跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/17 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪名葳
研究生(外文):Ming-Wei Hung
論文名稱:(1) 以離子液體催化硫酯之合成(2) 磷鎢酸催化以對甲基苯硫酚保護醣體1號位之微波反應(3) 硫醣及硫醣-二亞硝醯基鐵配合物之合成
論文名稱(外文):(1) Using ionic liquid as catalyst for thioester synthesis(2) Phosphotungstic acid catalyzed p-thiocresol C1 protection of sugar under microwave(3) Synthesis and coordination of dinitrosyl iron complexes with thiosugar
指導教授:羅順原
口試委員:陳建宏韓政良
口試日期:2020-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:120
中文關鍵詞:離子液體硫酯磷鎢酸微波硫代醣苷亞硝醯基鐵配合物
外文關鍵詞:Ionic liquidthioesterphosphotungstic acidMicrowavedinitrosyl iron complexthiosugar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
第一部分由芳基咪唑離子液體催化對一系列的芳基醛、長碳鏈醛與芳基硫醇、長碳鏈硫醇進行硫酯化反應。形成高能量的硫酯鍵不僅證明了離子液體的高活性及催化性,同時也得到了不錯的產率。
第二部分利用微波反應,以磷鎢酸催化對全乙醯化保護的醣在一號位進行對甲基硫苯酚的取代。開發出了磷鎢酸的新用途,也藉由微波大幅降低了反應時間,且維持了一定的產率。
第三部分則透過少數幾步合成了一系列購買昂貴的硫醣,並將其接上二亞硝醯基鐵配合物上作為一種新型的一氧化氮載體。
In first part we use aryl imidazolium ionic liquids to catalyze thioesterification with a variety of aryl aldehydes, alkyl aldehydes and alkyl thiols, aryl thiols. High potential energy thioester bond formations support good reactivity and catalyzed essential of ionic liquid with excellent yields.
We use microwave and phosphotungstic acid to catalyze p-thiocresol protection on C1 site of sugar in the second part. Not only develope new use of phosphotungstic acid but also significantly reduce reaction time with good yields.
Last part we synthesize a series of expensive thioglycosides with only few steps, and coordinate it to dinitrosyl iron complex as a new carrier of nitric oxide.
誌謝 i
摘要 ii
Abstract iii
縮寫表 iv
目次 vii
表目次 x
圖目次 xi
第一部分、以離子液體催化硫酯之合成 1
一、 緒論 2
(一) 離子液體 2
(二) 硫酯化合物 3
(三) 研究動機 6
二、 結果與討論 7
(一) 離子液體的合成 7
(二) 離子液體催化硫酯化 8
三、 結論 12
四、 實驗部分 13
(一) 一般實驗敘述 13
(二) 實驗步驟與物理數據 14
第二部分、磷鎢酸催化以對甲基苯硫酚保護醣體1號位之微波反應 23
一、 緒論 24
(一) 前言 24
(二) 醣鏈結反應的立體位相 25
1. 臨基效應(neighboring group effect) 25
2. 溶劑效應(solvent effect) 27
(三) 保護基的種類 28
(四) 微波化學 32
(五) 研究動機 33
二、 結果與討論 34
(一) 方法最佳化 34
(二) 微波催化合成 36
三、 結論 37
四、 實驗部分 38
(一) 一般實驗敘述 38
(二) 實驗步驟與物理數據 39
第三部分、硫醣及硫醣-二亞硝醯基鐵配合物之合成 43
一、 緒論 44
(一) 前言 44
(二) 硫代醣苷 45
(三) 一氧化氮介紹 46
(四) 亞硝醯基鐵配合物 48
(五) 研究動機 49
二、 結果與討論 50
(一) 二亞硝醯基鐵配合物逆合成分析 50
(二) 二亞硝醯基-硫醣鐵配合物合成過程 51
三、 結論 56
四、 實驗部分 57
(一) 一般實驗敘述 57
1. 有機部分 57
2. 無機部分 58
(二) 實驗步驟與物理數據 59
五、 參考文獻 67
六、 化合物核磁共振光譜圖 75
1.(a) Plechkovaa, N. V.; Seddon, K. R., Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37, 123–150; (b) Shi, R. and Wang, Y., Dual Ionic and Organic Nature of Ionic Liquids. Sci. Rep., 2016, 6, 19644; (c) Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W., Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions. J. Am. Chem. Soc., 2002, 124, 14247-14254; (d) Weyershausen, B. and Lehmann, K., Industrial application of ionic liquids as performance additives. Green. Chem., 2005, 7, 15–19. (e) Ding, J.; Welton, T.; Armstrong, D. W., Chiral Ionic Liquids as Stationary Phases in Gas Chromatography. Anal. Chem. 2004, 76, 6819-6822.
2.(a) Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D. R., Introduction: Ionic Liquids. Chem. Rev., 2017, 117, 6633−6635; (b) Creary, X.; Willis, E. D. and Gagnon, M., Carbocation-Forming Reactions in Ionic Liquids. J. Am. Chem. Soc., 2005, 127, 18114−18120.
3.(a) Mallakpour, S.; Dinari, M., (2012) Green solvents II, Properties and Applications of Ionic Liquids. New York, Springer; (b) Neves, C. M. S. S.; Freire, M. G. and Coutinho, J. A. P., Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Adv., 2012, 2, 10882–10890; (c) Doorslaer, C. V. D.; Glas, A.; Peeters, A. C.; Odena, I.; Vankelecom, K.; Binnemans, P.; Mertensa and Vos, D. D., Product recovery from ionic liquids by solvent-resistant nanofiltration: application to ozonation of acetals and methyl oleate. Green Chem., 2010, 12, 1726–1733; (d) Faßbach, T. A.; Kirchmann, R.; Behr, A. and Vorholt, A. J., Recycling of homogeneous catalysts in reactive ionic liquid - solvent-free aminofunctionalizations of alkenes. Green Chem., 2017, 19, 5243–5249. (e) Welton, T., Ionic liquids in Green Chemistry. Green Chem., 2011, 13, 225; (f) Baleizão, C.; Gigante, B.; Garciab, H. and Cormab, A., Ionic liquids as green solvents for the asymmetric synthesis of cyanohydrins catalysed by VO(salen) complexes. Green Chem., 2002, 4, 272–274; (g) Dharaskar, S. A., The green solvents for petroleum and hydrocarbon industries. Res. J. Chem. Sci., 2012, 2, 80−85.
4.(a) Egorova, K. S.; Gordeev, E. G. and Ananikov, V. P., Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev., 2017, 117, 7132−7189; (b) Ladnak, V.; Hofmann, N.; Brausch, N. and Wasserscheida, P., Continuous, Ionic Liquid-Catalysed Propylation of Toluene in a Liquid-Liquid Biphasic Reaction Mode using a Loop Reactor Concept. Adv. Synth. Catal., 2007, 349, 719–726; (c) Laali, K. K. and Gettwert, V. J., Electrophilic Nitration of Aromatics in Ionic Liquid Solvents. J. Org. Chem. 2001, 66, 35–40.
5.R. P. Swatloski; S. K. Spear, J. D. Holbrey, R. D. Rogers., Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc., 2002, 124, 4974-4975.
6.Y. Liu.; M. Wang.; Z. Li.; H. Liu.; P. He.; J. Li., Preparation of Porous Aminopropylsilsesquioxane by a Nonhydrolytic Sol−Gel Method in Ionic Liquid Solvent. Langmuir, 2005, 21, 1618-1622.
7.(a) Fukuyama, T.; Lin, S.-C.; Li, L., Facile reduction of ethyl thiol esters to aldehydes: application to a total synthesis of (+)-neothramycin A methyl ether. J. Am. Chem. Soc. 1990, 112, 7050 –7051; (b) Tokuyama, T.; Yokoshima, S.; Lin, S.-C.; Li, L.; Fukuyama, T., Reduction of Ethanethiol Esters to Aldehydes. Synthesis 2002, 1121–1123.
8.B. Neises.; W. Steglich., Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed., 1978, 17, 522-524.
9.K. A. Ogawa.; A. J. Boydston., Organocatalyzed Anodic Oxidation of Aldehydes to Thioesters. Org. Lett., 2014, 16, 1928-1931.
10.Zhu, X.; Shi, Y.; Mao, H.; Cheng, Y.; Zhu, C., Tetraethylammonium Bromide‐Catalyzed Oxidative Thioesterification of Aldehydes and Alcohols. Adv. Synth. Catal., 2013, 355, 3558-3562.
11.(a) Huang, Y. T.; Lu, S. Y.; Yi, C. L.; Lee, C. F., Iron-Catalyzed Synthesis of Thioesters from Thiols and Aldehydes in Water. J. Org. Chem. 2014, 79, 4561−4568. (b) Jhuang, H. S.; Liu, Y. W.; Reddy, D. M.; Tzeng, Y. Z.; Linb, W. Y.; Lee, C. F., Microwave‐assisted Synthesis of Thioesters from Aldehydes and Thiols in Water. J. Chin. Chem. Soc. 2018, 65, 24–27
12.Chang, J. C.; Yang, C. H.; Sun, I. W.; Ho, W. Y.; Wu, T. Y., Synthesis and properties of magnetic aryl-imidazolium ionic liquids with dual Brønsted/Lewis acidity. Materials 2018, 11, 2539.
13.Peter G. M. Wuts.; Theodora W. Greene., (2006) Protective Groups in Organic Synthesis. New Jersey, Wiley
14.Fife, T. H.; Bembi, R.; Natarajan, R., Neighboring Carboxyl Group Participation in the Hydrolysis of Acetals. Hydrolysis of o-Carboxybenzaldehyde cis- and trans-1,2-Cyclohexanediyl Acetals. J. Am. Chem. Soc. 1996, 118, 12956-12963.
15.Demchenko, A. V., (2008) Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. New Jersey. Wiley.
16.Zhu, X.; Schmidt, R.R., New principles for glycoside-bond formation.
Angew. Chem. Int. Ed., 2009, 48, 1900-1934.
17.Lu, S. R.; Lai, Y. H.; Chen, J. H.; Liu, C. Y.; and Mong, K. T., Dimethylformamide: An Unusual Glycosylation Modulator. Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
18.Satoh, H.; Hansen, H. S.; Manabe, S.; van Gunsteren, W. F.; Hünenberger, P. H., Theoretical Investigation of Solvent Effects on Glycosylation Reactions: Stereoselectivity Controlled by Preferential Conformations of the Intermediate Oxacarbenium-Counterion Complex. Journal of Chemical Theory and Computation 2010, 6 , 1783-1797.
19.(a) Misra, A. K.; Tiwari, P.; Madhusudan, S. K., HClO4–SiO2 catalyzed per-O-acetylation of carbohydrates. Carbohydr. Res. 2005, 340, 325–329. (b) Höfle, G.; Steglich, W. and Vorbrüggen, H., 4‐Dialkylaminopyridines as Highly Active Acylation Catalysts. Angew. Chem. Int. Ed. Engl. 1978, 17, 569–583.
20.Verner R. O.; Harry B. F., Quantitative Acetylation of Amines by Means of Acetyl Chloride and Pyridine. J. Am. Chem. Soc. 1937, 59, 2003–2005
21.(a) K. Toshima.; K. Tatsuta., Recent progress in O-glycosylation methods and its application to natural products synthesis. Chem. Rev. 1993, 93, 1503–1531 (b) J. D. C. Codée.; R. E. J. N. Litjens.; L. J. van den Bos.; H. S. Overkleeft.; G. A. van der Marel., Thioglycosides in sequential glycosylation strategies. Chem. Soc. Rev., 2005, 34, 769-782
22.de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A., Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164-178
23.Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, R., The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27, 279-282
24.Lidstrom, p.; Tierney, J.; wathey, B.; Westman, J., Microwave assisted organic synthesis–a review. Tetrahedron 2001, 57, 9225-9283
25.(a) Gorodetsky, A. A.; Barton, J. K., Electrochemistry Using Self-Assembled DNA Monolayers on Highly Oriented Pyrolytic Graphite Langmuir 2006, 22, 7917−7922. (b) Lin, Z.-S.; Lo, F.-C.; Li, C.-H.; Chen, C.-H.; Huang, W.-N.; Hsu, I.-J.; Lee, J.-F.; Horng, J.-C.; Liaw, W.-F., Photochemistry of the Dinitrosyl Iron Complex [S5Fe(NO)2]- Leading to Reversible Formation of [S5Fe(μ-S)2FeS5]2-:  Spectroscopic Characterization of Species Relevant to the Nitric Oxide Modification and Repair of [2Fe−2S] Ferredoxins. Inorg. Chem. 2011, 50, 10417−10431.
26.Song, Q.; Tan, S.; Zhuang, X.; Guo, Y.; Zhao, Y.; Wu, T.; Ye, Q.; Si, L.; Zhang, Z., Nitric Oxide Releasing D-α-Tocopheryl Polyethylene Glycol Succinate for Enhancing Antitumor Activity of Doxorubicin. Mol. Pharmaceutics 2014, 11, 4118−4129.
27.(a) Kielbik M., Klink M., Brzezinska M., Szulc I., Sulowska Z., Nitric oxide donors: Spermine/NO and diethylenetriamine/NO induce ovarian cancer cell death and affect STAT3 and AKT signaling proteins. Nitric Oxide. 2013, 35, 93–109 (b) Mitchell J. B., Wink D. A., DeGraff W., Gamson J., Keefer L. K., Krishna M. C., Hypoxic mammalian cell radiosensitization by nitric oxide. Cancer Res., 1993, 53, 5845-5848
28.Bourassa, J.; DeGraff, W.; Kudo, S.; Wink, D. A.; Mitchell, J. B.; Ford, P. C., Photochemistry of Roussin''s Red Salt, Na2[Fe2S2(NO)4], and of Roussin''s Black Salt, NH4[Fe4S3(NO)7]. In Situ Nitric Oxide Generation To Sensitize γ-Radiation Induced Cell Death. J. Am. Chem. Soc. 1997, 119, 2853−2860.
29.Ushmorov, A.; Ratter, F.; Lehmann, V.; Droge, W.; Schirrmacher, V.; Umansky, V., Nitric Oxide–Induced Apoptosis in Human Leukemic Lines Requires Mitochondrial Lipid Degradation and Cytochrome C Release. Blood 1999, 93, 2342−2352
30.Vanin, A. F., Roles of iron ions and cysteine in formation and decomposition of S-nitrosocysteine and S-nitrosoglutathione Biochemistry (Moscow) 1995, 60, 441−447
31.Suryo Rahmanto, Y.; Kalinowski, D. S.; Lane, D. J. R.; Lok, H. C.; Richardson, V.; Richardson, D. R., Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by Interacting Proteins. J. Biol. Chem. 2012, 287, 6960− 6968
32.Lu, T.-T.; Huang, H.-W.; Liaw, W.-F., Dinitrosyl Iron Complexes (DNICs) [L2Fe(NO)2]- (L = Thiolate):  Interconversion among {Fe(NO)2}9 DNICs, {Fe(NO)2}10 DNICs, and [2Fe-2S] Clusters, and the Critical Role of the Thiolate Ligands in Regulating NO Release of DNICs. Inorg. Chem. 2009, 48, 9027−9035
33.R. Robert; F.-R. Bert., Evidence for cyclic bromonium ion transfer in electrophilic bromination of alkenes: Reaction of ω-alkenyl glycosides with aqueous N-bromosuccinimide. Tetrahedron. 1996, 52, 7663-7678
34.Jansson, K.; Noori, G.; Magnusson, G., 2-(Trimethylsilyl)ethyl glycosides. Transformation into glycopyranosyl chlorides. J. Org. Chem. 1990, 55 (10), 3181-3185.
35.Neumann, K.; Conde-González, A.; Owens, M.; Venturato, A.; Zhang, Y.; Geng, J.; Bradley, M., An Approach to the High-Throughput Fabrication of Glycopolymer Microarrays through Thiol–Ene Chemistry. Macromolecules 2017, 50 (16), 6026-6031.
36.W. Koenigs.; E. Knorr., Ueber einige Derivate des Traubenzuckers und der Galactose. Ber. Dtsch. Chem. Ges. 1901, 34, 957-981
37.梁致武 《 (1) 合成SGLT2抑制劑Canagliflozin及Ipragliflozin (2) 利用s-醣苷化反應合成Hp-s1及DSGA衍生物》,2016年。國立中興大學化學研究所,碩士學位論文
38.B, Utpal. An Eco-friendly and Mild Process for Deacetylation Reactions in Water. Chem. Asian J. 2011, 23. 941-942.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊