跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李存詔
研究生(外文):Cun-Zhao Li
論文名稱:一鍋化固態薑黃素微胞及其醫藥用途之應用
論文名稱(外文):One-pot Solidification of Emulsifying Curcumin Micelle and their Medical Applications
指導教授:賴秉杉
口試委員:林殿傑蕭玉屏林季千謝昌衛
口試日期:2020-01-31
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:107
中文關鍵詞:黃素自組裝微膠囊一鍋化水溶性抗病毒乾癬
外文關鍵詞:CurcuminSelf-assemblyMicro-capsule emulsifyingone-potwater solubilityanti-influenza viruspsoriasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
致謝詞 i
中文摘要 ii
Abstract iv
Table of Contents vi
List of tables xii
List of figures xiii
Abbreviate Table xvi
Chapter 1: Background Introduction 1
1.1 Curcumin 1
1.1.1 Introductions of Curcumin 1
1.1.2 Safety and Limitation of Curcumin in Pre-clinical and Clinical Applications 2
1.2 Drug Delivery Systems 3
1.2.1 Self-assembly Drug Delivery Systems 5
1.2.2 Micro-capsule Emulsifying Drug Delivery Systems 7
1.3 Solidification Process 7
1.4 Pharmaceutical Industry and Environmental Issues 8
1.5 Motivation 10
Chapter 2: Materials 11
2.1 Chemicals and Reagents 11
2.2 Cell Lines and Influenza Virus 11
2.3 Animals 12
Chapter 3: One-Pot Solidification of Self-assembly Curcumin and Its Anti-influenza A Virus Activity 13
3.1 Introduction and Motivation 13
3.1.1 Introductions of Viral Diseases 13
3.1.2 Influenza A Virus 14
3.1.3 Curcumin Inhibited the Proliferation of Influenza A Virus 15
3.1.4 Opportunity and Possibility of Formulated Curcumin for Inhibiting Influenza Virus Proliferation 16
3.2 Experimental Design and Methods 17
3.2.1 Experimental Design 17
3.2.2 Preparation of Curcumin Loaded Micelles (Cur-MSA) by Self-assembly Process 18
3.2.3 Characterization of Curcumin Loaded Self-assembly Micelles (Cur-MSA) 18
3.2.4 In Vitro Cytotoxicity 18
3.2.5 Cell Uptake Study 19
3.2.6 Virus Infection and Plaque Assay 19
3.2.7 Time-of-drug-addition Assays During Virus Infection 20
3.2.8 Preparation of Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) by One Pot Solidification Process 21
3.2.9 Morphology of Adsorbent and Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) 21
3.2.10 Quantitative Analysis of Curcumin 22
3.2.11 Water Solubility Study 22
3.2.12 In Vitro Release Profile 22
3.2.13 Stability of Curcumin Loaded Self-assembly Micelles (Cur-SMSA) in Different pH Buffers 23
3.2.14 Curcumin for Use in Pharmaceutical Formulations 23
3.2.15 Statistical analysis 24
3.3 Results 25
3.3.1 Characterization of Curcumin Loaded Self-assembly Micelles (Cur-MSA) 25
3.3.2 In Vitro Cytotoxicity Study of Curcumin Loaded Self-assembly Micelles (Cur-MSA) 28
3.3.3 Cell Uptake Study of Curcumin Loaded Self-assembly Micelles (Cur-MSA) by Laser Scanning Confocal Microscopy (LSCM) 29
3.3.4 Anti-influenza Activity of Micelle, Curcumin and Curcumin Loaded Self-assembly Micelles (Cur-MSA) 31
3.3.5 Investigation of Anti-influenza Mechanism of Curcumin Loaded Self-assembly Micelles (Cur-MSA) 33
3.3.6 Morphology of Adsorbent and Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) 35
3.3.7 Water Solubility Study of Curcumin Loaded Self-assembly Micelles (Cur-MSA) and Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) 36
3.3.8 In Vitro Release Profile of Curcumin Loaded Self-assembly Micelles (Cur-MSA) and Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) 38
3.3.9 Stability Study of Curcumin Loaded Self-assembly Micelles (Cur-MSA) and Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) 40
3.3.10 Pharmaceutical Formulations of Curcumin Loaded Solid Self-assembly Micelles (Cur-SMSA) 42
3.4 Discussions 43
3.5 Conclusion 49
Chapter 4: One-Pot Solidification of Micro-capsule Emulsifying Curcumin and the Application of Psoriasis Relieving 50
4.1 Introduction and Motivation 50
4.1.1 Psoriasis 50
4.1.2 Treatments for Psoriasis 52
4.1.3 Curcumin Relieved the Inflammatory Skin Lesion of Psoriasis 53
4.1.4 Opportunity and Possibility of Formulated Curcumin for Psoriasis Relieving 54
4.2 Experimental Design and Methods 55
4.2.1 Experimental Design 55
4.2.2 Preparation of Curcumin Loaded Micelles by Micro-capsule Emulsifying Process 56
4.2.3 Preparation of Solid Curcumin Loaded Micro-capsule Emulsifying Micelles by One Pot Solidification Process 56
4.2.4 Characterization of Micelles, Curcumin Loaded Micro-capsule Emulsifying Micelles (Cur-MMCE), and Solid Curcumin Loaded Micro-capsule Emulsifying Micelles (Cur-SMMCE) 56
4.2.5 Quantitative Analysis of Curcumin 57
4.2.6 Water Solubility Study 57
4.2.7 Imiquimid-induced Psoriasis Mice Model 58
4.2.8 Scoring the Skin Inflammation Severity 58
4.2.9 Histopathological and Immunohistochemical Analysis 59
4.2.10 Staining and Flow Cytometry Analysis 59
4.2.11 Statistical Analysis 60
4.3 Results 61
4.3.1 Characterization of Curcumin Loaded Micro-capsule Emulsifying Micelles (Cur-MMCE) and Solid Curcumin Loaded Micro-capsule Emulsifying Micelles (Cur-SMMCE) 61
4.3.2 Water Solubility Study of Curcumin Loaded Micro-capsule Emulsifying Micelles (Cur-MMCE) and Curcumin Loaded Solid Micro-capsule Emulsifying Micelles (Cur-SMMCE) 64
4.3.3 Psoriasis Relieving Efficacy of Curcumin-Loaded Solid Micro-capsule Emulsifying Micelles (Cur-SMMCE) in Imiquimod-induced Psoriasis-like Skin Lesions 66
4.3.4 Histological Analysis of Imiquimod-induced Psoriasis-like Skin Lesions with Hematoxylin and Eosin Staining 69
4.3.5 Immunohistochemical Analysis of Imiquimod-induced Psoriasis-like Skin Lesions with Ki67 Staining 71
4.3.6 Immunohistochemical Analysis of Imiquimod-induced Psoriasis-like Skin Lesions with CD3+ T Cell Staining 72
4.3.7 Immunohistochemical Analysis of Imiquimod-induced Psoriasis-like Skin Lesions with Ly6G/Gr1+ Neutrophil Staining 73
4.3.8 Curcumin-Loaded Micelles (Cur-SMMCE) Treatment without Reduction of the Percentage of IL-17/IL-22 Producing Splenic CD4+ and γδ T Cells in Imiquimod-induced Psoriasis Mice 75
4.4 Discussions 79
4.5 Conclusion 85
Reference 86
1.Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB: Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007, 28:1765-1773.
2.Zhou Y, Xie M, Song Y, Wang W, Zhao H, Tian Y, Wang Y, Bai S, Zhao Y, Chen X: Two Traditional Chinese Medicines Curcumae Radix and Curcumae Rhizoma: An Ethnopharmacology, Phytochemistry, and Pharmacology Review. Evidence-Based Complementary and Alternative Medicine 2016, 2016:4973128.
3.Arshad L, Haque MA, Bukhari SNA, Jantan I: An overview of structure–activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents. Future 2017, 9:605-626.
4.Ak T, Gülçin İ: Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions 2008, 174:27-37.
5.Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H: Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. Journal of agricultural and food chemistry 1999, 47:71-77.
6.Jurenka JS: Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Alternative Medicine Review 2009, 14:141-153.
7.Menon VP, Sudheer AR: Antioxidant and anti-inflammatory properties of curcumin. In The molecular targets and therapeutic uses of curcumin in health and disease. Springer; 2007: 105-125
8.Brouet I, Ohshima H: Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochemical and biophysical research communications 1995, 206:533-540.
9.Shehzad A, Qureshi M, Anwar MN, Lee YS: Multifunctional curcumin mediate multitherapeutic effects. Journal of Food Science 2017, 82:2006-2015.
10.He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z: Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 2015, 20:9183-9213.
11.Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M: Chemopreventive and therapeutic effects of curcumin. Cancer letters 2005, 223:181-190.
12.Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K: A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International 2014, 2014:186864.
13.Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X, Deng H, Li W, Wang G, Li K: Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. International immunopharmacology 2018, 54:177-187.
14.Lin CC, Lin HY, Chen HC, Yu MW, Lee MH: Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chemistry 2009, 116:923-928.
15.Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, Maitra A: Polymeric nanoparticle-encapsulated curcumin (" nanocurcumin"): a novel strategy for human cancer therapy. Journal of Nanobiotechnology 2007, 5:3.
16.Olszanecki R, Jawień J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, Chłopicki S, Korbut R: Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. Journal of Physiology and Pharmacology 2005, 56:627-635.
17.Chandran B, Goel A: A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytotherapy Research 2012, 26:1719-1725.
18.Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S: Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012, 35:2121-2127.
19.Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A: Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. Journal of Cellular Physiology 2018, 233:141-152.
20.Wongcharoen W, Phrommintikul A: The protective role of curcumin in cardiovascular diseases. International Journal of Cardiology 2009, 133:145-151.
21.Hsieh C: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001, 21:e2900.
22.Hsu C-H, Cheng A-L: Clinical studies with curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Springer; 2007: 471-480
23.Kurd SK, Smith N, VanVoorhees A, Troxel AB, Badmaev V, Seykora JT, Gelfand JM: Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. Journal of the American Academy of Dermatology 2008, 58:625-631.
24.Gupta SC, Patchva S, Aggarwal BB: Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS Journal 2013, 15:195-218.
25.Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH: Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC–MS/MS. Journal of Chromatography B 2007, 853:183-189.
26.Goel A, Kunnumakkara AB, Aggarwal BB: Curcumin as “Curecumin”: from kitchen to clinic. Biochemical Pharmacology 2008, 75:787-809.
27.Shieh MJ, Peng CL, Lou PJ, Chiu CH, Tsai TY, Hsu CY, Yeh CY, Lai PS: Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. Journal of Controlled Release 2008, 129:200-206.
28.Jian YS, Chen CW, Lin CA, Yu HP, Lin HY, Liao MY, Wu SH, Lin YF, Lai PS: Hyaluronic acid–nimesulide conjugates as anticancer drugs against cD44-overexpressing hT-29 colorectal cancer in vitro and in vivo. International Journal of Nanomedicine 2017, 12:2315-2333.
29.Peng CL, Lai PS, Lin FH, Wu SYH, Shieh MJ: Dual chemotherapy and photodynamic therapy in an HT-29 human colon cancer xenograft model using SN-38-loaded chlorin-core star block copolymer micelles. Biomaterials 2009, 30:3614-3625.
30.Shieh MJ, Peng CL, Chiang WL, Wang CH, Hsu CY, Wang SJJ, Lai PS: Reduced skin photosensitivity with meta-tetra (hydroxyphenyl) chlorin-loaded micelles based on a poly (2-ethyl-2-oxazoline)-b-poly (d, l-lactide) diblock copolymer in vivo. Molecular Pharmaceutics 2010, 7:1244-1253.
31.Lu HL, Syu WJ, Nishiyama N, Kataoka K, Lai PS: Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. Journal of Controlled Release 2011, 155:458-464.
32.Syu WJ, Yu HP, Hsu CY, Rajan YC, Hsu YH, Chang YC, Hsieh WY, Wang CH, Lai PS: Improved photodynamic cancer treatment by folate‐conjugated polymeric micelles in a KB xenografted animal model. Small 2012, 8:2060-2069.
33.Shieh MJ, Hsu CY, Huang LY, Chen HY, Huang FH, Lai PS: Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. Journal of Controlled Release 2011, 152:418-425.
34.Peng CL, Shieh MJ, Tsai MH, Chang CC, Lai PS: Self-assembled star-shaped chlorin-core poly (ɛ-caprolactone)–poly (ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials 2008, 29:3599-3608.
35.Hsu CY, Nieh MP, Lai PS: Facile self-assembly of porphyrin-embedded polymeric vesicles for theranostic applications. Chemical Communications 2012, 48:9343-9345.
36.Yallapu MM, Jaggi M, Chauhan SC: Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today 2012, 17:71-80.
37.He Y, Huang Y, Cheng Y: Structure evolution of curcumin nanoprecipitation from a micromixer. Crystal Growth & Design 2010, 10:1021-1024.
38.Li J, Wang Y, Yang C, Wang P, Oelschlager DK, Zheng Y, Tian D-A, Grizzle WE, Buchsbaum DJ, Wan M: Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Molecular pharmacology 2009, 76:81-90.
39.Liu C-H, Chang F-Y: Development and characterization of eucalyptol microemulsions for topic delivery of curcumin. Chemical and Pharmaceutical Bulletin 2011, 59:172-178.
40.Kunwar A, Barik A, Pandey R, Priyadarsini KI: Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study. Biochimica et Biophysica Acta (BBA)-General Subjects 2006, 1760:1513-1520.
41.Yallapu MM, Gupta BK, Jaggi M, Chauhan SC: Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of colloid and interface science 2010, 351:19-29.
42.Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H: Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. International journal of pharmaceutics 2011, 416:331-338.
43.Kasinathan N, Amirthalingam M, Reddy ND, Jagani HV, Volety SM, Rao JV: In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments. Drug delivery 2016, 23:1007-1015.
44.Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R: Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers 2011, 84:1158-1164.
45.Yallapu MM, Vasir JK, Jain TK, Vijayaraghavalu S, Labhasetwar V: Synthesis, characterization and antiproliferative activity of rapamycin-loaded poly (N-isopropylacrylamide)-based nanogels in vascular smooth muscle cells. Journal of biomedical nanotechnology 2008, 4:16-24.
46.Varaprasad K, Mohan YM, Vimala K, Mohana Raju K: Synthesis and characterization of hydrogel‐silver nanoparticle‐curcumin composites for wound dressing and antibacterial application. Journal of Applied Polymer Science 2011, 121:784-796.
47.Nagahama K, Sano Y, Kumano T: Anticancer drug-based multifunctional nanogels through self-assembly of dextran–curcumin conjugates toward cancer theranostics. Bioorganic & medicinal chemistry letters 2015, 25:2519-2522.
48.Mangalathillam S, Rejinold NS, Nair A, Lakshmanan V-K, Nair SV, Jayakumar R: Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 2012, 4:239-250.
49.Sahu A, Bora U, Kasoju N, Goswami P: Synthesis of novel biodegradable and self-assembling methoxy poly (ethylene glycol)–palmitate nanocarrier for curcumin delivery to cancer cells. Acta biomaterialia 2008, 4:1752-1761.
50.Date AA, Nagarsenker M: Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. International Journal of Pharmaceutics 2007, 329:166-172.
51.Joshi RP, Negi G, Kumar A, Pawar YB, Munjal B, Bansal AK, Sharma SS: SNEDDS curcumin formulation leads to enhanced protection from pain and functional deficits associated with diabetic neuropathy: an insight into its mechanism for neuroprotection. Nanomedicine: Nanotechnology, Biology and Medicine 2013, 9:776-785.
52.Kharat M, Du Z, Zhang G, McClements DJ: Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. Journal of Agricultural and Food Chemistry 2017, 65:1525-1532.
53.Wu X, Xu J, Huang X, Wen C: Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability. Drug Development and Industrial Pharmacy 2011, 37:15-23.
54.He C, Hu Y, Yin L, Tang C, Yin C: Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31:3657-3666.
55.Lu F, Wu SH, Hung Y, Mou CY: Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small 2009, 5:1408-1413.
56.Dowding PJ, Atkin R, Vincent B, Bouillot P: Oil core− polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells. Langmuir 2004, 20:11374-11379.
57.Jyothi SS, Seethadevi A, Prabha KS, Muthuprasanna P, Pavitra P: Microencapsulation: a review. Int J Pharm Biol Sci 2012, 3:509-531.
58.Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF: Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. Journal of Controlled Release 2010, 147:304-310.
59.Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R: Applications of spray-drying in microencapsulation of food ingredients: An overview. Food research international 2007, 40:1107-1121.
60.Shu B, Yu W, Zhao Y, Liu X: Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering 2006, 76:664-669.
61.Raymond MJ, Slater CS, Savelski MJ: LCA approach to the analysis of solvent waste issues in the pharmaceutical industry. Green chemistry 2010, 12:1826-1834.
62.Jiménez-González C, Curzons AD, Constable DJ, Cunningham VL: Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds. The International Journal of Life Cycle Assessment 2004, 9:114-121.
63.Slater CS, Savelski MJ: Towards a greener manufacturing environment. Innov Pharm Technol 2009, 29:78-83.
64.Anastas PT, Tundo P: Green chemistry: Challenging perspectives. Oxford University Press Oxford:; 2000.
65.Whitley RJ, Roizman B: Herpes simplex virus infections. The lancet 2001, 357:1513-1518.
66.Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S: Human papillomavirus and cervical cancer. The Lancet 2007, 370:890-907.
67.Van den Hurk AF, Ritchie SA, Mackenzie JS: Ecology and geographical expansion of Japanese encephalitis virus. Annual review of entomology 2009, 54:17-35.
68.Poorolajal J, Hooshmand E, Mahjub H, Esmailnasab N, Jenabi E: Survival rate of AIDS disease and mortality in HIV-infected patients: a meta-analysis. Public health 2016, 139:3-12.
69.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA: a cancer journal for clinicians 2011, 61:69-90.
70.Shepard CW, Finelli L, Alter MJ: Global epidemiology of hepatitis C virus infection. The Lancet infectious diseases 2005, 5:558-567.
71.Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH: Virology, epidemiology, pathogenesis, and control of enterovirus 71. The Lancet infectious diseases 2010, 10:778-790.
72.Taubenberger JK, Morens DM: 1918 Influenza: the mother of all pandemics. Emerging Infectious Diseases 2006, 12:15-22.
73.Longini Jr IM, Halloran ME, Nizam A, Yang Y: Containing pandemic influenza with antiviral agents. American Journal of Epidemiology 2004, 159:623-633.
74.Claas EC, Osterhaus AD, Van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG: Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. The Lancet 1998, 351:472-477.
75.Watanabe T, Watanabe S, Maher EA, Neumann G, Kawaoka Y: Pandemic potential of avian influenza A (H7N9) viruses. Trends in Microbiology 2014, 22:623-631.
76.Stephenson I, Nicholson KG: Chemotherapeutic control of influenza. Journal of Antimicrobial Chemotherapy 1999, 44:6-10.
77.McKimm‐Breschkin JL: Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses 2013, 7:25-36.
78.Chen DY, Shien JH, Tiley L, Chiou SS, Wang SY, Chang TJ, Lee YJ, Chan KW, Hsu WL: Curcumin inhibits influenza virus infection and haemagglutination activity. Food Chemistry 2010, 119:1346-1351.
79.Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WL: Structure–activity relationship analysis of curcumin analogues on anti‐influenza virus activity. FEBS Journal 2013, 280:5829-5840.
80.Chen TY, Chen DY, Wen HW, Ou JL, Chiou SS, Chen JM, Wong ML, Hsu WL: Inhibition of enveloped viruses infectivity by curcumin. PloS One 2013, 8:e62482.
81.Mathew D, Hsu WL: Antiviral potential of curcumin. Journal of Functional Foods 2018, 40:692-699.
82.Zhao X, Dai J, Xiao X, Wu L, Zeng J, Sheng J, Su J, Chen X, Wang G, Li K: PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PloS One 2014, 9:e104506.
83.Murray JL, McDonald NJ, Sheng J, Shaw MW, Hodge TW, Rubin DH, O'Brien WA, Smee DF: Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antiviral Chemistry and Chemotherapy 2012, 22:205-215.
84.Choi BH, Kim CG, Lim Y, Shin SY, Lee YH: Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NFκB pathway. Cancer Letters 2008, 259:111-118.
85.Xu X, Qin J, Liu W: Curcumin inhibits the invasion of thyroid cancer cells via down-regulation of PI3K/Akt signaling pathway. Gene 2014, 546:226-232.
86.Qiao Q, Jiang Y, Li G: Inhibition of the PI3K/AKT-NF-κB pathway with curcumin enhanced radiation-induced apoptosis in human Burkitt’s lymphoma. Journal of Pharmacological Sciences 2013, 121:247-256.
87.Duan H, Wang D, Li Y: Green chemistry for nanoparticle synthesis. Chemical Society Reviews 2015, 44:5778-5792.
88.Setthacheewakul S, Mahattanadul S, Phadoongsombut N, Pichayakorn W, Wiwattanapatapee R: Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. European Journal of Pharmaceutics and Biopharmaceutics 2010, 76:475-485.
89.Chang H-M: Polymeric nanoparticle-encapsulated curcumin inhibits influenza virus infection. National Chung Hsing University, Department of Graduate Institute of Microbiology and Public Health; 2017.
90.Song L, Shen Y, Hou J, Lei L, Guo S, Qian C: Polymeric micelles for parenteral delivery of curcumin: preparation, characterization and in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 390:25-32.
91.Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, Yousefi R, Chobert J-M, Haertlé T, Moosavi-Movahedi AA: Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-Food Science and Technology 2011, 44:2166-2172.
92.Khalil NM, do Nascimento TC, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, Romano MA, Mainardes RM: Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids and Surfaces B, Biointerfaces 2013, 101:353-360.
93.Sonavane G, Tomoda K, Makino K: Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B: Biointerfaces 2008, 66:274-280.
94.Ono K, Hasegawa K, Naiki H, Yamada M: Curcumin has potent anti‐amyloidogenic effects for Alzheimer's β‐amyloid fibrils in vitro. Journal of Neuroscience Research 2004, 75:742-750.
95.Ringman JM, Frautschy SA, Teng E, Begum AN, Bardens J, Beigi M, Gylys KH, Badmaev V, Heath DD, Apostolova LG: Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer's Research & Therapy 2012, 4:43.
96.Nair KL, Thulasidasan AK, Deepa G, Anto RJ, Kumar GS: Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. International Journal of Pharmaceutics 2012, 425:44-52.
97.Ucisik MH, Küpcü S, Schuster B, Sleytr UB: Characterization of curcuemulsomes: Nanoformulation for enhanced solubility anddelivery of curcumin. Journal of Nanobiotechnology 2013, 11:37.
98.Kunnumakkara AB, Bordoloi D, Harsha C, Banik K, Gupta SC, Aggarwal BB: Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clinical Science 2017, 131:1781-1799.
99.Ramasahayam B, Eedara BB, Kandadi P, Jukanti R, Bandari S: Development of isradipine loaded self-nano emulsifying powders for improved oral delivery: in vitro and in vivo evaluation. Drug Development and Industrial Pharmacy 2015, 41:753-763.
100.Inugala S, Eedara BB, Sunkavalli S, Dhurke R, Kandadi P, Jukanti R, Bandari S: Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: in vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences 2015, 74:1-10.
101.Li L, Braiteh FS, Kurzrock R: Liposome‐encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 2005, 104:1322-1331.
102.Ghosh M, Singh AT, Xu W, Sulchek T, Gordon LI, Ryan RO: Curcumin nanodisks: formulation and characterization. Nanomedicine: Nanotechnology, Biology and Medicine 2011, 7:162-167.
103.Anuchapreeda S, Fukumori Y, Okonogi S, Ichikawa H: Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. Journal of Nanotechnology 2012, 2012:270383.
104.Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK: Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. International Journal of Pharmaceutics 2007, 330:155-163.
105.Mohanty C, Sahoo SK: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 2010, 31:6597-6611.
106.Ma Z, Haddadi A, Molavi O, Lavasanifar A, Lai R, Samuel J: Micelles of poly (ethylene oxide)‐b‐poly (ε‐caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. Journal of Biomedical Materials Research Part A 2008, 86:300-310.
107.Ni C, Chiu MW: Psoriasis and comorbidities: links and risks. Clinical, Cosmetic and Investigational Dermatology 2014, 7:119-132.
108.Hu SC-S, Lan C-CE: Psoriasis and cardiovascular comorbidities: focusing on severe vascular events, cardiovascular risk factors and implications for treatment. International Journal of Molecular Sciences 2017, 18:2211.
109.Griffiths C, Van der Walt J, Ashcroft D, Flohr C, Naldi L, Nijsten T, Augustin M: The global state of psoriasis disease epidemiology: a workshop report. British Journal of Dermatology 2017, 177:e4-e7.
110.Lowes MA, Bowcock AM, Krueger JG: Pathogenesis and therapy of psoriasis. Nature 2007, 445:866-873.
111.Guérard S, Pouliot R: The role of angiogenesis in the pathogenesis of psoriasis: mechanisms and clinical implications. J Clin Exp Dermatol Res S 2012, 2:2.
112.Chen HH, Chao YH, Chen DY, Yang DH, Chung TW, Li YR, Lin CC: Oral administration of acarbose ameliorates imiquimod-induced psoriasis-like dermatitis in a mouse model. International Immunopharmacology 2016, 33:70-82.
113.Smith CH, Barker J: Psoriasis and its management. BMJ 2006, 333:380-384.
114.Chen YH, Wu CS, Chao YH, Lin CC, Tsai HY, Li YR, Chen YZ, Tsai WH, Chen YK: Lactobacillus pentosus GMNL-77 inhibits skin lesions in imiquimod-induced psoriasis-like mice. Journal of Food and Drug Analysis 2017, 25:559-566.
115.Chiricozzi A, Romanelli P, Volpe E, Borsellino G, Romanelli M: Scanning the immunopathogenesis of psoriasis. International Journal of Molecular Sciences 2018, 19:179.
116.Monteleone G, Pallone F, MacDonald TT, Chimenti S, Costanzo A: Psoriasis: from pathogenesis to novel therapeutic approaches. Clinical Science 2010, 120:1-11.
117.Lew W, Bowcock AM, Krueger JG: Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and ‘Type 1’inflammatory gene expression. Trends in Immunology 2004, 25:295-305.
118.Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S: The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nature Communications 2014, 5:5621.
119.Fotiadou C, Lazaridou E, Sotiriou E, Ioannides D: Targeting IL-23 in psoriasis: Current perspectives. Psoriasis: Targets and Therapy 2018, 8:1-5.
120.Nograles K, Zaba L, Guttman‐Yassky E, Fuentes‐Duculan J, Suárez‐Fariñas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson K, White T: Th17 cytokines interleukin (IL)‐17 and IL‐22 modulate distinct inflammatory and keratinocyte‐response pathways. British Journal of Dermatology 2008, 159:1092-1102.
121.Becher B, Pantelyushin S: Hiding under the skin: Interleukin-17–producing γδ T cells go under the skin? Nature Medicine 2012, 18:1748-1750.
122.Leslie van der F, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, Cornelissen F, Mus A-M, Florencia E, Prens EP: Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. The Journal of Immunology 2009, 182:5836-5845.
123.Wolk K, Witte E, Warszawska K, Schulze‐Tanzil G, Witte K, Philipp S, Kunz S, Döcke WD, Asadullah K, Volk HD: The Th17 cytokine IL‐22 induces IL‐20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. European Journal of Immunology 2009, 39:3570-3581.
124.Liang SC, Tan X-Y, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA: Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. Journal of Experimental Medicine 2006, 203:2271-2279.
125.Horn E, Domm S, Katz H, Lebwohl M, Mrowietz U, Kragballe K, Council IP: Topical corticosteroids in psoriasis: strategies for improving safety. Journal of the European Academy of Dermatology and Venereology 2010, 24:119-124.
126.GREEN C, Ferguson J, Lakshmipathi T, Johnson B: 311 nm UVB phototherapy—an effective treatment for psoriasis. British Journal of Dermatology 1988, 119:691-696.
127.Larkö O: Treatment of psoriasis with a new UVB-lamp. Acta dermato-venereologica 1989, 69:357-359.
128.Coven TR, Burack LH, Gilleaudeau P, Keogh M, Ozawa M, Krueger JG: Narrowband UV-B produces superior clinical and histopathological resolution of moderate-to-severe psoriasis in patients compared with broadband UV-B2. Archives of dermatology 1997, 133:1514-1522.
129.Walters IB, Burack LH, Coven TR, Gilleaudeau P, Krueger JG: Suberythemogenic narrow-band UVB is markedly more effective than conventional UVB in treatment of psoriasis vulgaris. Journal of the American Academy of Dermatology 1999, 40:893-900.
130.Lauharanta J: Photochemotherapy. Clinics in dermatology 1997, 15:769-780.
131.Archier E, Devaux S, Castela E, Gallini A, Aubin F, Le Maître M, Aractingi S, Bachelez H, Cribier B, Joly P: Carcinogenic risks of psoralen UV‐A therapy and narrowband UV‐B therapy in chronic plaque psoriasis: a systematic literature review. Journal of the European Academy of Dermatology and Venereology 2012, 26:22-31.
132.Menter A, Griffiths CE: Current and future management of psoriasis. The Lancet 2007, 370:272-284.
133.Reich K, Nestle FO, Papp K, Ortonne J-P, Evans R, Guzzo C, Li S, Dooley LT, Griffiths CE, Investigators ES: Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. The Lancet 2005, 366:1367-1374.
134.Menter A, Feldman SR, Weinstein GD, Papp K, Evans R, Guzzo C, Li S, Dooley LT, Arnold C, Gottlieb AB: A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. Journal of the American Academy of Dermatology 2007, 56:31. e31-31. e15.
135.Scheinfeld N: Efalizumab: a review of events reported during clinical trials and side effects. Expert opinion on drug safety 2006, 5:197-209.
136.Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V: Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. Jama 2006, 295:2275-2285.
137.Sun L, Liu Z, Wang L, Cun D, Tong HH, Yan R, Chen X, Wang R, Zheng Y: Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. Journal of Controlled Release 2017, 254:44-54.
138.Sun J, Zhao Y, Hu J: Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS One 2013, 8:e67078.
139.Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, Lai R: Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie 2016, 123:73-80.
140.Mao KL, Fan ZL, Yuan JD, Chen PP, Yang JJ, Xu J, ZhuGe DL, Jin BH, Zhu QY, Shen BX: Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids and Surfaces B: Biointerfaces 2017, 160:704-714.
141.Rodríduez‐Huezo M, Pedroza‐Islas R, Prado‐Barragán L, Beristain C, Vernon‐Carter E: Microencapsulation by spray drying of multiple emulsions containing carotenoids. Journal of Food Science 2004, 69:351-359.
142.Binder L, Jatschka J, Baurecht D, Wirth M, Valenta C: Novel concentrated water-in-oil emulsions based on a non-ionic silicone surfactant: Appealing application properties and tuneable viscoelasticity. European Journal of Pharmaceutics and Biopharmaceutics 2017, 120:34-42.
143.Ternullo S, Basnet P, Holsæter AM, Flaten GE, de Weerd L, Škalko-Basnet N: Deformable liposomes for skin therapy with human epidermal growth factor: The effect of liposomal surface charge. European Journal of Pharmaceutical Sciences 2018, 125:163-171.
144.Sarika P, James NR, Raj DK: Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. International Journal of Biological Macromolecules 2016, 86:1-9.
145.Lin CC, Wu JJ, Pan YG, Chao YH, Lin FC, Lee YR, Chu CL: Gold lotion from citrus peel extract ameliorates imiquimod‐induced psoriasis‐like dermatitis in murine. Journal of the Science of Food and Agriculture 2018, 98:5509-5517.
146.Rizzo HL, Kagami S, Phillips KG, Kurtz SE, Jacques SL, Blauvelt A: IL-23–mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. The Journal of Immunology 2011, 186:1495-1502.
147.Walter A, Schäfer M, Cecconi V, Matter C, Urosevic-Maiwald M, Belloni B, Schönewolf N, Dummer R, Bloch W, Werner S: Aldara activates TLR7-independent immune defence. Nature Communications 2013, 4:1560.
148.Hu Y, Li K, Wang L, Yin S, Zhang Z, Zhang Y: Pegylated immuno-lipopolyplexes: A novel non-viral gene delivery system for liver cancer therapy. Journal of Controlled Release 2010, 144:75-81.
149.Stylianopoulos T: EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Therapeutic delivery 2013, 4:421-423.
150.Kumar S, Kesharwani SS, Mathur H, Tyagi M, Bhat GJ, Tummala H: Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. European Journal of Pharmaceutical Sciences 2016, 82:86-96.
151.Chan TC, Hawkes JE, Krueger JG: Interleukin 23 in the skin: role in psoriasis pathogenesis and selective interleukin 23 blockade as treatment. Therapeutic Advances in Chronic Disease 2018, 9:111-119.
152.Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang H-g, Wang T, Zheng J: Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 2011, 35:596-610.
153.Vantourout P, Hayday A: Six-of-the-best: unique contributions of γδ T cells to immunology. Nature Reviews Immunology 2013, 13:88.
154.Ramírez-Valle F, Gray EE, Cyster JG: Inflammation induces dermal Vγ4+ γδT17 memory-like cells that travel to distant skin and accelerate secondary IL-17–driven responses. Proceedings of the National Academy of Sciences 2015, 112:8046-8051.
155.Wu HH, Xie WL, Zhao YK, Liu JH, Luo DQ: Imiquimod increases cutaneous VEGF expression in imiquimod-induced psoriatic mouse model. Current Vascular Pharmacology 2016, 14:275-279.
156.Sun J, Zhao Y, Jin H, Hu J: Curcumin relieves TPA-induced Th1 inflammation in K14-VEGF transgenic mice. International Immunopharmacology 2015, 25:235-241.
157.Kumar B, Narang T: Local and systemic adverse effects to topical imiquimod due to systemic immune stimulation. Sexually Transmitted Infections 2011:sextrans-2011-050025.
158.Nerurkar L, McColl A, Graham G, Cavanagh J: The systemic response to topical Aldara treatment is mediated through direct TLR7 stimulation as Imiquimod enters the circulation. Scientific Reports 2017, 7:16570.
159.Gordon ML: The role of clobetasol propionate emollient 0.05% in the treatment of patients with dry, scaly, corticosteroid-responsive dermatoses. Clinical Therapeutics 1998, 20:26-39.
160.Banuelos J, Lu NZ: A gradient of glucocorticoid sensitivity among helper T cell cytokines. Cytokine & Growth Factor Reviews 2016, 31:27-35.
161.Volden KK, PCM van de Kerkhof, K Åberg, RJ White, G: Remission and relapse of chronic plaque psoriasis treated once a week with clobetasol propionate occluded with a hydrocolloid dressing versus twice daily treatment with clobetasol propionate alone. Journal of Dermatological Treatment 2001, 12:141-144.
162.Dhar S, Seth J, Parikh D: Systemic side-effects of topical corticosteroids. Indian Journal of Dermatology 2014, 59:460-464.
163.Coondoo A, Phiske M, Verma S, Lahiri K: Side-effects of topical steroids: A long overdue revisit. Indian Dermatology Online Journal 2014, 5:416-425.
164.Singh TP, Schön MP, Wallbrecht K, Gruber-Wackernagel A, Wang X-J, Wolf P: Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PloS One 2013, 8:e51752.
165.Mulder WJ, Griffioen AW, Strijkers GJ, Cormode DP, Nicolay K, Fayad ZA: Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine 2007, 2:307-324.
166.Maeda H, Wu J, Sawa T, Matsumura Y, Hori K: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 2000, 65:271-284.
167.Heidenreich R, Röcken M, Ghoreschi K: Angiogenesis: the new potential target for the therapy of psoriasis? Drug News & Perspectives 2008, 21:97-105.
168.Jain A, Doppalapudi S, Domb AJ, Khan W: Tacrolimus and curcumin co-loaded liposphere gel: synergistic combination towards management of psoriasis. Journal of Controlled Release 2016, 243:132-145.
169.Panonnummal R, Jayakumar R, Sabitha M: Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. European Journal of Pharmaceutical Sciences 2017, 96:193-206.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 環糊精包覆疏水性藥物之主客體複合物二成分及胺基酸作為三成分的探討
2. 探討[Fe(DOTAM)]2+及可能受氧化[Fe(DOTAM)]2+之順磁化學交換飽和轉移性質
3. 開發透明質酸-類固醇共軛藥物對類風濕性關節炎的治療
4. 薑黃素對於光動力治療後缺氧誘導因子的影響
5. 口服土肉桂葉對高尿酸血症及腎損傷大鼠模型之效果
6. 摻鍶透明質酸與殼聚醣奈米粒子混合膠原蛋白支架應用於齒槽骨修復的體外評估
7. 3D列印晶片結合基質輔助雷射脫附游離飛行時間質譜儀應用於危害小分子之檢測
8. Pectobacterium carotovorum subsp. carotovorum 中Diguanylate cyclase調控第三分泌系統與低分子量細菌素基因機制研究
9. Pectobacterium carotovorum subsp. carotovorum 中Cyclic-AMP-Receptor Protein (CRP)與第三型分泌系統相關基因之相互關係研究
10. 細 菌 素 調 節 基 因(Brg) 其 對 Pectobacterium carotovorum subsp. carotovorum 產 生 的 低 分 子 量 細 菌 素 合 成 和 分 泌 機 制 的 作 用
11. 口服中草藥萃取物對Imiquimod誘導類乾癬小鼠模型的療效評估
12. 胜肽修飾金奈米粒子結合基質輔助雷射脫附游離飛行時間質譜術應用於汞汙染之檢測
13. 合成抗體修飾金奈米粒子結合雷射脫附游離飛行時間質譜術應用於快速檢測糖尿病
14. 評估玻尿酸接枝藥物於Caco-2細胞層的穿透性
15. 玻尿酸接枝尼美舒利共軛物及其劑型在癌症治療上的研究