(3.232.129.123) 您好!臺灣時間:2021/03/06 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭博文
研究生(外文):Po-Wen Cheng
論文名稱:含S,N,O-希夫鹼三牙配位基之鋅、鎳錯合物合成、鑑定及其於二氧化碳與環氧環己烷反應之催化應用
論文名稱(外文):Synthesis and Characterization of Zinc and Nickel Complexes Supported by S,N,O-Tridentate Schiff-Base Ligands and Their Application in the Reaction of Cyclohexene Oxide with Carbon Dioxide
指導教授:林助傑
口試委員:柯寶燦林嘉和
口試日期:2019-12-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:117
中文關鍵詞:希夫鹼環氧環己烷二氧化碳催化
外文關鍵詞:Schiff BaseCarbon DioxideCatalystEpoxidesCyclohexene Oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討一系列含S,N,O-希夫鹼配位基前驅物與二乙基鋅與氯化鎳之反應,合成三牙配位基之金屬錯合物 (1)-(8),並探討在苯酚基上配位基 (L1H - L4H) 之電子效應及立體障礙對錯化合物活性之影響。錯合物經由核磁共振儀、紅外線光譜儀確定其結構組成,並利用紫外光/可見光光譜、熔點測定儀探討其物理性質。錯合物2、6經X-光單晶繞射儀鑑定其晶體結構,皆為六配位單核雙取代的結構。配位基前驅物與金屬之一鍋化催化在外加助催化劑 (Bu4NBr) 條件下,配位基前驅物與醋酸鋅、醋酸鎳對環氧環己烷與二氧化碳之一鍋化共聚合反應均具有良好之催化活性及小分子環碳酸酯選擇性。
A series of zinc and nickel complexes (1) - (8) supported by S,N,O-tridentate Schiff-base ancillary ligands (L1 - L4) bearing substituents with various electronic or steric effect have been synthesized. The composition of complexes were structurally characterized by FT-IR and NMR spectroscopy. Their physical properties were investigated using UV/Vis spectroscopy and melting point analyzer. X-ray diffraction studies of 2 and 6 indicate that both complexes are mononuclear with six-coordinated metal center. All of zinc and nickel complexes show efficient activity and high selectivity to the reaction of CHO and CO2 in the presence of 1:1 ratio of ligands and existence of Bu4NBr as a co-catalyst yielding cis-CHC.
目錄
國立中興大學一百零八學年度碩士學位論文摘要................................ i
Abstract................................ ................................ ................................ ...... ii
目錄................................ ................................ ................................ ........... iii
圖表目錄................................ ................................ ................................ ..... v
第一章 緒論................................ ................................ ............................... 1
一、前言................................ ................................ .............................. 1
二、生物可分解之材料................................ ................................ ...... 3
三、二氧化碳/環氧化物之共聚合反應(Copolymerization) ............. 6
四、催化劑之研發與設計................................ ................................ 13
五、二氧化碳與環氧化物共聚合反應之文獻回顧....................... 15
第二章 實驗部分................................ ................................ .................... 28
一、儀器鑑定................................ ................................ .................... 28
二、藥品及溶劑處理................................ ................................ ........ 31
三、操作技巧................................ ................................ .................... 34
四、S,N,O-三牙希夫鹼配位基前驅物之製備................................ 35
五、錯合物之合成................................ ................................ ............ 39
六、二氧化碳/環氧化合物偶合反應之實驗步驟.......................... 45
第三章 結果與討論................................ ................................ ................ 46
一、配位基前驅物與錯合物之合成................................ ............... 46
二、錯合物之光譜鑑定................................ ................................ .... 49
三、錯合物之X-ray單晶繞射結構鑑定................................ ........ 53
四、CO2/環氧化物(Epoxide)開環偶合反應............................... 57
第四章 結論................................ ................................ ............................. 68
第五章 參考文獻................................ ................................ .................... 69
第六章 附錄................................ ................................ ............................. 72
附錄一、配位基及錯合物之1H、13C NMR 光譜 ......................... 72
附錄二、配位基及錯合物之IR光譜................................ ............. 81
附錄三、錯合物之晶體資料................................ ........................... 85
Forum, W. E. The New Plastics Economy Rethinking the future of plastics 2016..
2.(1) https://www.greenpeace.org/hongkong/issues/plastics/update/11722/
(2) https://ourisland.pts.org.tw/content/%E3%80%90%E7%A9%BF%E6%A2%AD%E5%B3%B6%E5%B6%BC20%E5%B9%B4-%E6%B1%A1%E6%9F%93%E9%96%8B%E7%99%BC%E7%AF%87%E3%80%91%E5%85%AD%E8%BC%95-%E6%B5%B7%E4%B8%8A%E7%9F%B3%E5%8C%96%E7%8E%8B%E5%9C%8B
3.http://www.bioplas.com.au/news/2015/5/25/european-parliament-votes-to-halve-non-biodegradable-plastic-bags
4.Gupta, A.; Kumar, V., New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. Europ. polym. j. 2007, 43 (10), 4053-4074.
5.Nampoothiri, K. M.; Nair, N. R.; John, R. P., An overview of the recent developments in polylactide (PLA) research. Bioresource technology 2010, 101 (22), 8493-8501.
6.https://today.line.me/TW/pc/article/%E5%B7%A5%E7%A0%94%E9%99%A2%E7%A0%94%E7%99%BC%E8%8F%AF%E4%BA%BA%E5%B0%88%E5%B1%AC%E9%AA%A8%E6%9D%90+%E9%96%8B%E5%89%B5%E7%94%A2%E6%A5%AD%E6%96%B0%E5%95%86%E6%A9%9F-NmaENP
7.https://www.medicalexpo.com.cn/prod/swing-technologies/product-112322-742818.html
8.Bogaert, J. C.; Coszach, P. In Poly (lactic acids): a potential solution to plastic waste dilemma, Macromolecular symposia, Wiley Online Library: 2000; pp 287-303.
9.Vert, M., Lactide polymerization faced with therapeutic application requirements. Macrom. Symp. 2000, 153 (1), 333-342.
10.Jain, R. A., The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21 (23), 2475-2490.
11.https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
12.Saidi, M.; Heidarinejad, S.; Rahimpour, H. R.; Talaghat, M. R.; Rahimpour, M. R., Mathematical modeling of carbon dioxide removal using amine-promoted hot potassium carbonate in a hollow fiber membrane contactor. Journal of Natural Gas Science and Engineering 2014, 18, 274-285.
13.Wilkinson, M.; Haszeldine, R. S.; Fallick, A. E.; Odling, N.; Stoker, S. J.; Gatliff, R. W., CO2–mineral reaction in a natural analogue for CO2 storage—implications for modeling. Journal of Sedimentary Research 2009, 79 (7), 486-494.
14.行政院環境保護署委託報告,蔣本基教授團隊,計畫編號: EPA-102-FA01-03-D071
15.Olah, G. A.; Prakash, G. S.; Goeppert, A., Anthropogenic chemical carbon cycle for a sustainable future. Journal of the American Chemical Society 2011, 133 (33), 12881-12898.
16.Hao, C.; Wang, S.; Li, M.; Kang, L.; Ma, X., Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catalysis today 2011, 160 (1), 184-190.
17.Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W., Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angewandte Chemie International Edition 2016, 55 (26), 7296-7343.
18.Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B., Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms. Coordination Chemistry Reviews 2011, 255 (13-14), 1460-1479.
19.U.S. Food and Drug Administration, Draft Assessment of Bisphenol A for Use in Food Contact Applications, 14 August 2008.
20.Vandenberg, L. N.; Hunt, P. A.; Myers, J. P.; vom Saal, F. S., Human exposures to bisphenol A: mismatches between data and assumptions. Reviews on environmental health 2013, 28 (1), 37-58.
21.Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K., Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chemical Communications 2015, 51 (30), 6459-6479.
22.Kember, M. R.; Buchard, A.; Williams, C. K., Catalysts for CO2/epoxide copolymerisation. Chemical Communications 2011, 47 (1), 141-163.
23.Aida, T.; Inoue, S., Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato) aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. Journal of the American Chemical Society 1983, 105 (5), 1304-1309.
24.Inoue, S.; Koinuma, H.; Tsuruta, T., Copolymerization of carbon dioxide and epoxide. Journal of Polymer Science Part C: Polymer Letters 1969, 7 (4), 287-292.
25.Aida, T.; Inoue, S., Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato) aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. Journal of the American Chemical Society 1983, 105 (5), 1304-1309.
26.Chatterjee, C.; Chisholm, M. H.; El-Khaldy, A.; McIntosh, R. D.; Miller, J. T.; Wu, T., Influence of the metal (Al, Cr, and Co) and substituents of the porphyrin in controlling reactions involved in copolymerization of propylene oxide and carbon dioxide by porphyrin metal (III) complexes. 3. Cobalt chemistry. Inorganic chemistry 2013, 52 (8), 4547-4553.
27.Darensbourg, D. J.; Holtcamp, M. W., Catalytic activity of zinc (II) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules 1995, 28 (22), 7577-7579.
28.Cheng, M.; Lobkovsky, E. B.; Coates, G. W., Catalytic reactions involving C1 feedstocks: new high-activity Zn (II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides. Journal of the American Chemical Society 1998, 120 (42), 11018-11019.
29.Qin, Z.; Thomas Christophe, M.; Lee, S.; Coates Geoffrey, W. Angewandte Chemie International Edition 2003, 42 (44), 5484.
30.Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R., Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Accounts of chemical research 2004, 37 (11), 836-844.
31.Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K., A bimetallic iron(III) catalyst for CO2/epoxide coupling. Chem Commun (Camb) 2011, 47 (1), 212-4.
32.Trott, G.; Garden, J. A.; Williams, C. K., Heterodinuclear zinc and magnesium catalysts for epoxide/CO2 ring opening copolymerizations. Chem. Sci. 2019, 10, 4618–4627
33.Sheng, X.; Qiao, L.; Qin, Y.; Wang, X.; Wang, F., Highly efficient and quantitative synthesis of a cyclic carbonate by iron complex catalysts. Polyhedron 2014, 74, 129-133.
34.Hung, W.-C.; Lin, C.-C., Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate schiff-base ligands. Inorganic chemistry 2008, 48 (2), 728-734.
35.Tsai, C.-Y.; Huang, B.-H.; Hsiao, M.-W.; Lin, C.-C.; Ko, B.-T., Structurally diverse copper complexes bearing NNO-tridentate Schiff-base derivatives as efficient catalysts for copolymerization of carbon dioxide and cyclohexene oxide. Inorganic chemistry 2014, 53 (10), 5109-5116.
36.Tsai, C.-Y.; Cheng, F.-Y.; Lu, K.-Y.; Wu, J.-T.; Huang, B.-H.; Chen, W.-A.; Lin, C.-C.; Ko, B.-T., Dinuclear and trinuclear nickel complexes as effective catalysts for alternating copolymerization on carbon dioxide and cyclohexene oxide. Inorganic chemistry 2016, 55 (16), 7843-7851.
37.105年黃敏嘉碩士論文
38.107年王姵今碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 熱電漿觸媒重組溫室氣體產製合成氣技術之研究
2. 以觸媒輔助介電質放電技術添加氫氣轉化二氧化碳之初步研究
3. 多孔性介質輔助二氧化碳甲烷重組研究
4. 二氧化碳、甲烷及一氧化碳在銅/鎳觸媒上的吸附行為
5. 二氧化碳與環氧化物共聚反應之探討
6. 鎳與鈣鈦礦結構氧化物BaMO3 (M=Ti、Zr、Hf) 催化劑對二氧化碳甲烷化反應的影響
7. 新穎含非對稱型雙胺基雙苯並三唑苯酚氧基雙核鎳、鈷錯合物之合成、結構及應用於二氧化碳/環氧化物共聚合反應之催化研究
8. 新穎含雙胺基雙苯並噻唑苯酚氧衍生物的雙核鎳錯合物之合成、結構鑑定以及於二氧化碳/環氧化物共聚合反應的催化應用
9. 含S,N,O-希夫鹼配位基之過渡金屬(鎳、鈷、銅)錯合物的合成、結構鑑定及其在環氧環己烷與二氧化碳的反應之催化應用
10. 新穎含雙胺基雙苯並三唑苯酚氧配位基的雙金屬鎳與鈷錯合物之合成、結構以及應用於二氧化碳/環氧化物共聚合反應之催化研究
11. 新穎含雙亞胺基雙苯並噻唑苯酚氧衍生物的雙核鎳錯合物之合成、結構鑑定以及於二氧化碳/環氧化物共聚合反應的催化應用
12. S,N,O-希夫鹼三牙配位基鎳及鋅錯合物之合成、結構鑑定及其於環氧化物與二氧化碳反應之催化研究
13. 含希夫鹼配位基之鋅錯合物之合成與鑑定及其在環酯類開環聚合反應與環氧環己烷和二氧化碳之反應之應用
14. 希夫鹼三牙配位基之過渡金屬(鎳、鈷和鋅)錯合物之合成 : 二氧化碳與環氧化物共聚合反應之應用
15. 含希夫鹼三牙配位基鎳、銅金屬錯合物之合成、結構鑑定及其在環氧化合物和酸酐的共聚合反應之應用
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔