf, H. Angell, T. Fredriksen, L. Lafontaine, A.J.I. Berger, Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer, Immunity 39(4) (2013) 782-795. [6] K.O. Alfarouk, A.K. Muddathir, M.E.J.C. Shayoub, Tumor acidity as evolutionary spite, Cancers 3(1) (2011) 408-414. [7] K.V. Korneev, K.-S.N. Atretkhany, M.S. Drutskaya, S.I. Grivennikov, D.V. Kuprash, S.A.J.C. Nedospasov, TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis, Cytokine 89 (2017) 127-135. [8] M. Toei, R. Saum, M.J.B. Forgac, Regulation and isoform function of the V-ATPases, Biochemistry 49(23) (2010) 4715-4723. [9] P.I.R. Franco, A.P. Rodrigues, L.B. de Menezes, M.P.J.P.-R. Miguel, Practice, Tumor microenvironment components: Allies of cancer progression, Pathology-Research and Practice 216(1) (2020) 152729. [10] E.A. Azzopardi, E.L. Ferguson, D.W.J.J.o.A.C. Thomas, The enhanced permeability retention effect: a new paradigm for drug targeting in infection, Journal of Antimicrobial Chemotherapy 68(2) (2013) 257-274. [11] P.A. Vasey, S.B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A.H. Thomson, L.S. Murray, T.E. Hilditch, T.J.C.C.R. Murray, Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates, Clinical cancer research 5(1) (1999) 83-94. [12] Y. Liu, D. Sun, Q. Fan, Q. Ma, Z. Dong, W. Tao, H. Tao, Z. Liu, C.J.N.R. Wang, The enhanced permeability and retention effect based nanomedicine at the site of injury, Nano Research (2020) 1-6. [13] Y. Dai, C. Xu, X. Sun, X.J.C.S.R. Chen, Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment, Chemical Society Reviews46(12) (2017) 3830-3852. [14] L.J.B.S.C.P. Pasteur, On the viscous fermentation and the butyrous fermentation, Bull. Soc. Chim. Paris 11 (1861) 30-31. [15] P. LeMone, K.M. Burke, Medical surgical nursing, Pearson Education India2008. [16] B. Chen, J.-Z. Yang, L.-F. Wang, Y.-J. Zhang, X.-J.J.B.c. Lin, Ifosfamide-loaded poly (lactic-co-glycolic acid) PLGA-dextran polymeric nanoparticles to improve the antitumor efficacy in Osteosarcoma, BMC cancer 15(1) (2015) 752. [17] M. Alibolandi, K. Abnous, F. Hadizadeh, S.M. Taghdisi, F. Alabdollah, M. Mohammadi, H. Nassirli, M.J.J.o.C.R. Ramezani, Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo, Journal of Controlled Release 241 (2016) 45-56. [18] J.-H. Hwang, C.W. Choi, H.-W. Kim, D.H. Kim, T.W. Kwak, H.M. Lee, C. hyun Kim, C.W. Chung, Y.-I. Jeong, D.H.J.I.j.o.n. Kang, Dextran-b-poly (L-histidine) copolymer nanoparticles for pH-responsive drug delivery to tumor cells, International Journal of Nanomedicine 8 (2013) 3197. [19] C.E. Astete, C.M.J.J.o.B.S. Sabliov, Polymer Edition, Synthesis and characterization of PLGA nanoparticles, Journal of Biomaterials Science, Polymer Edition 17(3) (2006) 247-289. [20] A. Alexander, J. Khan, S. Saraf, S.J.J.o.C.R. Saraf, Poly (ethylene glycol)–poly (lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications, Journal of Controlled Release 172(3) (2013) 715-729. [21] K. Raza, N. Kumar, C. Misra, L. Kaushik, S.K. Guru, P. Kumar, R. Malik, S. Bhushan, O.J.I.j.o.b.m. Katare, Dextran-PLGA-loaded docetaxel micelles with enhanced cytotoxicity and better pharmacokinetic profile, International journal of biological macromolecules 88 (2016) 206-212. [22] O. Maksimenko, J. Malinovskaya, E. Shipulo, N. Osipova, V. Razzhivina, D. Arantseva, O. Yarovaya, U. Mostovaya, A. Khalansky, V.J.I.j.o.p. Fedoseeva, Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development, International journal of pharmaceutics 572 (2019) 118733. [23] Z. Zhang, J. Shrestha, C. Tateda, J.T.J.M.p. Greenberg, Salicylic acid signaling controls the maturation and localization of the Arabidopsis defense protein ACCELERATED CELL DEATH6, Molecular plant 7(8) (2014) 1365-1383. [24] E.S. Lee, H.J. Shin, K. Na, Y.H.J.J.o.C.R. Bae, Poly (l-histidine)–PEG block copolymer micelles and pH-induced destabilization, Journal of Controlled Release 90(3) (2003) 363-374. [25] R.V. Benjaminsen, M.A. Mattebjerg, J.R. Henriksen, S.M. Moghimi, T.L.J.M.T. Andresen, The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH, Molecular Therapy 21(1) (2013) 149-157. [26] S.P. Edgcomb, K.P.J.P.S. Murphy, Function,, Bioinformatics, Variability in the pKa of histidine side‐chains correlates with burial within proteins, Proteins: Structure, Function, and Bioinformatics 49(1) (2002) 1-6. [27] X. Yao, L. Chen, X. Chen, C. He, H. Zheng, X.J.C. Chen, S.B. Biointerfaces, Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery, Colloids and Surfaces B: Biointerfaces 121 (2014) 36-43. [28] D. Yadav, S. Suri, A. Chaudhary, M. Beg, V. Garg, M. Asif, A.J.P.J.o.C.T. Ahmad, Stimuli responsive polymeric nanoparticles in regulated drug delivery for cancer, Polish Journal of Chemical Technology 14(1) (2012) 57-64. [29] S. Li, J. Yi, W. Li, L. Wang, Z.J.J.o.M.S. Wang, Synthesis and characterization of three novel amphiphilic dextran self-assembled micelles as potential drug delivery system, Journal of Materials Science 52(21) (2017) 12593-12607. [30] Y. Lu, E. Zhang, J. Yang, Z.J.N.r. Cao, Strategies to improve micelle stability for drug delivery, Nano research 11(10) (2018) 4985-4998. [31] A. Cao, P. Ma, T. Yang, Y. Lan, S. Yu, L. Liu, Y. Sun, Y.J.M.p. Liu, Multifunctionalized Micelles Facilitate Intracellular Doxorubicin Delivery for Reversing Multidrug Resistance of Breast Cancer, Molecular pharmaceutics 16(6) (2019) 2502-2510. [32] H. Maeda, T. Sawa, T.J.J.o.c.r. Konno, Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, Journal of controlled release 74(1-3) (2001) 47-61. [33] I. Neamtu, A.G. Rusu, A. Diaconu, L.E. Nita, A.P.J.D.D. Chiriac, Basic concepts and recent advances in nanogels as carriers for medical applications, Drug Delivery 24(1) (2017) 539-557. [34] X. Zeng, X. Cheng, Y. Zheng, G. Yan, X. Wang, J. Wang, R.J.C.P. Tang, Indomethacin-grafted and pH-sensitive dextran micelles for overcoming inflammation-mediated multidrug resistance in breast cancer, Carbohydrate Polymers (2020) 116139. [35] S. Jafarzadeh-Holagh, S. Hashemi-Najafabadi, H. Shaki, E.J.J.o.c. Vasheghani-Farahani, i. science, Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system, Journal of colloid and interface science 523 (2018) 179-190. [36] K.M. Laginha, S. Verwoert, G.J. Charrois, T.M.J.C.c.r. Allen, Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors, Clinical cancer research 11(19) (2005) 6944-6949. [37] C.F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-Boussard, H. McLeod, T.E. Klein, R.B.J.P. Altman, genomics, Doxorubicin pathways: pharmacodynamics and adverse effects, Pharmacogenetics and genomics 21(7) (2011) 440. [38] R.R. Patil, S.A. Guhagarkar, P.V.J.C.R.i.T.D.C.S. Devarajan, Engineered nanocarriers of doxorubicin: a current update, Critical Reviews™ in Therapeutic Drug Carrier Systems 25(1) (2008). [39] Y.-Z. Du, Q. Weng, H. Yuan, F.-Q.J.A.N. Hu, Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery, Acs Nano 4(11) (2010) 6894-6902. [40] S. Taqvi, G. Bassioni, Understanding Wettability through Zeta Potential Measurements, Wettability and Interfacial Phenomena-Implications for Material Processing, IntechOpen2019. [41] R. Raveendran, G. Bhuvaneshwar, C.P.J.C.p. Sharma, Hemocompatible curcumin–dextran micelles as pH sensitive pro-drugs for enhanced therapeutic efficacy in cancer cells, Carbohydrate polymers 137 (2016) 497-507. [42] X. Yao, L. Chen, X. Chen, C. He, J. Zhang, X.J.M.r.c. Chen, Metallo‐Supramolecular Nanogels for Intracellular pH‐Responsive Drug Release, Macromolecular rapid communications 35(19) (2014) 1697-1705. [43] M.C. Stanciu, M.J.E.P.J. Nichifor, New biocompatible amphiphilic diblock copolymer based on dextran, European Polymer Journal 71 (2015) 352-363. [44] Q. Li, F. Xue, J. Qu, L. Liu, R. Hu, C.J.M.d. Liu, Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid, Marine Drugs 17(1) (2019) 15. [45] H. Wu, L. Zhu, V.P.J.B. Torchilin, pH-sensitive poly (histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery, Biomaterials 34(4) (2013) 1213-1222. [46] J. Stetefeld, S.A. McKenna, T.R.J.B.r. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences, Biophysical reviews, 8(4) (2016) 409-427. [47] X. Zhang, D. Li, J. Huang, K. Ou, B. Yan, F. Shi, J. Zhang, J. Zhang, J. Pang, Y.J.J.o.M.C.B. Kang, Screening of pH-responsive long-circulating polysaccharide–drug conjugate nanocarriers for antitumor applications, Journal of Materials Chemistry B 7(2) (2019) 251-264. [48] G. Ye, Y. Jiang, X. Yang, H. Hu, B. Wang, L. Sun, V.C. Yang, D. Sun, W.J.A.a.m. Gao, interfaces, Smart nanoparticles undergo phase transition for enhanced cellular uptake and subsequent intracellular drug release in a tumor microenvironment, ACS applied materials & interfaces 10(1) (2018) 278-289. [49] V. Delorme, L. Lichon, H. Mahindad, S. Hunger, N. Laroui, M. Daurat, A. Godefroy, J. Coudane, M. Gary-Bobo, H.J.C.P. Van Den Berghe, Reverse poly (ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs, Carbohydrate Polymers 232 (2020) 115764. [50] M. Alibolandi, K. Abnous, F. Hadizadeh, S.M. Taghdisi, F. Alabdollah, M. Mohammadi, H. Nassirli, M.J.J.o.C.R. Ramezani, Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo, 241 (2016) 45-56.
|