跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吉晉習
研究生(外文):Jincy Parayangattil Jyothibasu
論文名稱:以生物可再生材料製備高性能獨立式超級電容器之電極作為永續發展研究
論文名稱(外文):Sustainable approaches for the fabrication of bio-renewable materials based high performance freestanding supercapacitor electrodes
指導教授:李榮和李榮和引用關係
指導教授(外文):Rong-Ho Lee
口試委員:吳震裕張書奇陳錦地鄭如忠許千樹林江珍
口試委員(外文):Jeng-Yue WuShu-Chi ChangChin-Ti ChenRu-Jing JengChain-Shu HsuJiang-Jen Lin
口試日期:2019-12-16
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:254
中文關鍵詞:纖維素薑黃素獨立式電極帶官能基的奈米碳管高性能超極電容器木棉纖維聚吡咯氧化鐵.
外文關鍵詞:CelluloseCurcuminFreestanding electrodesFunctionalized carbon nanotubesHigh-performance supercapacitorsKapok fiberPolypyrroleIron oxide.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於自然資源逐漸減少與對環境保護的議題日漸重視,如今可永續發展和可再生能源引起了人們的極大興趣。因此,從風、太陽、水等自然環境中收集能量的可行性是廣泛研究的主題,但是這些可再生能源的有一個很大的缺點,因為它們的能量產生是間歇性的,因此能量的儲存越來越重要,而強大的儲能系統的開發是研究人員最具挑戰性的目標之一。在各種儲能系統中,電化學超級電容器(ESs)因其高功率密度,長壽命和高效率而備受關注。近年來,為了迎合方便攜帶和可穿戴電子設備的需求,超級電容器的發展正朝著柔軟式和可拉伸式的方向發展。 但開發高效超級電容器的主要挑戰之一為該如何提高其能量密度,因為它的能量密度仍然比電池和燃料電池低,因此已經付出了許多的努力來開發具有更高能量密度同時保持其高功率密度的高性能超級電容器。
電極材料的選擇在高性能超級電容器的發展中佔了很重要作用,超級電容器的性能可以透過改善電活性材料的電化學性能來顯著地提高。因此需要大量的研究來改善電極材料的性能。本論文的重點是著重在獨立式 (Freestanding) 複合電極的設計和開發,並且評估他們在高性能超級電容器中的性能,此複合電極結合了地球上充裕的電雙層電容材料 (碳基材)和低成本的擬電容材料(導電聚合物/金屬氧化物)的優點。
低成本且無毒的基於自然的材料(例如纖維素和薑黃素)透過簡單、安全、便宜且可在工業上發展的合成方法來製造綠色且可永續發展的超級電容器電極。本論文的主要研究發現分為五個部分,每個部分的摘要如下:
Part 1:
一種具多孔的獨立式超級電容器電極已經透過簡單、廉價、可大規模縮放和環保的方法成功開發,並且無需使用任何額外的集電器、粘合劑或導電添加劑。木棉纖維 (KF) 受益於其獨特的微管空心結構、薄的細胞壁和大的內腔,在本文中用作低成本的基板,並將聚吡咯(PPy)透過原位化學聚合來反應在基板上。透過簡單的分散和過濾方法,將這種塗有PPy的KF(KF@PPy) 與酸化的碳納米管(f-CNT)混合,形成獨立的導電膜 (KF@PPy/f-CNT),且具有最佳組成的複合薄膜在5 mV s-1的掃描速率下有出色的面積電容表現 (1289 mF cm-2)。 此外,以PVA / H2SO4膠態電解質來製備全固態對稱超級電容器不僅具有高達258 mF cm-2的面積電容(在5 mV s-1的掃描速率下),而且還具有出色的循環穩定性 (在2500個循環週期後為初始電容的97.4%)。因此,這種結合了可再生纖維素材料的高效、低成本、可量產的綠色合成方式是製備高性能柔性超級電容器的簡單而可永續發展的方法。
Part 2:
採用簡單且有效的方法製作且具有高彎曲性的獨立式紙狀複合薄膜,使用對環境友善的冷凍解凍方法獲得纖維素的多孔纖維結構與酸化奈米碳管 (f-CNT),然後進行原位化學聚合以引入聚吡咯 (PPy)。f-CNT與再生纖維素之間有強的氫建作用力形成一個均質多孔纖維基質,且PPy可均勻附著於此材料上,為極好的基材。並且對PPy/f-CNT /纖維素複合薄膜的結構、形態、熱性質和電化學性質加以研究,以評估應用在可撓式超級電容器中的柔軟性、輕便和廉價製程的獨立式電極材料。PPy/f-CNT /纖維素複合薄膜其獨特的微結構、高電導率、良好的潤濕性和多孔結構替電荷載體的存儲/釋放和電解質離子的擴散於複合電極中提供了較大的表面積,且含有PPy的獨立式電極具有最佳的性能,不僅具有出色的面積電容(在1 mA cm-2的電流密度下為2147 mF cm-2),而且還具有良好的速率能力和出色的循環穩定性。此外,PPy /f-CNT /纖維素複合薄膜的柔韌性、環境友好性和生物降解性等特性表明其適合用作為電極材料於可撓性超級電容器中,並同時具有環保與可永續發展的優點。
Part 3:
一個環保且可直接的合成方法已經用來製造基於氧化鐵 (Fe2O3) 和奈米碳管的高效能負電極,加入再生纖維素可使摻雜在活性材料裡的基板成為獨立 (Freestanding )結構,使它可以不靠任何額外的黏著劑、添加導電物和金屬電流收集器就能直接使用作超電容電極,再生纖維素與高導電度CNT所形成的連續式結構有利於電子傳遞和離子擴散,從而達到快速的電子與離子傳遞動能的效果,將這種獨特電極結構有效應用在活性材料中,可達到在電流密度2 mA/cm2下擁有9107 mF/cm2超高面積電容以及良好的循環穩定性,其出色的循環穩定性可歸因於電極的高導電度以及由CNT與再生纖維素基板的交互連接形成網絡所提供的體積緩衝空間。
Part 4:
使用可再生生物材料的薑黃素作為結構導向劑,並研發出簡便且環保的方法來製備聚吡咯奈米顆粒。通過製備出的聚吡咯奈米顆粒與f-CNT混合來獲得具有高表面積和導電性高度多孔性薄膜,其薄膜具有高質量密度(約14 mg⁄cm^(-2) ),並用作超級電容器的獨立式電極。聚吡咯奈米顆粒/f-CNT獨立式複合電極具有高的面積和體積電容,分別為4585 mF cm^(-2)和176.35 F cm^(-3)。使用聚吡咯奈米顆粒/f-CNT獨立複合電極製造的全固態對稱超級電容器,其最大能量密度為64.62μW h cm^(-2)、最大功率密度為6.25 mW cm^(-2)。此外,該超級電容器具有出色的循環穩定性,在10,000次恆電流充電/放電循環後,其初始電容的保留率為79.03%。
Part 5:
透過薑黃素(一種植物衍生的材料)作為易於移除且環保的模板,並使用可擴展且直接的一步式原位化學氧化聚合方法來製備具有獨特空心管狀結構(PPyT)的聚吡咯。然後在不同條件下製備的聚吡咯空心管(PPyT:PPyC1T1,PPyC1T2,PPyC1T4,PPyC2T2和PPyC3T2)與酸化奈米碳管(f-CNT)結合以製作獨立式電極。在測試的複合電極中,PPyC3T2/f-CNT獨立式電極表現出最出色的表面形態均勻性,良好的分級多孔性結構,最大的表面積和出色的電化學性能。厚的PPyC3T2/f-CNT獨立式電極在2 mA cm^(-2)的電流密度下獲得了11830.4 mF cm^(-2)的高面積電容(在30 mg cm^(-2)的高質量密度下)。
此外,使用厚的PPyC3T2/f-CNT的獨立電極所製備的對稱超級電容器具有出色的面積電容(2732 mF cm^(-2),在電流密度為2 mA cm^(-2)情況下檢測),出色的循環穩定性(在12500次充電/放電循環後,其保有初始電容的118.18%),高能量密度(242.84 µW h cm^(-2))和最大功率密度(129.35 mW cm^(-2))。這些特性突出了PPyT/f-CNT獨立電極在高性能超級電容器中的應用潛力。
Sustainable and renewable energy sources have attracted considerable interest nowadays due to the diminishing supply of natural reserves and increasing environmental concern. Therefore, the possibility of harvesting energy from wind, sun, water, etc. is a subject of extensive research. However, a big drawback of these renewable energy sources is their intermittent nature of energy generation. Due to this fact, energy storage plays an increasingly important role, and the development of robust energy storage systems is one of the most challenging goals for the researchers. Among the various energy storage systems, electrochemical supercapacitors (ESs) have attracted considerable attention because of their high power density, long life cycle, and high efficiency. Recently, to meet the requirements of portable and wearable electronics, supercapacitor development is moving towards flexible and stretchable solutions. One of the main challenges in developing efficient supercapacitors continues to be the enhancement of their energy densities, as they are still relatively lower than batteries and fuel cells. Thus, a tremendous amount of effort has been devoted to constructing higher performance supercapacitors with higher energy densities while maintaining its desirable high power densities.
Electrode material plays an important role in the realization of high-performance supercapacitors. The performance of supercapacitors can be significantly enhanced by improving the electrochemical aspects of the electroactive materials. Therefore, extensive research is required to improve the performances of the electrode materials. This dissertation is focused on the design and development of advanced freestanding composite electrodes that combine the advantages of both earth-abundant electrical double layer (EDL) capacitance materials (carbon-based) and low-cost pseudocapacitance materials (conducting polymers/metal oxides) and evaluation of their performances in high-performance supercapacitors. Low cost abundant and non-toxic nature-based materials such as cellulose and curcumin have been used for the fabrication of green and sustainable supercapacitor electrodes using simple, safe, inexpensive, and industrially scalable synthesis methods.
The main research findings of this thesis are spread into five separate sections, and abstract for each part is given below:
Part 1: A highly porous freestanding supercapacitor electrode has been successfully developed through a simple, inexpensive, bulk-scalable, and environmentally friendly method, without using any extra current collector, binder, or conducting additive. Benefiting from its unique micro-tubular hollow structure with a thin cell wall and large lumen, kapok fiber (KF) was used herein as a low-cost template for the continuous growth of polypyrrole (PPy) through in situ chemical polymerization. This PPy-coated KF (KF@PPy) was blended with functionalized carbon nanotubes (f-CNTs) to form freestanding conductive films (KF@PPy/f-CNT) through a simple dispersion and filtration method. The hybrid film featuring the optimal composition exhibited an outstanding areal capacitance of 1289 mF cm−2 at a scan rate of 5 mV s−1. Moreover, an assembled all-solid-state symmetric supercapacitor featuring a PVA/H2SO4 gel electrolyte exhibited not only areal capacitances as high as 258 mF cm−2 (at a scan rate of 5 mV s−1) but also excellent cycling stability (97.4% of the initial capacitance after 2500 cycles). Therefore, this efficient, low-cost, scalable green synthesis strategy appears to be a simple and sustainable way of fabricating high-performance flexible supercapacitors incorporating a renewable cellulose material.
Part 2: Freestanding paper-like composite films were fabricated using a simple, but scalable and efficient, approach: an environmentally friendly freeze-and-thaw process giving a porous fibrous matrix of cellulose and functionalized carbon nanotubes (f-CNTs), followed by in situ chemical polymerization for the incorporation of polypyrrole (PPy). A homogeneous porous fibrous matrix was formed as a result of strong hydrogen bonding between the f-CNTs and the regenerated cellulose; this material served as an excellent template for the uniform coating of PPy. The structural, morphological, thermal, and electrochemical properties of the as-prepared PPy/f-CNT/cellulose composite films were investigated to evaluate their potential for use as flexible, lightweight, and inexpensive freestanding electrode materials within flexible supercapacitors. The unique microstructure—with high electrical conductivity, good wettability, and a porous architecture—provided large interfacial areas for the storage/release of charge carriers and the facile diffusion of electrolyte ions in the prepared composite electrodes. With these attributes, the freestanding electrode having the optimal PPy loading exhibited not only an excellent areal capacitance (2147 mF cm–2 at a current density of 1 mA cm–2) but also good rate capability and outstanding cycling stability. Moreover, the flexibility, environmental friendliness, and biodegradability of the PPy/f-CNT/cellulose composite films suggest that they will be suitable for use as green and sustainable electrode materials within flexible supercapacitors.
Part 3: A green and straightforward synthesis strategy has been developed for the fabrication of a high-performance negative electrode based on iron oxide and carbon nanotubes. The use of regenerated cellulose as the matrix for the incorporation of the active materials enabled a freestanding structure, and thus, it could be used directly as a supercapacitor electrode without the need for any additional binders, conductive additives, and metallic current collectors. A fast electronic and ion transfer kinetics was achieved due to the continuous framework for electron transport and ion diffusion provided by the highly conductive CNT in the regenerated cellulose matrix. The effective utilization of the active materials achieved by this unique electrode structure resulted in an ultrahigh areal capacitance of 9107 mF cm-2 at a current density of 2 mA cm-2 and excellent cycling stability. This outstanding cycling stability can be attributed to the high conductivity of the electrode and the volume buffering space provided by the interconnected network of CNTs and the regenerated cellulose matrix.
Part 4: PPy nanoparticles were prepared through a facile and environmentally friendly method using the renewable biomaterial curcumin as the structure-directing agent. A highly porous film with high surface area and conductivity was fabricated by blending the as-prepared PPy nanoparticles with f-CNT and used as a freestanding electrode of high mass loading (ca. 14 mg cm–2) for supercapacitors. The PPyNP/f-CNT freestanding composite electrode exhibited high areal and volumetric capacitances of 4585 mF cm–2 and 176.35 F cm–3, respectively. A symmetric all-solid-state supercapacitor fabricated using the PPyNP/f-CNT freestanding composite electrode exhibited a maximum energy density of 64.62 μW h cm–2 and a maximum power density of 6.25 mW cm–2. Moreover, this supercapacitor device had excellent cycling stability, with retention of 79.03% of its initial capacitance after 10,000 galvanostatic charge/discharge cycles.
Part 5: Polypyrrole having a unique hollow tubular structure(PPyT) was prepared via a scalable and straightforward one-step in-situ chemical oxidative polymerization method employing curcumin, a plant-derived material, as a readily removable and eco-friendly template. PPy tubes (PPyT: PPyC1T1, PPyC1T2, PPyC1T4, PPyC2T2, and PPyC3T2) prepared under various conditions were then combined with functionalized carbon nanotubes (f-CNTs) to form freestanding electrodes. Among the tested composite electrodes, the PPyC3T2/f-CNT freestanding electrode exhibited the most exceptional morphological uniformity, a favorable hierarchical porous structure, the largest surface area, and excellent electrochemical properties. A high areal capacitance of 11830.4 mF cm-2 (at a high mass loading of 30 mg cm-2) was obtained for PPyC3T2/f-CNT-thick freestanding electrode at a current density of 2 mA cm–2. In addition, a symmetric supercapacitor fabricated using the PPyC3T2/f-CNT-thick freestanding electrode exhibited an excellent areal capacitance (2732 mF cm–2 at a current density of 2 mA cm–2), an outstanding cycling stability (retention of 118.18% of its initial capacitance after 12,500 charge/discharge cycles), and a high energy density (242.84 µW h cm–2) and maximum power density (129.35 mW cm–2). These characteristics highlight the potential applicability of PPyT/f-CNT freestanding electrodes in high-performance supercapacitors.
Table of Contents
Chapter 1 Introduction 1
1.1 Energy storage technologies 02
1.2 Fundamentals of supercapacitor 03
1.3 Classification of supercapacitors 06
1.3.1 Electrochemical double-layer capacitor (EDLC) 06
1.3.2 Pseudocapacitors 07
1.3.3 Hybrid capacitors 08
1.3.3.1 Composite 08
1.3.3.2 Asymmetric 08
1.3.3.3 Battery-type 08
1.4 Components of supercapacitor 09
1.4.1 Current collector 09
1.4.2 Electrolyte 10
1.4.2.1 Aqueous Electrolytes 11
1.4.2.2 Organic Electrolyte 11
1.4.2.3 Ionic Liquids 12
1.4.2.4 Solid- or quasi-solid-state electrolytes 12
1.4.2.5 Redox active electrolyte 14
1.4.3 Electrode materials 15
1.4.3.1 Carbon materials with EDLC behavior 16
1.4.3.1.1 Activated Carbons (ACs) 16
1.4.3.1.2 Carbon nanotubes (CNTs) 18
1.4.3.1.3 Graphene 18
1.4.3.1.4 Carbon aerogels (CA) 19
1.4.3.2 Conducting polymers (CPs) with pseudocapacitive behavior 19
1.4.3.3 Transition metal compounds (TMCs) with pseudocapacitive behavior 21
1.4.3.3.1 As positive electrode material 21
1.4.3.3.2 As negative electrode material 22
1.4.3.4 Latest Electrode Materials 23
1.4.4 Separator 25
1.4.5 Binders 25
1.4.6 Sealants 25
1.5 Applications of supercapacitors 26
1.6 Introduction to cellulose 28
1.6.1 Cellulose-based materials for supercapacitor electrodes 29
1.7 References 31
Chapter 2 Review of literature 42
2.1 Polypyrrole (PPy) based supercapacitor electrodes 43
2.1.1 PPy based binder-free supercapacitor electrodes 43
2.1.2 PPy and CNT composite based freestanding supercapacitor electrodes 47
2.2 Cellulose-based supercapacitor electrodes 52
2.2.1 Kapok fiber (KF) based supercapacitor electrodes 59
2.3 Iron oxide-based negative electrodes for asymmetric supercapacitors 61
2.4 Objectives of the research 68
2.5 Thesis outline 70
2.6 References 72
Chapter 3 Materials and methods 81
3.1 Introduction 82
3.2 Materials 82
3.3 Synthesis methods 82
3.3.1 Pretreatment of kapok fiber (KF) 82
3.3.2 Functionalization of carbon nanotubes 83
3.4 Physicochemical characterization and instrumentation 83
3.4.1 Scanning Electron Microscopy (SEM) 84
3.4.2 Transmission Electron Microscopy (TEM) 84
3.4.3 Fourier Transform Infrared (FTIR) Spectroscopy 84
3.4.4 X-Ray Diffraction (XRD) 85
3.4.5 Thermo Gravimetric Analysis (TGA) 85
3.4.6 Brunauer–Emmett–Teller (BET) method 85
3.4.7 Contact angle measurement 86
3.5 Electrochemical characterization 86
3.5.1 Cyclic voltammetry (CV) 88
3.5.2 Galvanostatic charge-discharge (GCD) 90
3.5.2.1 Cycle Life Measurement 91
3.5.3 Electrochemical impedance spectroscopy (EIS) 92
3.6 References 93
Chapter 4 Facile, scalable, eco-friendly fabrication of high-performance flexible all-solid-state supercapacitors 94
4.1 Introduction 95
4.2 Experimental section 98
4.2.1 KF/PPy Composites 98
4.2.2 KF@PPy/f-CNT Freestanding Films 99
4.2.3 Electrochemical Measurements 99
4.2.4 Fabrication of All-Solid-State SC 100
4.3 Results and Discussion 100
4.3.1 Chemical structures, thermal properties, and morphological analyses of composite films 101
4.3.2 Electrochemical properties of the freestanding electrodes 106
4.3.3 Electrochemical properties of the all-solid-state symmetric SC 113
4.4 Conclusions 120
4.5 References 121
Chapter 5 Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application 128
5.1 Introduction 129
5.2 Experimental section 130
5.2.1 Preparation of f-CNT/cellulose composite films 130
5.2.2 PPy/f-CNT/cellulose films 131
5.2.3 Electrochemical measurements of electrodes based on cellulose composite films 131
5.3 Results and discussion 132
5.3.1 Chemical structures, thermal properties, and morphological analyses of composite films 134
5.3.2 Electrochemical properties of electrodes based on cellulose composite films 142
5.4 Conclusions 152
5.5 References 153
Chapter 6 Facile one-step synthesis of cellulose/f-CNT/Fe2O3 composite film as freestanding negative electrode for high-performance asymmetric supercapacitors 157
6.1 Introduction 158
6.2 Experimental section 162
6.2.1 Preparation of Cellulose/f-CNT/Fe2O3 composite film 162
6.2.2 Electrochemical measurements 162
6.3 Result and discussion 163
6.3.1 Chemical structures, thermal properties, and morphological analyses of the composite films 164
6.3.2 Electrochemical properties of freestanding composite electrodes 170
6.4 Conclusions 179
6.5 References 180
Chapter 7 Scalable, eco-friendly synthesis of porous polypyrrole nanoparticles for the application in high-performance supercapacitors 185
7.1 Introduction 186
7.2 Experimental 187
7.2.1 PPy nanoparticles (PPyNP) 187
7.2.2 PPy nanoparticles/f-CNT composite film 187
7.2.3 Electrochemical measurements 188
7.2.4 Fabrication of symmetric all-solid-state supercapacitor 188
7.3. Result and discussion 189
7.3.1 Chemical structures, thermal properties, and morphological analyses of composite films 190
7.3.2 Electrochemical properties of freestanding composite electrodes 195
7.3.3 Electrochemical performance of symmetric all-solid-state supercapacitor 201
7.4 Conclusions 203
7.5 References 205
Chapter 8 Green synthesis of polypyrrole tubes using curcumin template and their outstanding electrochemical performance in supercapacitors 209
8.1 Introduction 210
8.2 Experimental 213
8.2.1 Synthesis of PPy tubes (PPyT) 213
8.2.2 Preparation of PPyT/f-CNT composite films 214
8.2.3 Electrochemical measurements 214
8.2.4 Fabrication and evaluation of symmetric supercapacitor device 215
8.3 Result and discussion 215
8.3.1 Chemical structures, thermal properties, and morphological analyses of composite films 217
8.3.2 Electrochemical properties of freestanding composite electrodes 225
8.3.3 Electrochemical performance of symmetric all-solid-state supercapacitor 238
8.4 Conclusions 241
8.5 References 243
Chapter 9 Summary 249
9.1 Summary 250
9.2 List of publications in SCI journals 254
CHAPTER 1
References

(1) Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews 2019, 48 (5), 1272-1341, DOI: 10.1039/C8CS00581H.
(2) Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science 2017, 4 (7), 1600539, DOI: 10.1002/advs.201600539.
(3) Shi, F.; Li, L.; Wang, X. l.; Gu, C. d.; Tu, J. p. Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances 2014, 4 (79), 41910-41921, DOI: 10.1039/C4RA06136E.
(4) Wang, Q.; Yan, J.; Fan, Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy & Environmental Science 2016, 9 (3), 729-762, DOI: 10.1039/C5EE03109E.
(5) Kong, L. B. Nanomaterials for Supercapacitors, CRC Press, Taylor & Francis Group: 2017.
(6) Lu, X.; Li, G.; Tong, Y. A review of negative electrode materials for electrochemical supercapacitors. Science China Technological Sciences 2015, 58 (11), 1799-1808, DOI: 10.1007/s11431-015-5931-z.
(7) Sharma, V.; Singh, I.; Chandra, A. Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Scientific Reports 2018, 8 (1), 1307, DOI: 10.1038/s41598-018-19815-y.
(8) Yu, M.; Wang, Z.; Han, Y.; Tong, Y.; Lu, X.; Yang, S. Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A 2016, 4 (13), 4634-4658, DOI: 10.1039/C5TA10542K.
(9) Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews 2016, 45 (21), 5925-5950, DOI: 10.1039/C5CS00580A.
(10) Palacín, M. R. Understanding ageing in Li-ion batteries: a chemical issue. Chemical Society Reviews 2018, 47 (13), 4924-4933, DOI: 10.1039/C7CS00889A.
(11) Huang, Y.; Zeng, Y.; Yu, M.; Liu, P.; Tong, Y.; Cheng, F.; Lu, X. Recent Smart Methods for Achieving High-Energy Asymmetric Supercapacitors. Small Methods 2018, 2 (2), 1700230, DOI: 10.1002/smtd.201700230.
(12) Wang, Y.; Xia, Y. Recent Progress in Supercapacitors: From Materials Design to System Construction. Advanced Materials 2013, 25 (37), 5336-5342, DOI: 10.1002/adma.201301932.
(13) Williamson, S. S.; Cassani, P. A.; Lukic, S.; Blunier, B. Chapter 6 - Energy Storage. In Alternative Energy in Power Electronics; Rashid, M. H., Ed.; Butterworth-Heinemann: Boston, 2011; pp 267-315.
(14) Halper, M. S.; Ellenbogen, J. C. Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA 2006, 1-34.
(15) Zhao, X.; Sánchez, B. M.; Dobson, P. J.; Grant, P. S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3 (3), 839-855, DOI: 10.1039/C0NR00594K.
(16) Shukla, A. K.; Banerjee, A.; Ravikumar, M. K.; Jalajakshi, A. Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica Acta 2012, 84, 165-173, DOI: https://doi.org/10.1016/j.electacta.2012.03.059.
(17) Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. Journal of Power Sources 2006, 157 (1), 11-27, DOI: https://doi.org/10.1016/j.jpowsour.2006.02.065.
(18) Salele Iro, Z. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628-10643, DOI: 10.20964/2016.12.50.
(19) Sharma, P.; Bhatti, T. S. A review on electrochemical double-layer capacitors. Energy Conversion and Management 2010, 51 (12), 2901-2912, DOI: https://doi.org/10.1016/j.enconman.2010.06.031.
(20) Wang, H.; Lin, J.; Shen, Z. X. Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices 2016, 1 (3), 225-255, DOI: https://doi.org/10.1016/j.jsamd.2016.08.001.
(21) Saji, V. S.; Lee, C. W. Molybdenum, Molybdenum Oxides, and their Electrochemistry. ChemSusChem 2012, 5 (7), 1146-1161, DOI: 10.1002/cssc.201100660.
(22) Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z. X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2017, 5 (1), 1700322-1700322, DOI: 10.1002/advs.201700322.
(23) Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, CRC Press: 2017.
(24) Frackowiak, E.; Meller, M.; Menzel, J.; Gastol, D.; Fic, K. Redox-active electrolyte for supercapacitor application. Faraday Discussions 2014, 172 (0), 179-198, DOI: 10.1039/C4FD00052H.
(25) Shao, Y.; El-Kady, M. F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R. B. Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews 2018, 118 (18), 9233-9280, DOI: 10.1021/acs.chemrev.8b00252.
(26) Fleischmann, S.; Widmaier, M.; Schreiber, A.; Shim, H.; Stiemke, F. M.; Schubert, T. J. S.; Presser, V. High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Materials 2019, 16, 391-399, DOI: https://doi.org/10.1016/j.ensm.2018.06.011.
(27) Samantara, A. K.; Ratha, S. Components of Supercapacitor. In Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective; Springer Singapore: Singapore, 2018; pp 11-39.
(28) Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, Taylor & Francis: 2013.
(29) Zhao, C.; Zheng, W. A Review for Aqueous Electrochemical Supercapacitors. Frontiers in Energy Research 2015, 3 (23), DOI: 10.3389/fenrg.2015.00023.
(30) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015, 44 (21), 7484-7539, DOI: 10.1039/C5CS00303B.
(31) Roth, E. P.; Orendorff, C. J. How Electrolytes Influence Battery Safety. The Electrochemical Society Interface 2012, 21 (2), 45-49, DOI: 10.1149/2.F04122if.
(32) Sundriyal, S.; Kaur, H.; Bhardwaj, S. K.; Mishra, S.; Kim, K. H.; Deep, A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews 2018, 369, 15-38, DOI: https://doi.org/10.1016/j.ccr.2018.04.018.
(33) Li, Q.; Li, K.; Sun, C.; Li, Y. An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. Journal of Electroanalytical Chemistry 2007, 611 (1), 43-50, DOI: https://doi.org/10.1016/j.jelechem.2007.07.022.
(34) Senthilkumar, S. T.; Selvan, R. K.; Ponpandian, N.; Melo, J. S.; Lee, Y. S. Improved performance of electric double layer capacitor using redox additive (VO2+/VO2+) aqueous electrolyte. Journal of Materials Chemistry A 2013, 1 (27), 7913-7919, DOI: 10.1039/C3TA10998D.
(35) Ren, L.; Zhang, G.; Yan, Z.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. H. High capacitive property for supercapacitor using Fe3+/Fe2+ redox couple additive electrolyte. Electrochimica Acta 2017, 231, 705-712, DOI: https://doi.org/10.1016/j.electacta.2017.02.056.
(36) Senthilkumar, S. T.; Selvan, R. K.; Lee, Y. S.; Melo, J. S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. Journal of Materials Chemistry A 2013, 1 (4), 1086-1095, DOI: 10.1039/C2TA00210H.
(37) Lota, G.; Frackowiak, E. Striking capacitance of carbon/iodide interface. Electrochemistry Communications 2009, 11 (1), 87-90, DOI: https://doi.org/10.1016/j.elecom.2008.10.026.
(38) Su, L. H.; Zhang, X. G.; Mi, C. H.; Gao, B.; Liu, Y. Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Physical Chemistry Chemical Physics 2009, 11 (13), 2195-2202, DOI: 10.1039/B814844A.
(39) Lamiel, C.; Nguyen, V. H.; Hussain, I.; Shim, J. J. Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy 2017, 140, 901-911, DOI: https://doi.org/10.1016/j.energy.2017.09.035.
(40) Veerasubramani, G. K.; Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon 2016, 105, 638-648, DOI: https://doi.org/10.1016/j.carbon.2016.05.008.
(41) Suárez-Guevara, J.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon–phosphotungstate hybrid materials. Journal of Materials Chemistry A 2014, 2 (4), 1014-1021, DOI: 10.1039/C3TA14455K.
(42) Lian, K.; Li, C. M. Asymmetrical Electrochemical Capacitors Using Heteropoly Acid Electrolytes. Electrochemical and Solid-State Letters 2009, 12 (1), A10-A12, DOI: 10.1149/1.3007424.
(43) Tian, Q.; Lian, K. In Situ Characterization of Heteropolyacid Based Electrochemical Capacitors. Electrochemical and Solid-State Letters 2010, 13 (1), A4-A6, DOI: 10.1149/1.3247071.
(44) Roldán, S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Towards a Further Generation of High-Energy Carbon-Based Capacitors by Using Redox-Active Electrolytes. Angewandte Chemie International Edition 2011, 50 (7), 1699-1701, DOI: 10.1002/anie.201006811.
(45) Roldán, S.; Granda, M.; Menéndez, R.; Santamaría, R.; Blanco, C. Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. The Journal of Physical Chemistry C 2011, 115 (35), 17606-17611, DOI: 10.1021/jp205100v.
(46) Chen, Y. C.; Lin, L. Y. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. Journal of Colloid and Interface Science 2019, 537, 295-305, DOI: https://doi.org/10.1016/j.jcis.2018.11.026.
(47) Roldán, S.; Granda, M.; Menéndez, R.; Santamaría, R.; Blanco, C. Supercapacitor modified with methylene blue as redox active electrolyte. Electrochimica Acta 2012, 83, 241-246, DOI: https://doi.org/10.1016/j.electacta.2012.08.026.
(48) Lota, G.; Milczarek, G. The effect of lignosulfonates as electrolyte additives on the electrochemical performance of supercapacitors. Electrochemistry Communications 2011, 13 (5), 470-473, DOI: https://doi.org/10.1016/j.elecom.2011.02.023.
(49) Roldán, S.; González, Z.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochimica Acta 2011, 56 (9), 3401-3405, DOI: https://doi.org/10.1016/j.electacta.2010.10.017.
(50) Yu, H.; Wu, J.; Fan, L.; Lin, Y.; Xu, K.; Tang, Z.; Cheng, C.; Tang, S.; Lin, J.; Huang, M.; Lan, Z. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. Journal of Power Sources 2012, 198, 402-407, DOI: https://doi.org/10.1016/j.jpowsour.2011.09.110.
(51) Chen, L.; Chen, Y.; Wu, J.; Wang, J.; Bai, H.; Li, L. Electrochemical supercapacitor with polymeric active electrolyte. Journal of Materials Chemistry A 2014, 2 (27), 10526-10531, DOI: 10.1039/C4TA01319K.
(52) Wu, J.; Yu, H.; Fan, L.; Luo, G.; Lin, J.; Huang, M. A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. Journal of Materials Chemistry 2012, 22 (36), 19025-19030, DOI: 10.1039/C2JM33856D.
(53) Yu, H.; Fan, L.; Wu, J.; Lin, Y.; Huang, M.; Lin, J.; Lan, Z. Redox-active alkaline electrolyte for carbon-based supercapacitor with pseudocapacitive performance and excellent cyclability. RSC Advances 2012, 2 (17), 6736-6740, DOI: 10.1039/C2RA20503C.
(54) Wasiński, K.; Walkowiak, M.; Lota, G. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors. Journal of Power Sources 2014, 255, 230-234, DOI: https://doi.org/10.1016/j.jpowsour.2013.12.140.
(55) Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews 2017, 46 (22), 6816-6854, DOI: 10.1039/C7CS00205J.
(56) Chen, L.; Bai, H.; Huang, Z.; Li, L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy & Environmental Science 2014, 7 (5), 1750-1759, DOI: 10.1039/C4EE00002A.
(57) Sun, J.; Wu, C.; Sun, X.; Hu, H.; Zhi, C.; Hou, L.; Yuan, C. Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A 2017, 5 (20), 9443-9464, DOI: 10.1039/C7TA00932A.
(58) Mensah Darkwa, K.; Zequine, C.; Kahol, P. K.; Gupta, R. K. Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability 2019, 11 (2), 414.
(59) Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research 2013, 46 (5), 1094-1103, DOI: 10.1021/ar200306b.
(60) Schütter, C.; Pohlmann, S.; Balducci, A. Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials 0 (0), 1900334, DOI: 10.1002/aenm.201900334.
(61) Fang, B.; Binder, L. A Novel Carbon Electrode Material for Highly Improved EDLC Performance. The Journal of Physical Chemistry B 2006, 110 (15), 7877-7882, DOI: 10.1021/jp060110d.
(62) Ma, W.; Chen, S.; Yang, S.; Chen, W.; Weng, W.; Zhu, M. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Applied Materials & Interfaces 2016, 8 (23), 14622-14627, DOI: 10.1021/acsami.6b04026.
(63) Wang, F.; Xiao, S.; Hou, Y.; Hu, C.; Liu, L.; Wu, Y. Electrode materials for aqueous asymmetric supercapacitors. RSC Advances 2013, 3 (32), 13059-13084, DOI: 10.1039/C3RA23466E.
(64) Du, G.; Bian, Q.; Zhang, J.; Yang, X. Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor. RSC Advances 2017, 7 (73), 46329-46335, DOI: 10.1039/C7RA08402A.
(65) Zhi, J.; Wang, Y.; Deng, S.; Hu, A. Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Advances 2014, 4 (76), 40296-40300, DOI: 10.1039/C4RA06260D.
(66) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society 2008, 130 (9), 2730-2731, DOI: 10.1021/ja7106178.
(67) Yang, X.; Li, M.; Guo, N.; Yan, M.; Yang, R.; Wang, F. Functionalized porous carbon with appropriate pore size distribution and open hole texture prepared by H2O2 and EDTA-2Na treatment of loofa sponge and its excellent performance for supercapacitors. RSC Advances 2016, 6 (6), 4365-4376, DOI: 10.1039/C5RA24055G.
(68) Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials 2013, 25 (18), 2554-2560, DOI: 10.1002/adma.201204576.
(69) Xu, Y.; Ren, B.; Wang, S.; Zhang, L.; Liu, Z. Carbon aerogel-based supercapacitors modified by hummers oxidation method. Journal of Colloid and Interface Science 2018, 527, 25-32, DOI: https://doi.org/10.1016/j.jcis.2018.04.108.
(70) Yang, I.; Kwon, D.; Kim, M. S.; Jung, J. C. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon 2018, 132, 503-511, DOI: https://doi.org/10.1016/j.carbon.2018.02.076.
(71) Cai, X.; Tan, G.; Deng, Z.; Liu, J.; Gui, D. Preparation of Hierarchical Porous Carbon Aerogels by Microwave Assisted Sol-Gel Process for Supercapacitors. Polymers 2019, 11 (3), 429, DOI: 10.3390/polym11030429.
(72) Kim, C. H. J.; Zhao, D.; Lee, G.; Liu, J. Strong, Machinable Carbon Aerogels for High Performance Supercapacitors. Advanced Functional Materials 2016, 26 (27), 4976-4983, DOI: 10.1002/adfm.201601010.
(73) Crane, M. J.; Lim, M. B.; Zhou, X.; Pauzauskie, P. J. Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes. Microsystems &Amp; Nanoengineering 2017, 3, 17032, DOI: 10.1038/micronano.2017.32
https://www.nature.com/articles/micronano201732#supplementary-information.
(74) Zuo, L.; Fan, W.; Zhang, Y.; Huang, Y.; Gao, W.; Liu, T. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. Nanoscale 2017, 9 (13), 4445-4455, DOI: 10.1039/C7NR00130D.
(75) Zhuo, H.; Hu, Y.; Chen, Z.; Zhong, L. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohydrate Polymers 2019, 215, 322-329, DOI: https://doi.org/10.1016/j.carbpol.2019.03.101.
(76) Zhuo, H.; Hu, Y.; Tong, X.; Zhong, L.; Peng, X.; Sun, R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Industrial Crops and Products 2016, 87, 229-235, DOI: https://doi.org/10.1016/j.indcrop.2016.04.041.
(77) Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C. P.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6 (20), 12120-12129, DOI: 10.1039/C4NR03574G.
(78) Li, S. C.; Hu, B. C.; Ding, Y. W.; Liang, H. W.; Li, C.; Yu, Z. Y.; Wu, Z. Y.; Chen, W. S.; Yu, S. H. Wood-Derived Ultrathin Carbon Nanofiber Aerogels. Angewandte Chemie International Edition 2018, 57 (24), 7085-7090, DOI: 10.1002/anie.201802753.
(79) Ateh, D. D.; Navsaria, H. A.; Vadgama, P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 2006, 3 (11), 741-752, DOI: 10.1098/rsif.2006.0141.
(80) Le, T. H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (4), 150.
(81) Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011, 196 (1), 1-12, DOI: https://doi.org/10.1016/j.jpowsour.2010.06.084.
(82) Han, Y.; Dai, L. Conducting Polymers for Flexible Supercapacitors. Macromolecular Chemistry and Physics 2019, 220 (3), 1800355, DOI: 10.1002/macp.201800355.
(83) Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268-285, DOI: https://doi.org/10.1016/j.nanoen.2017.04.040.
(84) Fong, K. D.; Wang, T.; Smoukov, S. K. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustainable Energy & Fuels 2017, 1 (9), 1857-1874, DOI: 10.1039/C7SE00339K.
(85) Yu, G.; Xie, X.; Pan, L.; Bao, Z.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2 (2), 213-234, DOI: https://doi.org/10.1016/j.nanoen.2012.10.006.
(86) González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206, DOI: https://doi.org/10.1016/j.rser.2015.12.249.
(87) Shen, P. K.; Wang, C. Y.; Jiang, S. P.; Sun, X.; Zhang, J. Electrochemical Energy: Advanced Materials and Technologies, CRC Press: 2016.
(88) Patake, V. D.; Joshi, S. S.; Lokhande, C. D.; Joo, O.-S. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Materials Chemistry and Physics 2009, 114 (1), 6-9, DOI: https://doi.org/10.1016/j.matchemphys.2008.09.031.
(89) Zeng, W.; Zhang, G.; Hou, S.; Wang, T.; Duan, H. Facile Synthesis of Graphene@NiO/MoO3 Composite Nanosheet Arrays for High-performance Supercapacitors. Electrochimica Acta 2015, 151, 510-516, DOI: https://doi.org/10.1016/j.electacta.2014.11.088.
(90) Shaheen, W.; Warsi, M. F.; Shahid, M.; Khan, M. A.; Asghar, M.; Ali, Z.; Sarfraz, M.; Anwar, H.; Nadeem, M.; Shakir, I. Carbon Coated MoO3 Nanowires/Graphene oxide Ternary Nanocomposite for High-Performance Supercapacitors. Electrochimica Acta 2016, 219, 330-338, DOI: https://doi.org/10.1016/j.electacta.2016.09.069.
(91) Zhou, K.; Zhou, W.; Liu, X.; Sang, Y.; Ji, S.; Li, W.; Lu, J.; Li, L.; Niu, W.; Liu, H.; Chen, S. Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 2015, 12, 510-520, DOI: https://doi.org/10.1016/j.nanoen.2015.01.017.
(92) Huang, C. C.; Xing, W.; Zhuo, S. P. Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scripta Materialia 2009, 61 (10), 985-987, DOI: https://doi.org/10.1016/j.scriptamat.2009.08.009.
(93) Sun, X.; Xie, M.; Travis, J. J.; Wang, G.; Sun, H.; Lian, J.; George, S. M. Pseudocapacitance of Amorphous TiO2 Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition. The Journal of Physical Chemistry C 2013, 117 (44), 22497-22508, DOI: 10.1021/jp4066955.
(94) Zhang, Y.; Sun, W.; Rui, X.; Li, B.; Tan, H. T.; Guo, G.; Madhavi, S.; Zong, Y.; Yan, Q. One-Pot Synthesis of Tunable Crystalline Ni3S4@Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors. Small 2015, 11 (30), 3694-3702, DOI: 10.1002/smll.201403772.
(95) Mahmood, Q.; Yun, H. J.; Kim, W. S.; Park, H. S. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources 2013, 235, 187-192, DOI: https://doi.org/10.1016/j.jpowsour.2013.01.165.
(96) Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X. W. Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials 2012, 22 (21), 4592-4597, DOI: 10.1002/adfm.201200994.
(97) Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy & Environmental Science 2012, 5 (11), 9453-9456, DOI: 10.1039/C2EE22572G.
(98) Liu, M. C.; Kong, L. B.; Lu, C.; Li, X. M.; Luo, Y. C.; Kang, L. Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Materials Letters 2013, 94, 197-200, DOI: https://doi.org/10.1016/j.matlet.2012.12.057.
(99) Liu, M. C.; Kong, L. B.; Kang, L.; Li, X.; Walsh, F. C.; Xing, M.; Lu, C.; Ma, X. J.; Luo, Y. C. Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry A 2014, 2 (14), 4919-4926, DOI: 10.1039/C4TA00582A.
(100) Karthikeyan, K.; Kalpana, D.; Renganathan, N. G. Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 2009, 15 (1), 107-110, DOI: 10.1007/s11581-008-0227-y.
(101) Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters 2011, 11 (3), 1215-1220, DOI: 10.1021/nl104205s.
(102) Ghosh, D.; Giri, S.; Moniruzzaman, M.; Basu, T.; Mandal, M.; Das, C. K. α MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Transactions 2014, 43 (28), 11067-11076, DOI: 10.1039/C4DT00672K.
(103) Zhao, J.; Cheng, Y.; Yan, X.; Sun, D.; Zhu, F.; Xue, Q. Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 2012, 14 (18), 5879-5885, DOI: 10.1039/C2CE25684C.
(104) Chen, D.; Wang, Q.; Wang, R.; Shen, G. Ternary oxide nanostructured materials for supercapacitors: a review. Journal of Materials Chemistry A 2015, 3 (19), 10158-10173, DOI: 10.1039/C4TA06923D.
(105) Elshahawy, A. M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S. J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162-171, DOI: https://doi.org/10.1016/j.nanoen.2017.06.042.
(106) Du, W.; Kang, R.; Geng, P.; Xiong, X.; Li, D.; Tian, Q.; Pang, H. New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. Materials Chemistry and Physics 2015, 165, 207-214, DOI: https://doi.org/10.1016/j.matchemphys.2015.09.020.
(107) Wang, H.; Xu, Z.; Yi, H.; Wei, H.; Guo, Z.; Wang, X. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86-96, DOI: https://doi.org/10.1016/j.nanoen.2014.04.009.
(108) Zheng, Z.; Retana, M.; Hu, X.; Luna, R.; Ikuhara, Y. H.; Zhou, W. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (20), 16986-16994, DOI: 10.1021/acsami.7b01109.
(109) Li, B.; Fu, Y.; Xia, H.; Wang, X. High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Materials Letters 2014, 122, 193-196, DOI: https://doi.org/10.1016/j.matlet.2014.02.046.
(110) Li, X.; Shao, J.; Li, J.; Zhang, L.; Qu, Q.; Zheng, H. Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. Journal of Power Sources 2013, 237, 80-83, DOI: https://doi.org/10.1016/j.jpowsour.2013.03.020.
(111) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research 2011, 4 (8), 729-736, DOI: 10.1007/s12274-011-0129-6.
(112) Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Advanced Functional Materials 2013, 23 (40), 5074-5083, DOI: 10.1002/adfm201301851.
(113) Li, G. R.; Wang, Z. L.; Zheng, F. L.; Ou, Y. N.; Tong, Y. X. ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry 2011, 21 (12), 4217-4221, DOI: 10.1039/C0JM03500A.
(114) Upadhyay, K. K.; Nguyen, T.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochimica Acta 2017, 225, 19-28, DOI: https://doi.org/10.1016/j.electacta.2016.12.106.
(115) Zhang, T.; Kong, L. B.; Liu, M. C.; Dai, Y. H.; Yan, K.; Hu, B.; Luo, Y. C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Materials & Design 2016, 112, 88-96, DOI: https://doi.org/10.1016/j.matdes.2016.09.054.
(116) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157.
(117) Zhai, T.; Lu, X.; Wang, H.; Wang, G.; Mathis, T.; Liu, T.; Li, C.; Tong, Y.; Li, Y. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters 2015, 15 (5), 3189-3194, DOI: 10.1021/acs.nanolett.5b00321.
(118) Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials 2009, 19 (21), 3420-3426, DOI: 10.1002/adfm.200900971.
(119) Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials 2013, 25 (2), 267-272, DOI: 10.1002/adma.201203410.
(120) Liu, B.; Wang, Y.; Jiang, H. W.; Zou, B. X. WO3 Nanowires on Graphene Sheets as Negative Electrode for Supercapacitors. Journal of Nanomaterials 2017, 2017, 9, DOI: 10.1155/2017/2494109.
(121) Wei, X. U.; Gui, X. U.; Deng Liang, W.; Jin Tian, L. I. N.; Yu, B. A. I.; Li Te, Z.; Jing Quan, M. O.; Dong Hua, F. A. N. In Preparation of WO3 Nano-material Negative Electrode for Asymmetric Supercapacitor, 2018 International Conference on Energy Development and Environmental Protection (EDEP 2018), 2018/10; Atlantis Press: 2018.
(122) Chang, K. H.; Hu, C. C.; Huang, C. M.; Liu, Y. L.; Chang, C. I. Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3•0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources 2011, 196 (4), 2387-2392, DOI: https://doi.org/10.1016/j.jpowsour.2010.09.078.
(123) Yu, M.; Han, Y.; Cheng, X.; Hu, L.; Zeng, Y.; Chen, M.; Cheng, F.; Lu, X.; Tong, Y. Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials 2015, 27 (19), 3085-3091, DOI: 10.1002/adma.201500493.
(124) Zhou, X.; Shang, C.; Gu, L.; Dong, S.; Chen, X.; Han, P.; Li, L.; Yao, J.; Liu, Z.; Xu, H.; Zhu, Y.; Cui, G. Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2011, 3 (8), 3058-3063, DOI: 10.1021/am200564b.
(125) Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Wang, H.; Liu, Z.; Han, P.; Yao, J.; Wang, L.; Cui, G.; Chen, L. TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin 2011, 46 (6), 835-839, DOI: https://doi.org/10.1016/j.materresbull.2011.02.028.
(126) Choi, D.; Kumta, P. N. Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors. Journal of The Electrochemical Society 2006, 153 (12), A2298-A2303, DOI: 10.1149/1.2359692.
(127) Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Xie, S.; Ling, Y.; Liang, C.; Tong, Y.; Li, Y. Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters 2012, 12 (10), 5376-5381, DOI: 10.1021/nl302761z.
(128) Li, L.; Zhang, M.; Zhang, X.; Zhang, Z. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources 2017, 364, 234-241, DOI: https://doi.org/10.1016/j.jpowsour.2017.08.029.
(129) Wang, R.; Yan, X.; Lang, J.; Zheng, Z.; Zhang, P. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. Journal of Materials Chemistry A 2014, 2 (32), 12724-12732, DOI: 10.1039/C4TA01296H.
(130) Gao, Z. H.; Zhang, H.; Cao, G. P.; Han, M. F.; Yang, Y. S. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochimica Acta 2013, 87, 375-380, DOI: https://doi.org/10.1016/j.electacta.2012.09.075.
(131) Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters 2013, 13 (6), 2628-2633, DOI: 10.1021/nl400760a.
(132) Jin, W. H.; Cao, G. T.; Sun, J. Y. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. Journal of Power Sources 2008, 175 (1), 686-691, DOI: https://doi.org/10.1016/j.jpowsour.2007.08.115.
(133) Jiang, K.; Sun, B.; Yao, M.; Wang, N.; Hu, W.; Komarneni, S. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials 2018, 265, 189-194, DOI: https://doi.org/10.1016/j.micromeso.2018.02.015.
(134) Zhao, Z. Y.; Zhang, W. B.; Ma, X. J.; Li, K.; Zhao, Y.; Gao, J. F.; Kang, L.; Kong, L. B. A Novel Capacitive Negative Electrode Material of Fe3N. Nano 2018, 13 (01), 1850002, DOI: 10.1142/s1793292018500029.
(135) Bing Liang, L.; Zhi, Z.; Michael Anthony, R.; Kevin, L.; Trevor, W.; Yunlong, A.; Xiaotao, Z.; Weilie, Z. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019.
(136) Chen, Y. C.; Chen, Z. B.; Lin, Y. G.; Hsu, Y. K. Synthesis of Copper Phosphide Nanotube Arrays as Electrodes for Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering 2017, 5 (5), 3863-3870, DOI: 10.1021/acssuschemeng.6b03006.
(137) Sankar, K. V.; Selvan, R. K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. Journal of Power Sources 2015, 275, 399-407, DOI: https://doi.org/10.1016/j.jpowsour.2014.10.183.
(138) Lin, Y. P.; Wu, N. L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. Journal of Power Sources 2011, 196 (2), 851-854, DOI: https://doi.org/10.1016/j.jpowsour.2010.07.066.
(139) Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chemical Engineering Journal 2016, 286, 165-173, DOI: https://doi.org/10.1016/j.cej.2015.10.068.
(140) Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9 (5), 5198-5207, DOI: 10.1021/acsnano.5b00582.
(141) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (27), 14843-14850, DOI: 10.1021/acsami.5b03126.
(142) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials 2017, 2, 16098, DOI: 10.1038/natrevmats.2016.98
https://www.nature.com/articles/natrevmats201698#supplementary-information.
(143) VahidMohammadi, A.; Moncada, J.; Chen, H.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. Journal of Materials Chemistry A 2018, 6 (44), 22123-22133, DOI: 10.1039/C8TA05807E.
(144) Mukherjee, S.; Ren, Z.; Singh, G. Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors. Nano-micro letters 2018, 10 (4), 70-70, DOI: 10.1007/s40820-018-0224-2.
(145) Hou, S.; Xu, X.; Wang, M.; Xu, Y.; Lu, T.; Yao, Y.; Pan, L. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A 2017, 5 (36), 19054-19061, DOI: 10.1039/C7TA04720G.
(146) Bendi, R.; Kumar, V.; Bhavanasi, V.; Parida, K.; Lee, P. S. Metal Organic Framework-Derived Metal Phosphates as Electrode Materials for Supercapacitors. Advanced Energy Materials 2016, 6 (3), 1501833, DOI: 10.1002/aenm.201501833.
(147) ELECTRONICS, S. The intelligent tool that sets Galaxy Note9 apart. https://www.samsung.com/us/mobile/galaxy-note9/s-pen/ (accessed June 14).
(148) Kim, B. K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Conversion. In Handbook of Clean Energy Systems; John Wiley & Sons, Ltd: 2015.
(149) Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Cellulose-based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials 2017, 7 (18), 1700130, DOI: 10.1002/aenm.201700130.
(150) Thakur, V. K.; Thakur, M. K. Eco-friendly Polymer Nanocomposites: Chemistry and Applications, Springer India: 2015.
(151) Shi, Z.; Phillips, G. O.; Yang, G. Nanocellulose electroconductive composites. Nanoscale 2013, 5 (8), 3194-3201, DOI: 10.1039/C3NR00408B.

CHAPTER 2
References

(1) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091, DOI: 10.1039/C4TA00484A.
(2) Zhao, J.; Wu, J.; Li, B.; Du, W.; Huang, Q.; Zheng, M.; Xue, H.; Pang, H. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International 2016, 26 (3), 237-242, DOI: https://doi.org/10.1016/j.pnsc.2016.05.015.
(3) Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Research 2019, DOI: 10.1007/s12274-019-2360-5.
(4) Asen, P.; Shahrokhian, S. A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. The Journal of Physical Chemistry C 2017, 121 (12), 6508-6519, DOI: 10.1021/acs.jpcc.7b00534.
(5) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v.
(6) Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422-438, DOI: https://doi.org/10.1016/j.nanoen.2016.02.047.
(7) Eeu, Y. C.; Lim, H. N.; Lim, Y. S.; Zakarya, S. A.; Huang, N. M. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material. Journal of Nanomaterials 2013, 2013, 6, DOI: 10.1155/2013/653890.
(8) Lee, J.; Jeong, H.; L. Lavall, R.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (38), 33203-33211, DOI: 10.1021/acsami.7b11574.
(9) Abu Thabit, N. Y.; Makhlouf, A. S. H. Smart Textile Supercapacitors Coated with Conducting Polymers for Energy Storage Applications. In Industrial Applications for Intelligent Polymers and Coatings; Hosseini, M.; Makhlouf, A. S. H., Eds.; Springer International Publishing: Cham, 2016; pp 437-477.
(10) Huang, S.; Han, Y.; Lyu, S.; Lin, W.; Chen, P.; Fang, S. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 2017, 28 (43), 435204, DOI: 10.1088/1361-6528/aa84cb.
(11) Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299, DOI: https://doi.org/10.1016/j.orgel.2015.07.054.
(12) Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. Journal of Nanoscience and Nanotechnology 2008, 8 (10), 5036-5041, DOI: 10.1166/jnn.2008.1066.
(13) Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage. Electrochimica Acta 2014, 132, 112-117, DOI: https://doi.org/10.1016/j.electacta.2014.03.146.
(14) Cao, A.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, Y.; Li, T.; Han, Y. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synthetic Metals 2019, 252, 135-141, DOI: https://doi.org/10.1016/j.synthmet.2019.04.019.
(15) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 236, DOI: 10.1007/s11051-015-3046-x.
(16) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 1-9, DOI: DOI:101007/s11051-015-3046-x.
(17) Ahn, K. J.; Lee, Y.; Choi, H.; Kim, M. S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Scientific Reports 2015, 5, 14097, DOI: 10.1038/srep14097
https://www.nature.com/articles/srep14097#supplementary-information.
(18) Liu, P.; Wang, X.; Wang, Y. Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1795-1801, DOI: 10.1021/sc5001034.
(19) Wang, Z.; Zhang, C.; Xu, C.; Zhu, Z.; Chen, C. Hollow polypyrrole nanosphere embedded in nitrogen-doped graphene layers to obtain a three-dimensional nanostructure as electrode material for electrochemical supercapacitor. Ionics 2017, 23 (1), 147-156, DOI: 10.1007/s11581-016-1803-1.
(20) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B.
(21) Yang, X.; Lin, Z.; Zheng, J.; Huang, Y.; Chen, B.; Mai, Y.; Feng, X. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8 (16), 8650-8657, DOI: 10.1039/C6NR00468G.
(22) Li, M.; Yang, L.; Zhang, Y. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Advances 2015, 5 (2), 1191-1197, DOI: 10.1039/C4RA12096E.
(23) Feng, J.; Lv, W.; Liu, J.; Li, J.; Yang, H.; Xu, H.; Yan, W. Enhanced capacitance of rectangular-sectioned polypyrrole microtubes as the electrode material for supercapacitors. RSC Advances 2014, 4 (77), 40686-40692, DOI: 10.1039/C4RA07750D.
(24) Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Interfaces 2017, 9 (47), 41496-41504, DOI: 10.1021/acsami.7b13874.
(25) Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules 2003, 36 (4), 1063-1067, DOI: 10.1021/ma021177b.
(26) Han, H.; Lee, J. S.; Cho, S. Comparative Studies on Two-Electrode Symmetric Supercapacitors Based on Polypyrrole:Poly(4-styrenesulfonate) with Different Molecular Weights of Poly(4-styrenesulfonate). Polymers 2019, 11 (2), 232, DOI: 10.3390/polym11020232.
(27) He, D.; Marsden, A. J.; Li, Z.; Zhao, R.; Xue, W.; Bissett, M. A. Fabrication of a Graphene-Based Paper-Like Electrode for Flexible Solid-State Supercapacitor Devices. Journal of the Electrochemical Society 2018, 165 (14), A3481-A3486, DOI: 10.1149/2.1041814jes.
(28) Yuksel, R.; Uysal, N.; Aydinli, A.; Unalan, H. E. Paper Based, Expanded Graphite/Polypyrrole Nanocomposite Supercapacitors Free from Binders and Current Collectors. Journal of The Electrochemical Society 2018, 165 (2), A283-A290, DOI: 10.1149/2.1051802jes.
(29) Nam, M. S.; Patil, U.; Park, B.; Sim, H. B.; Jun, S. C. A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application. RSC Advances 2016, 6 (103), 101592-101601, DOI: 10.1039/C6RA16078F.
(30) Zhao, H.; Liu, L.; Vellacheri, R.; Lei, Y. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors. Advanced Science 2017, 4 (10), 1700188, DOI: 10.1002/advs.201700188.
(31) Lee, J. H.; Kim, J. A.; Kim, J. M.; Lee, S. Y.; Yeon, S. H.; Lee, S. Y. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets. Scientific Reports 2017, 7, 41708-41708, DOI: 10.1038/srep41708.
(32) Wang, Y.; He, J.; Roller, J.; Maric, R. One-step fabrication of binder-free three-dimensional Co3O4 electrodes by Reactive Spray Deposition Technology for application in high-performance supercapacitors. MRS Communications 2018, 8 (2), 597-603, DOI: 10.1557/mrc.2018.57.
(33) Luo, S.; Zhao, J.; Zou, J.; He, Z.; Xu, C.; Liu, F.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. ACS Applied Materials & Interfaces 2018, 10 (4), 3538-3548, DOI: 10.1021/acsami.7b15458.
(34) Wang, C.; Ding, Y.; Yuan, Y.; Cao, A.; He, X.; Peng, Q.; Li, Y. Multifunctional, Highly Flexible, Free-Standing 3D Polypyrrole Foam. Small 2016, 12 (30), 4070-4076, DOI: 10.1002/smll.201601905.
(35) Bai, N.; Xu, Z.; Tian, Y.; Gai, L.; Jiang, H.; Marcus, K.; Liang, K. Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta 2017, 249, 360-368, DOI: https://doi.org/10.1016/j.electacta.2017.08.034.
(36) Dubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry 2012, 22 (7), 3044-3052, DOI: 10.1039/C2JM14470K.
(37) Zang, L.; Liu, Q.; Qiu, J.; Yang, C.; Wei, C.; Liu, C.; Lao, L. Design and Fabrication of an All-Solid-State Polymer Supercapacitor with Highly Mechanical Flexibility Based on Polypyrrole Hydrogel. ACS Applied Materials & Interfaces 2017, 9 (39), 33941-33947, DOI: 10.1021/acsami.7b10321.
(38) Gao, B.; Wang, D.; Qu, N.; Zhao, C. Flexible Carbon Cloth Based PPy-Ag Nanoparticles Composite Film for Supercapacitors. IOP Conference Series: Materials Science and Engineering 2018, 394, 042005, DOI: 10.1088/1757-899x/394/4/042005.
(39) Jang, J. Conducting Polymer Nanomaterials and Their Applications. In Emissive Materials Nanomaterials; Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 189-260.
(40) Zhou, Y.; Hu, X.; Shang, Y.; Hua, C.; Song, P.; Li, X.; Zhang, Y.; Cao, A. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Advances 2016, 6 (67), 62062-62070, DOI: 10.1039/C6RA07297F.
(41) Yesi, Y.; Shown, I.; Ganguly, A.; Ngo, T. T.; Chen, L. C.; Chen, K. H. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for High-Performance Flexible Supercapacitors. ChemSusChem 2016, 9 (4), 370-378, DOI: 10.1002/cssc.201501495.
(42) Li, P.; Shi, E.; Yang, Y.; Shang, Y.; Peng, Q.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; Cao, A.; Wu, D. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research 2014, 7 (2), 209-218, DOI: 10.1007/s12274-013-0388-5.
(43) Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A 2019, 7 (17), 10751-10760, DOI: 10.1039/C9TA01856E.
(44) Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources 2015, 287, 68-74, DOI: https://doi.org/10.1016/j.jpowsour.2015.04.026.
(45) Alcaraz-Espinoza, J. J.; de Melo, C. P.; de Oliveira, H. P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega 2017, 2 (6), 2866-2877, DOI: 10.1021/acsomega.7b00329.
(46) Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Cellulose-based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials 2017, 7 (18), 1700130, DOI: 10.1002/aenm.201700130.
(47) Gui, Z.; Zhu, H.; Gillette, E.; Han, X.; Rubloff, G. W.; Hu, L.; Lee, S. B. Natural Cellulose Fiber as Substrate for Supercapacitor. ACS Nano 2013, 7 (7), 6037-6046, DOI: 10.1021/nn401818t.
(48) Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 2013, 6 (2), 470-476, DOI: 10.1039/C2EE23977A.
(49) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G.
(50) Huang, L.; Yao, X.; Yuan, L.; Yao, B.; Gao, X.; Wan, J.; Zhou, P.; Xu, M.; Wu, J.; Yu, H.; Hu, Z.; Li, T.; Li, Y.; Zhou, J. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials 2018, 12, 191-196, DOI: https://doi.org/10.1016/j.ensm.2017.12.016.
(51) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247.
(52) De Adhikari, A.; Oraon, R.; Tiwari, S. K.; Lee, J. H.; Nayak, G. C. Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Advances 2015, 5 (35), 27347-27355, DOI: 10.1039/C4RA16174B.
(53) Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23 (1), 637-648, DOI: 10.1007/s10570-015-0795-8.
(54) Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Research 2019, 12 (5), 1129-1137, DOI: 10.1007/s12274-019-2360-5.
(55) Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 2015, 7 (8), 3418-3423, DOI: 10.1039/C4NR07251K.
(56) Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Advanced Energy Materials 2014, 4 (10), 1301655, DOI: 10.1002/aenm.201301655.
(57) Chen, X.; Yuan, F.; Zhang, H.; Huang, Y.; Yang, J.; Sun, D. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science 2016, 51 (12), 5573-5588, DOI: 10.1007/s10853-016-9899-2.
(58) Pérez-Madrigal, M. M.; Edo, M. G.; Alemán, C. Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry 2016, 18 (22), 5930-5956, DOI: 10.1039/C6GC02086K.
(59) Liu, Y.; Zhou, J.; Tang, J.; Tang, W. Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chemistry of Materials 2015, 27 (20), 7034-7041, DOI: 10.1021/acs.chemmater.5b03060.
(60) Li, S.; Huang, D.; Yang, J.; Zhang, B.; Zhang, X.; Yang, G.; Wang, M.; Shen, Y. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 2014, 9, 309-317, DOI: https://doi.org/10.1016/j.nanoen.2014.08.004.
(61) Xu, W.; Mu, B.; Wang, A. Morphology control of polyaniline by dopant grown on hollow carbon fibers as high-performance supercapacitor electrodes. Cellulose 2017, DOI: 10.1007/s10570-017-1505-5.
(62) Zheng, Y.; Wang, A. Kapok Fiber: Structure and Properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K. R.; Jawaid, M.; Rashid, U., Eds.; Springer International Publishing: Cham, 2014; pp 101-110.
(63) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Advances 2016, 6 (72), 68302-68311, DOI: 10.1039/C6RA16899J.
(64) Xu, W.; Mu, B.; Wang, A. Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors. Electrochimica Acta 2017, 224 (Supplement C), 113-124, DOI: https://doi.org/10.1016/j.electacta.2016.12.032.
(65) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile hydrothermal synthesis of tubular kapok fiber/MnO2 composites and application in supercapacitors. RSC Advances 2015, 5 (79), 64065-64075, DOI: 10.1039/C5RA13602D.
(66) Xu, W.; Mu, B.; Wang, A. Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochimica Acta 2016, 194, 84-94, DOI: https://doi.org/10.1016/j.electacta.2016.02.072.
(67) Xu, W.; Mu, B.; Wang, A. All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. Journal of Materials Science 2018, 53 (16), 11659-11670, DOI: 10.1007/s10853-018-2418-x.
(68) Mu, B.; Zhang, W.; Xu, W.; Wang, A. Hollowed-out tubular carbon@MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochimica Acta 2015, 178, 709-720, DOI: https://doi.org/10.1016/j.electacta.2015.08.091.
(69) Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M. S.; Tong, Y. Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials 2014, 26 (19), 3148-3155, DOI: 10.1002/adma.201305851.
(70) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research 2011, 4 (8), 729-736, DOI: 10.1007/s12274-011-0129-6.
(71) Mahmood, Q.; Yun, H. J.; Kim, W. S.; Park, H. S. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources 2013, 235, 187-192, DOI: https://doi.org/10.1016/j.jpowsour.2013.01.165.
(72) Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Advanced Functional Materials 2013, 23 (40), 5074-5083, DOI: 10.1002/adfm201301851.
(73) Li, G. R.; Wang, Z. L.; Zheng, F. L.; Ou, Y. N.; Tong, Y. X. ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry 2011, 21 (12), 4217-4221, DOI: 10.1039/C0JM03500A.
(74) Upadhyay, K. K.; Nguyen, T.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochimica Acta 2017, 225, 19-28, DOI: https://doi.org/10.1016/j.electacta.2016.12.106.
(75) Zhang, T.; Kong, L. B.; Liu, M. C.; Dai, Y. H.; Yan, K.; Hu, B.; Luo, Y. C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Materials & Design 2016, 112, 88-96, DOI: https://doi.org/10.1016/j.matdes.2016.09.054.
(76) Li, X.; Shao, J.; Li, J.; Zhang, L.; Qu, Q.; Zheng, H. Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. Journal of Power Sources 2013, 237, 80-83, DOI: https://doi.org/10.1016/j.jpowsour.2013.03.020.
(77) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157.
(78) Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 2010, 4 (8), 4403-4411, DOI: 10.1021/nn100856y.
(79) Ng, K. C.; Zhang, S.; Peng, C.; Chen, G. Z. Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites. Journal of The Electrochemical Society 2009, 156 (11), A846-A853, DOI: 10.1149/1.3205482.
(80) Zhai, T.; Lu, X.; Wang, H.; Wang, G.; Mathis, T.; Liu, T.; Li, C.; Tong, Y.; Li, Y. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters 2015, 15 (5), 3189-3194, DOI: 10.1021/acs.nanolett.5b00321.
(81) Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials 2009, 19 (21), 3420-3426, DOI: 10.1002/adfm.200900971.
(82) Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials 2013, 25 (2), 267-272, DOI: 10.1002/adma.201203410.
(83) Liu, B.; Wang, Y.; Jiang, H. W.; Zou, B. X. WO3 Nanowires on Graphene Sheets as Negative Electrode for Supercapacitors. Journal of Nanomaterials 2017, 2017, 9, DOI: 10.1155/2017/2494109.
(84) Wei, X. U.; Gui, X. U.; Deng Liang, W.; Jin Tian, L. I. N.; Yu, B. A. I.; Li Te, Z.; Jing Quan, M. O.; Dong Hua, F. A. N. In Preparation of WO3 Nano-material Negative Electrode for Asymmetric Supercapacitor, 2018 International Conference on Energy Development and Environmental Protection (EDEP 2018), 2018/10; Atlantis Press: 2018.
(85) Chang, K. H.; Hu, C. C.; Huang, C. M.; Liu, Y. L.; Chang, C. I. Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3•0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources 2011, 196 (4), 2387-2392, DOI: https://doi.org/10.1016/j.jpowsour.2010.09.078.
(86) Yu, M.; Han, Y.; Cheng, X.; Hu, L.; Zeng, Y.; Chen, M.; Cheng, F.; Lu, X.; Tong, Y. Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials 2015, 27 (19), 3085-3091, DOI: 10.1002/adma.201500493.
(87) Zhou, X.; Shang, C.; Gu, L.; Dong, S.; Chen, X.; Han, P.; Li, L.; Yao, J.; Liu, Z.; Xu, H.; Zhu, Y.; Cui, G. Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2011, 3 (8), 3058-3063, DOI: 10.1021/am200564b.
(88) Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Wang, H.; Liu, Z.; Han, P.; Yao, J.; Wang, L.; Cui, G.; Chen, L. TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin 2011, 46 (6), 835-839, DOI: https://doi.org/10.1016/j.materresbull.2011.02.028.
(89) Choi, D.; Kumta, P. N. Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors. Journal of The Electrochemical Society 2006, 153 (12), A2298-A2303, DOI: 10.1149/1.2359692.
(90) Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Xie, S.; Ling, Y.; Liang, C.; Tong, Y.; Li, Y. Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters 2012, 12 (10), 5376-5381, DOI: 10.1021/nl302761z.
(91) Li, L.; Zhang, M.; Zhang, X.; Zhang, Z. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources 2017, 364, 234-241, DOI: https://doi.org/10.1016/j.jpowsour.2017.08.029.
(92) Wang, R.; Yan, X.; Lang, J.; Zheng, Z.; Zhang, P. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. Journal of Materials Chemistry A 2014, 2 (32), 12724-12732, DOI: 10.1039/C4TA01296H.
(93) Gao, Z. H.; Zhang, H.; Cao, G. P.; Han, M. F.; Yang, Y. S. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochimica Acta 2013, 87, 375-380, DOI: https://doi.org/10.1016/j.electacta.2012.09.075.
(94) Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters 2013, 13 (6), 2628-2633, DOI: 10.1021/nl400760a.
(95) Khan, Z.; Bhattu, S.; Haram, S.; Khushalani, D. SWCNT/BiVO4 composites as anode materials for supercapacitor application. RSC Advances 2014, 4 (33), 17378-17381, DOI: 10.1039/C4RA01273A.
(96) Jin, W. H.; Cao, G. T.; Sun, J. Y. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. Journal of Power Sources 2008, 175 (1), 686-691, DOI: https://doi.org/10.1016/j.jpowsour.2007.08.115.
(97) Jiang, K.; Sun, B.; Yao, M.; Wang, N.; Hu, W.; Komarneni, S. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials 2018, 265, 189-194, DOI: https://doi.org/10.1016/j.micromeso.2018.02.015.
(98) Zhao, Z. Y.; Zhang, W. B.; Ma, X. J.; Li, K.; Zhao, Y.; Gao, J. F.; Kang, L.; Kong, L. B. A Novel Capacitive Negative Electrode Material of Fe3N. Nano 2018, 13 (01), 1850002, DOI: 10.1142/s1793292018500029.
(99) Bing Liang, L.; Zhi, Z.; Michael Anthony, R.; Kevin, L.; Trevor, W.; Yunlong, A.; Xiaotao, Z.; Weilie, Z. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019.
(100) Chen, Y. C.; Chen, Z. B.; Lin, Y. G.; Hsu, Y. K. Synthesis of Copper Phosphide Nanotube Arrays as Electrodes for Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering 2017, 5 (5), 3863-3870, DOI: 10.1021/acssuschemeng.6b03006.
(101) Elshahawy, A. M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S. J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162-171, DOI: https://doi.org/10.1016/j.nanoen.2017.06.042.
(102) Zheng, Z.; Retana, M.; Hu, X.; Luna, R.; Ikuhara, Y. H.; Zhou, W. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (20), 16986-16994, DOI: 10.1021/acsami.7b01109.
(103) Li, B.; Fu, Y.; Xia, H.; Wang, X. High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Materials Letters 2014, 122, 193-196, DOI: https://doi.org/10.1016/j.matlet.2014.02.046.
(104) Sankar, K. V.; Selvan, R. K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. Journal of Power Sources 2015, 275, 399-407, DOI: https://doi.org/10.1016/j.jpowsour.2014.10.183.
(105) Lin, Y. P.; Wu, N. L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. Journal of Power Sources 2011, 196 (2), 851-854, DOI: https://doi.org/10.1016/j.jpowsour.2010.07.066.
(106) Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chemical Engineering Journal 2016, 286, 165-173, DOI: https://doi.org/10.1016/j.cej.2015.10.068.
(107) Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9 (5), 5198-5207, DOI: 10.1021/acsnano.5b00582.
(108) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (27), 14843-14850, DOI: 10.1021/acsami.5b03126.
(109) Yu, M.; Wang, Z.; Han, Y.; Tong, Y.; Lu, X.; Yang, S. Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A 2016, 4 (13), 4634-4658, DOI: 10.1039/C5TA10542K.
(110) Dong, Y.; Xing, L.; Hu, F.; Umar, A.; Wu, X. α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Materials Research Bulletin 2018, 107, 391-396, DOI: https://doi.org/10.1016/j.materresbull.2018.07.038.
(111) Zheng, X.; Yan, X.; Sun, Y.; Yu, Y.; Zhang, G.; Shen, Y.; Liang, Q.; Liao, Q.; Zhang, Y. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. Journal of Colloid and Interface Science 2016, 466, 291-296, DOI: https://doi.org/10.1016/j.jcis.2015.12.024.
(112) Li, J.; Wang, Y.; Xu, W.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X.; Zhang, C.; Gu, X.; Hu, C. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379-387, DOI: https://doi.org/10.1016/j.nanoen.2018.12.061.
(113) Zhu, S.; Zou, X.; Zhou, Y.; Zeng, Y.; Long, Y.; Yuan, Z.; Wu, Q.; Li, M.; Wang, Y.; Xiang, B. Hydrothermal synthesis of graphene-encapsulated 2D circular nanoplates of α-Fe2O3 towards enhanced electrochemical performance for supercapacitor. Journal of Alloys and Compounds 2019, 775, 63-71, DOI: https://doi.org/10.1016/j.jallcom.2018.10.085.
(114) Raut, S. S.; Sankapal, B. R. Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application. New Journal of Chemistry 2016, 40 (3), 2619-2627, DOI: 10.1039/C5NJ03628C.
(115) Ling, Y.; Wang, G.; Reddy, J.; Wang, C.; Zhang, J. Z.; Li, Y. The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. Angewandte Chemie International Edition 2012, 51 (17), 4074-4079, DOI: 10.1002/anie.201107467.
(116) Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C. P.; Wang, Z. L. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes. Nano Letters 2014, 14 (2), 731-736, DOI: 10.1021/nl404008e.
(117) Yang, Z.; Qiu, A.; Ma, J.; Chen, M. Conducting α-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Composites Science and Technology 2018, 156, 231-237, DOI: https://doi.org/10.1016/j.compscitech.2018.01.012.

CHAPTER 3
References

(1) Zheng, Y.; Wang, A. Kapok Fiber: Structure and Properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K. R.; Jawaid, M.; Rashid, U., Eds.; Springer International Publishing: Cham, 2014; pp 101-110.
(2) Liu, Y.; Wang, J.; Zheng, Y.; Wang, A. Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chemical Engineering Journal 2012, 184 (Supplement C), 248-255, DOI: https://doi.org/10.1016/j.cej.2012.01.049.
(3) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2.
(4) Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews 2016, 45 (21), 5925-5950, DOI: 10.1039/C5CS00580A.
(5) Chen, D.; Wang, Q.; Wang, R.; Shen, G. Ternary oxide nanostructured materials for supercapacitors: a review. Journal of Materials Chemistry A 2015, 3 (19), 10158-10173, DOI: 10.1039/C4TA06923D.

CHAPTER 4
References

(1) Lai, H.; Wu, Q.; Zhao, J.; Shang, L.; Li, H.; Che, R.; Lyu, Z.; Xiong, J.; Yang, L.; Wang, X.; Hu, Z. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy & Environmental Science 2016, 9 (6), 2053-2060, DOI: 10.1039/C6EE00603E.
(2) Li, T.; Yu, H.; Zhi, L.; Zhang, W.; Dang, L.; Liu, Z.; Lei, Z. Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors. The Journal of Physical Chemistry C 2017, 121 (35), 18982-18991, DOI: 10.1021/acs.jpcc.7b04330.
(3) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G.
(4) Tao, J.; Liu, N.; Li, L.; Su, J.; Gao, Y. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 2014, 6 (5), 2922-2928, DOI: 10.1039/C3NR05845J.
(5) Koga, H.; Tonomura, H.; Nogi, M.; Suganuma, K.; Nishina, Y. Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chemistry 2016, 18 (4), 1117-1124, DOI: 10.1039/C5GC01949D.
(6) Anothumakkool, B.; Soni, R.; Bhange, S. N.; Kurungot, S. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy & Environmental Science 2015, 8 (4), 1339-1347, DOI: 10.1039/C5EE00142K.
(7) Liu, R.; Ma, L.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New Journal of Chemistry 2017, 41 (2), 857-864, DOI: 10.1039/C6NJ03107B.
(8) Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Zhang, Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. Journal of Power Sources 2016, 302 (Supplement C), 39-45, DOI: https://doi.org/10.1016/j.jpowsour.2015.10.035.
(9) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157.
(10) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247.
(11) Cao, Z.; Wei, B. A perspective: carbon nanotube macro-films for energy storage. Energy & Environmental Science 2013, 6 (11), 3183-3201, DOI: 10.1039/C3EE42261E.
(12) Zhao, J.; Li, C.; Zhang, Q.; Zhang, J.; Wang, X.; Lin, Z.; Wang, J.; Lv, W.; Lu, C.; Wong, C.; Yao, Y. An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. Journal of Materials Chemistry A 2017, 5 (15), 6928-6936, DOI: 10.1039/C7TA01348E.
(13) Yao, B.; Yuan, L.; Xiao, X.; Zhang, J.; Qi, Y.; Zhou, J.; Zhou, J.; Hu, B.; Chen, W. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2013, 2 (6), 1071-1078, DOI: https://doi.org/10.1016/j.nanoen.2013.09.002.
(14) Chen, Z.; Liao, W.; Ni, X. Spherical polypyrrole nanoparticles growing on the reduced graphene oxide-coated carbon cloth for high performance and flexible all-solid-state supercapacitors. Chemical Engineering Journal 2017, 327 (Supplement C), 1198-1207, DOI: https://doi.org/10.1016/j.cej.2017.06.098.
(15) Lee, D.; Cho, Y. G.; Song, H. K.; Chun, S. J.; Park, S. B.; Choi, D. H.; Lee, S. Y.; Yoo, J.; Lee, S. Y. Coffee-Driven Green Activation of Cellulose and Its Use for All-Paper Flexible Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (27), 22568-22577, DOI: 10.1021/acsami.7b05712.
(16) Liew, S. Y.; Walsh, D. A.; Thielemans, W. High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Advances 2013, 3 (24), 9158-9162, DOI: 10.1039/C3RA41168K.
(17) Wang, F.; Kim, H. J.; Park, S.; Kee, C. D.; Kim, S. J.; Oh, I. K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Composites Science and Technology 2016, 128 (Supplement C), 33-40, DOI: https://doi.org/10.1016/j.compscitech.2016.03.012.
(18) Peng, S.; Fan, L.; Wei, C.; Liu, X.; Zhang, H.; Xu, W.; Xu, J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydrate Polymers 2017, 157 (Supplement C), 344-352, DOI: https://doi.org/10.1016/j.carbpol.2016.10.004.
(19) Shi, Z.; Phillips, G. O.; Yang, G. Nanocellulose electroconductive composites. Nanoscale 2013, 5 (8), 3194-3201, DOI: 10.1039/C3NR00408B.
(20) Ge, D.; Yang, L.; Fan, L.; Zhang, C.; Xiao, X.; Gogotsi, Y.; Yang, S. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 2015, 11 (Supplement C), 568-578, DOI: https://doi.org/10.1016/j.nanoen.2014.11.023.
(21) Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Letters 2010, 10 (2), 708-714, DOI: 10.1021/nl903949m.
(22) Su, H.; Zhu, P.; Zhang, L.; Zeng, W.; Zhou, F.; li, G.; Li, T.; Wang, Q.; Sun, R.; Wong, C. Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Advances 2016, 6 (87), 83564-83572, DOI: 10.1039/C6RA14885A.
(23) Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology 2016, 137 (Supplement C), 87-93, DOI: https://doi.org/10.1016/j.compscitech.2016.10.027.
(24) Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. Graphene–Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials 2011, 1 (5), 917-922, DOI: 10.1002/aenm.201100312.
(25) Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 2013, 6 (2), 470-476, DOI: 10.1039/C2EE23977A.
(26) Wu, X.; Chabot, V. L.; Kim, B. K.; Yu, A.; Berry, R. M.; Tam, K. C. Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors. Electrochimica Acta 2014, 138 (Supplement C), 139-147, DOI: https://doi.org/10.1016/j.electacta.2014.06.089.
(27) Zhang, L.; Yu, X.; Zhu, P.; Zhou, F.; Li, G.; Sun, R.; Wong, C. P. Laboratory filter paper as a substrate material for flexible supercapacitors. Sustainable Energy & Fuels 2017, DOI: 10.1039/c7se00411g, DOI: 10.1039/C7SE00411G.
(28) Peng, S.; Xu, Q.; Fan, L.; Wei, C.; Bao, H.; Xu, W.; Xu, J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application. Synthetic Metals 2016, 222 (Part B), 285-292, DOI: https://doi.org/10.1016/j.synthmet.2016.11.002.
(29) Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy & Environmental Science 2011, 4 (12), 5060-5067, DOI: 10.1039/C1EE02421C.
(30) Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23 (1), 637-648, DOI: 10.1007/s10570-015-0795-8.
(31) Liang, G.; Zhu, L.; Xu, J.; Fang, D.; Bai, Z.; Xu, W. Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochimica Acta 2013, 103 (Supplement C), 9-14, DOI: https://doi.org/10.1016/j.electacta.2013.04.065.
(32) Wang, Z.; Tammela, P.; Zhang, P.; Huo, J.; Ericson, F.; Stromme, M.; Nyholm, L. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale 2014, 6 (21), 13068-13075, DOI: 10.1039/C4NR04642K.
(33) Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-Based Electrodes for Flexible Energy Storage Devices. Advanced Science 2017, 4 (7), 1700107, DOI: 10.1002/advs.201700107.
(34) Lv, S.; Fu, F.; Wang, S.; Huang, J.; Hu, L. Novel wood-based all-solid-state flexible supercapacitors fabricated with a natural porous wood slice and polypyrrole. RSC Advances 2015, 5 (4), 2813-2818, DOI: 10.1039/C4RA13456G.
(35) Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews 2016, 116 (16), 9305-9374, DOI: 10.1021/acs.chemrev.6b00225.
(36) Perez-Madrigal, M. M.; Edo, M. G.; Aleman, C. Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry 2016, 18 (22), 5930-5956, DOI: 10.1039/C6GC02086K.
(37) Xu, J.; Zhu, L.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Organic Electronics 2013, 14 (12), 3331-3338, DOI: https://doi.org/10.1016/j.orgel.2013.09.042.
(38) Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences 2015, 16 (7), 14832-14849, DOI: 10.3390/ijms160714832.
(39) Huang, S.; Chen, P.; Lin, W.; Lyu, S.; Chen, G.; Yin, X.; Chen, W. Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Advances 2016, 6 (16), 13359-13364, DOI: 10.1039/C5RA24214B.
(40) Xu, W.; Mu, B.; Wang, A. Morphology control of polyaniline by dopant grown on hollow carbon fibers as high-performance supercapacitor electrodes. Cellulose 2017, DOI: 10.1007/s10570-017-1505-5.
(41) Zheng, Y.; Wang, A. Kapok Fiber: Structure and Properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K. R.; Jawaid, M.; Rashid, U., Eds.; Springer International Publishing: Cham, 2014; pp 101-110.
(42) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Advances 2016, 6 (72), 68302-68311, DOI: 10.1039/C6RA16899J.
(43) Xu, W.; Mu, B.; Wang, A. Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors. Electrochimica Acta 2017, 224 (Supplement C), 113-124, DOI: https://doi.org/10.1016/j.electacta.2016.12.032.
(44) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile hydrothermal synthesis of tubular kapok fiber/MnO2 composites and application in supercapacitors. RSC Advances 2015, 5 (79), 64065-64075, DOI: 10.1039/C5RA13602D.
(45) Foulk, J. A.; Chao, W. Y.; Akin, D. E.; Dodd, R. B.; Layton, P. A. Analysis of Flax and Cotton Fiber Fabric Blends and Recycled Polyethylene Composites. Journal of Polymers and the Environment 2006, 14 (1), 15-25, DOI: 10.1007/s10924-005-8703-1.
(46) Lee, K. Y.; Blaker, J. J.; Bismarck, A. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Composites Science and Technology 2009, 69 (15), 2724-2733, DOI: https://doi.org/10.1016/j.compscitech.2009.08.016.
(47) Cai, X.; Hansen, R. V.; Zhang, L.; Li, B.; Poh, C. K.; Lim, S. H.; Chen, L.; Yang, J.; Lai, L.; Lin, J.; Shen, Z. Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. Journal of Materials Chemistry A 2015, 3 (44), 22043-22052, DOI: 10.1039/C5TA05961E.
(48) Wei, H.; Wang, Y.; Guo, J.; Yan, X.; O'Connor, R.; Zhang, X.; Shen, N. Z.; Weeks, B. L.; Huang, X.; Wei, S.; Guo, Z. Electropolymerized Polypyrrole Nanocoatings on Carbon Paper for Electrochemical Energy Storage. ChemElectroChem 2015, 2 (1), 119-126, DOI: doi:10.1002/celc.201402258.
(49) Yang, C.; Shen, J.; Wang, C.; Fei, H.; Bao, H.; Wang, G. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. Journal of Materials Chemistry A 2014, 2 (5), 1458-1464, DOI: 10.1039/C3TA13953K.
(50) Feng, D. Y.; Song, Y.; Huang, Z. H.; Xu, X. X.; Liu, X. X. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. Journal of Power Sources 2016, 324, 788-797, DOI: https://doi.org/10.1016/j.jpowsour.2016.05.112.
(51) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v.
(52) Yesi, Y.; Shown, I.; Ganguly, A.; Ngo, T. T.; Chen, L. C.; Chen, K. H. Directly‐Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for High‐Performance Flexible Supercapacitors. ChemSusChem 2016, 9 (4), 370-378, DOI: doi:10.1002/cssc.201501495.
(53) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B.
(54) Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science 2013, 6 (4), 1185-1191, DOI: 10.1039/C2EE24203F.
(55) Avilés, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47 (13), 2970-2975, DOI: https://doi.org/10.1016/j.carbon.2009.06.044.
(56) Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46 (6), 833-840, DOI: https://doi.org/10.1016/j.carbon.2008.02.012.
(57) Liu, P.; Wang, X.; Li, H. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance. Synthetic Metals 2013, 181 (Supplement C), 72-78, DOI: https://doi.org/10.1016/j.synthmet.2013.08.010.
(58) Saleh, T. A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Applied Surface Science 2011, 257 (17), 7746-7751, DOI: https://doi.org/10.1016/j.apsusc.2011.04.020.
(59) Reddy, K. R.; Sin, B. C.; Ryu, K. S.; Kim, J. C.; Chung, H.; Lee, Y. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals 2009, 159 (7), 595-603, DOI: https://doi.org/10.1016/j.synthmet.2008.11.030.
(60) Fu, H.; Du, Z. j.; Zou, W.; Li, H. q.; Zhang, C. Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. Journal of Materials Chemistry A 2013, 1 (47), 14943-14950, DOI: 10.1039/C3TA12844J.
(61) Xu, L.; Jia, M.; Li, Y.; Zhang, S.; Jin, X. Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Advances 2017, 7 (50), 31342-31351, DOI: 10.1039/C7RA04566B.
(62) Shu, K.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. Electrochimica Acta 2016, 212, 561-571, DOI: https://doi.org/10.1016/j.electacta.2016.07.052.
(63) Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Duan, L.; Wang, L.; Bao, H.; Xu, W. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Organic Electronics 2015, 24, 153-159, DOI: https://doi.org/10.1016/j.orgel.2015.05.037.
(64) Li, N.; Li, X.; Yang, C.; Wang, F.; Li, J.; Wang, H.; Chen, C.; Liu, S.; Pan, Y.; Li, D. Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Advances 2016, 6 (89), 86744-86751, DOI: 10.1039/C6RA19529F.
(65) Yang, C.; Li, D. Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Materials Letters 2015, 155 (Supplement C), 78-81, DOI: https://doi.org/10.1016/j.matlet.2015.04.096.
(66) Zhang, X.; Tao, L.; He, P.; Zhang, X.; He, M.; Dong, F.; He, S.; Li, C.; Liu, H.; Wang, S.; Zhang, Y. A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors. Electrochimica Acta 2018, 259, 793-802, DOI: https://doi.org/10.1016/j.electacta.2017.11.007.
(67) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327 (Supplement C), 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091.
(68) Muhamad, S. U.; Idris, N. H.; Yusoff, H. M.; Din, M. F. M.; Majid, S. R. In-situ encapsulation of nickel nanoparticles in polypyrrole nanofibres with enhanced performance for supercapacitor. Electrochimica Acta 2017, 249 (Supplement C), 9-15, DOI: https://doi.org/10.1016/j.electacta.2017.07.174.
(69) Tang, L.; Yang, Z.; Duan, F.; Chen, M. Hierarchical architecture of ultrashort carbon nanotubes/polyaniline nanocables coated on graphene sheets for advanced supercapacitors. Journal of Materials Science: Materials in Electronics 2017, 28 (21), 15804-15818, DOI: 10.1007/s10854-017-7475-4.
(70) Xiao, X.; Li, T.; Peng, Z.; Jin, H.; Zhong, Q.; Hu, Q.; Yao, B.; Luo, Q.; Zhang, C.; Gong, L.; Chen, J.; Gogotsi, Y.; Zhou, J. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 2014, 6 (Supplement C), 1-9, DOI: https://doi.org/10.1016/j.nanoen.2014.02.014.
(71) Shu, K.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. Electrochimica Acta 2016, 212 (Supplement C), 561-571, DOI: https://doi.org/10.1016/j.electacta.2016.07.052.
(72) Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Wang, Y.; Zhang, Y. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Applied Surface Science 2016, 387 (Supplement C), 666-673, DOI: https://doi.org/10.1016/j.apsusc.2016.06.149.
(73) Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources 2015, 287 (Supplement C), 68-74, DOI: https://doi.org/10.1016/j.jpowsour.2015.04.026.
(74) Chen, J.; Wang, Y.; Cao, J.; Liu, Y.; Zhou, Y.; Ouyang, J.-H.; Jia, D. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film. ACS Applied Materials & Interfaces 2017, 9 (23), 19831-19842, DOI: 10.1021/acsami.7b03786.
(75) Liang, Y.; Weng, W.; Yang, J.; Liu, L.; Zhang, Y.; Yang, L.; Luo, X.; Cheng, Y.; Zhu, M. Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility. RSC Advances 2017, 7 (77), 48934-48941, DOI: 10.1039/C7RA08703A.
(76) Yuan, L.; Xiao, X.; Ding, T.; Zhong, J.; Zhang, X.; Shen, Y.; Hu, B.; Huang, Y.; Zhou, J.; Wang, Z. L. Paper-Based Supercapacitors for Self-Powered Nanosystems. Angewandte Chemie International Edition 2012, 51 (20), 4934-4938, DOI: doi:10.1002/anie.201109142.
(77) Zhou, H.; Zhai, H.-J. A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics 2016, 37 (Supplement C), 197-206, DOI: https://doi.org/10.1016/j.orgel.2016.06.036.
(78) Zeng, S.; Chen, H.; Cai, F.; Kang, Y.; Chen, M.; Li, Q. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. Journal of Materials Chemistry A 2015, 3 (47), 23864-23870, DOI: 10.1039/C5TA05937B.
(79) Ramadoss, A.; Yoon, K.-Y.; Kwak, M.-J.; Kim, S.-I.; Ryu, S.-T.; Jang, J.-H. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. Journal of Power Sources 2017, 337 (Supplement C), 159-165, DOI: https://doi.org/10.1016/j.jpowsour.2016.10.091.
(80) Fu, D.; Zhou, H.; Zhang, X.-M.; Han, G.; Chang, Y.; Li, H. Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically -codeposited PEDOT-GO. ChemistrySelect 2016, 1 (2), 285-289, DOI: 10.1002/slct.201600084.
(81) Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B. Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society 2015, 137 (15), 4920-4923, DOI: 10.1021/jacs.5b01613.
(82) Fu, D.; Li, H.; Zhang, X.-M.; Han, G.; Zhou, H.; Chang, Y. Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT. Materials Chemistry and Physics 2016, 179 (Supplement C), 166-173, DOI: https://doi.org/10.1016/j.matchemphys.2016.05.024.
(83) Wang, S.; Zhu, J.; Shao, Y.; Li, W.; Wu, Y.; Zhang, L.; Hao, X. Three-Dimensional MoS2@CNT/RGO Network Composites for High-Performance Flexible Supercapacitors. Chemistry – A European Journal 2017, 23 (14), 3438-3446, DOI: 10.1002/chem.201605465.

CHAPTER 5
References

(1) Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics 2016, 2 (1), 37-54, DOI: https://doi.org/10.1016/j.jmat.2016.01.001.
(2) Boris, D.; Volker, P.; Min, H.; R., L. M.; Majid, B.; Yury, G. Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem 2013, 6 (12), 2269-2280, DOI: doi:10.1002/cssc.201300852.
(3) Chang, C.; Zhang, L.; Zhou, J.; Zhang, L.; Kennedy, J. F. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers 2010, 82 (1), 122-127, DOI: https://doi.org/10.1016/j.carbpol.2010.04.033.
(4) Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 2013, 6 (2), 470-476, DOI: 10.1039/C2EE23977A.
(5) Zhang, L.; Yu, X.; Zhu, P.; Zhou, F.; Li, G.; Sun, R.; Wong, C.-p. Laboratory filter paper as a substrate material for flexible supercapacitors. Sustainable Energy & Fuels 2018, 2 (1), 147-154, DOI: 10.1039/C7SE00411G.
(6) Liu, R.; Ma, L.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New Journal of Chemistry 2017, 41 (2), 857-864, DOI: 10.1039/C6NJ03107B.
(7) Wang, F.; Kim, H. J.; Park, S.; Kee, C. D.; Kim, S. J.; Oh, I. K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Composites Science and Technology 2016, 128 (Supplement C), 33-40, DOI: https://doi.org/10.1016/j.compscitech.2016.03.012.
(8) Peng, S.; Fan, L.; Wei, C.; Liu, X.; Zhang, H.; Xu, W.; Xu, J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydrate Polymers 2017, 157 (Supplement C), 344-352, DOI: https://doi.org/10.1016/j.carbpol.2016.10.004.
(9) Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology 2016, 137 (Supplement C), 87-93, DOI: https://doi.org/10.1016/j.compscitech.2016.10.027.
(10) Su, H.; Zhu, P.; Zhang, L.; Zeng, W.; Zhou, F.; li, G.; Li, T.; Wang, Q.; Sun, R.; Wong, C. Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Advances 2016, 6 (87), 83564-83572, DOI: 10.1039/C6RA14885A.
(11) Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Letters 2010, 10 (2), 708-714, DOI: 10.1021/nl903949m.
(12) Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy & Environmental Science 2011, 4 (12), 5060-5067, DOI: 10.1039/C1EE02421C.
(13) Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23 (1), 637-648, DOI: 10.1007/s10570-015-0795-8.
(14) Liang, G.; Zhu, L.; Xu, J.; Fang, D.; Bai, Z.; Xu, W. Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochimica Acta 2013, 103 (Supplement C), 9-14, DOI: https://doi.org/10.1016/j.electacta.2013.04.065.
(15) Koga, H.; Tonomura, H.; Nogi, M.; Suganuma, K.; Nishina, Y. Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chemistry 2016, 18 (4), 1117-1124, DOI: 10.1039/C5GC01949D.
(16) Härdelin, L.; Hagström, B. Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. Journal of Applied Polymer Science 2015, 132 (6), 41417, DOI: doi:10.1002/app.41417.
(17) Rui-Hong, X.; Peng-Gang, R.; Jian, H.; Fang, R.; Lian-Zhen, R.; Zhen-Feng, S. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydrate Polymers 2016, 138, 222-228, DOI: https://doi.org/10.1016/j.carbpol.2015.11.042.
(18) Liu, X.; Zhang, T.; Pang, K.; Duan, Y.; Zhang, J. Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. RSC Advances 2016, 6 (77), 73358-73364, DOI: 10.1039/C6RA16535D.
(19) Meftahi, A.; Khajavi, R.; Rashidi, A.; Rahimi, M. K.; Bahador, A. Preventing the collapse of 3D bacterial cellulose network via citric acid. Journal of Nanostructure in Chemistry 2018, DOI: 10.1007/s40097-018-0275-4.
(20) Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strømme, M. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. The Journal of Physical Chemistry B 2010, 114 (12), 4178-4182, DOI: 10.1021/jp911272m.
(21) Clasen, C.; Sultanova, B.; Wilhelms, T.; Heisig, P.; Kulicke, W.-M. Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromolecular Symposia 2006, 244 (1), 48-58, DOI: doi:10.1002/masy.200651204.
(22) Liu, S.; He, K.; Wu, X.; Luo, X.; Li, B. Surface modification of cellulose scaffold with polypyrrole for the fabrication of flexible supercapacitor electrode with enhanced capacitance. RSC Advances 2015, 5 (106), 87266-87276, DOI: 10.1039/C5RA17201B.
(23) Wang, Y.; Chang, C.; Zhang, L. Effects of Freezing/Thawing Cycles and Cellulose Nanowhiskers on Structure and Properties of Biocompatible Starch/PVA Sponges. Macromolecular Materials and Engineering 2010, 295 (2), 137-145, DOI: doi:10.1002/mame.200900212.
(24) Chami Khazraji, A.; Robert, S. Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling. Journal of Nanomaterials 2013, 2013, 12, DOI: 10.1155/2013/745979.
(25) Lee, T.-W.; Han, M.; Lee, S.-E.; Jeong, Y. G. Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Composites Science and Technology 2016, 123, 57-64, DOI: https://doi.org/10.1016/j.compscitech.2015.12.006.
(26) Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Duan, L.; Wang, L.; Bao, H.; Xu, W. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Organic Electronics 2015, 24, 153-159, DOI: https://doi.org/10.1016/j.orgel.2015.05.037.
(27) Alcaraz-Espinoza, J. J.; de Melo, C. P.; de Oliveira, H. P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega 2017, 2 (6), 2866-2877, DOI: 10.1021/acsomega.7b00329.
(28) Pang, J.-H.; Liu, X.; Wu, M.; Wu, Y.-Y.; Zhang, X.-M.; Sun, R.-C. Fabrication and Characterization of Regenerated Cellulose Films Using Different Ionic Liquids. Journal of Spectroscopy 2014, 2014, 8, DOI: 10.1155/2014/214057.
(29) Qi, H.; Schulz, B.; Vad, T.; Liu, J.; Mäder, E.; Seide, G.; Gries, T. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials. ACS Applied Materials & Interfaces 2015, 7 (40), 22404-22412, DOI: 10.1021/acsami.5b06229.
(30) Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T. I. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydrate Polymers 2016, 151, 96-102, DOI: https://doi.org/10.1016/j.carbpol.2016.05.054.
(31) Lay, M.; González, I.; Tarrés, J. A.; Pellicer, N.; Bun, K. N.; Vilaseca, F. High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes. European Polymer Journal 2017, 91, 1-9, DOI: https://doi.org/10.1016/j.eurpolymj.2017.03.021.
(32) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G.
(33) Gemeiner, P.; Kuliček, J.; Mikula, M.; Hatala, M.; Švorc, Ľ.; Hlavatá, L.; Mičušík, M.; Omastová, M. Polypyrrole-coated multi-walled carbon nanotubes for the simple preparation of counter electrodes in dye-sensitized solar cells. Synthetic Metals 2015, 210, 323-331, DOI: https://doi.org/10.1016/j.synthmet.2015.10.020.
(34) Hsu, Y.-C.; Tseng, L.-C.; Lee, R.-H. Graphene oxide sheet–polyaniline nanohybrids for enhanced photovoltaic performance of dye-sensitized solar cells. Journal of Polymer Science Part B: Polymer Physics 2014, 52 (4), 321-332, DOI: doi:10.1002/polb.23416.
(35) Hsu, Y.-C.; Chen, G.-L.; Lee, R.-H. Graphene oxide sheet-polyaniline nanocomposite prepared through in-situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. Journal of Polymer Research 2014, 21 (5), 440, DOI: 10.1007/s10965-014-0440-5.
(36) Gonzalez, J. S.; Ludueña, L. N.; Ponce, A.; Alvarez, V. A. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Materials Science and Engineering: C 2014, 34, 54-61, DOI: https://doi.org/10.1016/j.msec.2013.10.006.
(37) Dichiara, A. B.; Song, A.; Goodman, S. M.; He, D.; Bai, J. Smart papers comprising carbon nanotubes and cellulose microfibers for multifunctional sensing applications. Journal of Materials Chemistry A 2017, 5 (38), 20161-20169, DOI: 10.1039/C7TA04329E.
(38) H., Z.; G., W. Z.; N., Z. Z.; J., W.; J., Z.; S., H. J. Regenerated-Cellulose/Multiwalled- Carbon-Nanotube Composite Fibers with Enhanced Mechanical Properties Prepared with the Ionic Liquid 1-Allyl-3-methylimidazolium Chloride. Advanced Materials 2007, 19 (5), 698-704, DOI: doi:10.1002/adma.200600442.
(39) Wang, X.; Li, Y.; Li, X.; Yu, J.; Al-Deyab, S. S.; Ding, B. Equipment-free chromatic determination of formaldehyde by utilizing pararosaniline-functionalized cellulose nanofibrous membranes. Sensors and Actuators B: Chemical 2014, 203, 333-339, DOI: https://doi.org/10.1016/j.snb.2014.06.101.
(40) Raghunathan, S. P.; Narayanan, S.; Poulose, A. C.; Joseph, R. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydrate Polymers 2017, 157, 1024-1032, DOI: https://doi.org/10.1016/j.carbpol.2016.10.065.
(41) Zhu, C.; Richardson, R. M.; Potter, K. D.; Koutsomitopoulou, A. F.; van Duijneveldt, J. S.; Vincent, S. R.; Wanasekara, N. D.; Eichhorn, S. J.; Rahatekar, S. S. High Modulus Regenerated Cellulose Fibers Spun from a Low Molecular Weight Microcrystalline Cellulose Solution. ACS Sustainable Chemistry & Engineering 2016, 4 (9), 4545-4553, DOI: 10.1021/acssuschemeng.6b00555.
(42) Li, N.; Li, X.; Yang, C.; Wang, F.; Li, J.; Wang, H.; Chen, C.; Liu, S.; Pan, Y.; Li, D. Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Advances 2016, 6 (89), 86744-86751, DOI: 10.1039/C6RA19529F.
(43) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327, 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091.
(44) Tang, L.; Yang, Z.; Duan, F.; Chen, M. Hierarchical architecture of ultrashort carbon nanotubes/polyaniline nanocables coated on graphene sheets for advanced supercapacitors. Journal of Materials Science: Materials in Electronics 2017, 28 (21), 15804-15818, DOI: 10.1007/s10854-017-7475-4.
(45) Xiao, X.; Li, T.; Peng, Z.; Jin, H.; Zhong, Q.; Hu, Q.; Yao, B.; Luo, Q.; Zhang, C.; Gong, L.; Chen, J.; Gogotsi, Y.; Zhou, J. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 2014, 6 (Supplement C), 1-9, DOI: https://doi.org/10.1016/j.nanoen.2014.02.014.
(46) Zhao, Y.; Zhang, Z.; Ren, Y.; Ran, W.; Chen, X.; Wu, J.; Gao, F. Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. Journal of Power Sources 2015, 286, 1-9, DOI: https://doi.org/10.1016/j.jpowsour.2015.03.141.
(47) Jiang, H.; Ma, H.; Jin, Y.; Wang, L.; Gao, F.; Lu, Q. Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode. Scientific Reports 2016, 6, 31751, DOI: 10.1038/srep31751
https://www.nature.com/articles/srep31751#supplementary-information.
(48) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v.
(49) Wei, H.; Zhu, J.; Wu, S.; Wei, S.; Guo, Z. Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 2013, 54 (7), 1820-1831, DOI: https://doi.org/10.1016/j.polymer.2013.01.051.
(50) Wu, W.; Yang, L.; Chen, S.; Shao, Y.; Jing, L.; Zhao, G.; Wei, H. Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Advances 2015, 5 (111), 91645-91653, DOI: 10.1039/C5RA17036B.
(51) Wei, H.; Wei, S.; Tian, W.; Zhu, D.; Liu, Y.; Yuan, L.; Li, X. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor. Scientific Reports 2014, 4, 7050, DOI: 10.1038/srep07050.
(52) Zhao, C.; Shu, K.; Wang, C.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta 2015, 172, 12-19, DOI: https://doi.org/10.1016/j.electacta.2015.05.019.
(53) Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Advanced Energy Materials 2014, 4 (10), 1301655, DOI: doi:10.1002/aenm.201301655.

CHAPTER 6
References

(1) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2.
(2) Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science 2018, 11 (10), 2696-2767, DOI: 10.1039/C8EE01419A.
(3) Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science 2013, 6 (5), 1623-1632, DOI: 10.1039/C3EE40509E.
(4) Chen, D.; Zhou, S.; Quan, H.; Zou, R.; Gao, W.; Luo, X.; Guo, L. Tetsubo-like α-Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal 2018, 341, 102-111, DOI: https://doi.org/10.1016/j.cej.2018.02.021.
(5) Yang, Z.; Qiu, A.; Ma, J.; Chen, M. Conducting α-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Composites Science and Technology 2018, 156, 231-237, DOI: https://doi.org/10.1016/j.compscitech.2018.01.012.
(6) Ma, J.; Guo, X.; Yan, Y.; Xue, H.; Pang, H. FeOx-Based Materials for Electrochemical Energy Storage. Advanced Science 2018, 5 (6), 1700986, DOI: 10.1002/advs.201700986.
(7) Zhang, W.; Zhao, B.; Yin, Y.; Yin, T.; Cheng, J.; Zhan, K.; Yan, Y.; Yang, J.; Li, J. Fe2O3-decorated millimeter-long vertically aligned carbon nanotube arrays as advanced anode materials for asymmetric supercapacitors with high energy and power densities. Journal of Materials Chemistry A 2016, 4 (48), 19026-19036, DOI: 10.1039/C6TA07720J.
(8) Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C. P.; Wang, Z. L. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes. Nano Letters 2014, 14 (2), 731-736, DOI: 10.1021/nl404008e.
(9) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015, 44 (21), 7484-7539, DOI: 10.1039/C5CS00303B.
(10) Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances 2019, 1 (10), 3807-3835, DOI: 10.1039/C9NA00374F.
(11) Roth, E. P.; Orendorff, C. J. How Electrolytes Influence Battery Safety. The Electrochemical Society Interface 2012, 21 (2), 45-49, DOI: 10.1149/2.F04122if.
(12) Sundriyal, S.; Kaur, H.; Bhardwaj, S. K.; Mishra, S.; Kim, K. H.; Deep, A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews 2018, 369, 15-38, DOI: https://doi.org/10.1016/j.ccr.2018.04.018.
(13) Barzegar, F.; Momodu, D. Y.; Fashedemi, O. O.; Bello, A.; Dangbegnon, J. K.; Manyala, N. Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Advances 2015, 5 (130), 107482-107487, DOI: 10.1039/C5RA21962K.
(14) Li, C.; Wu, W.; Wang, P.; Zhou, W.; Wang, J.; Chen, Y.; Fu, L.; Zhu, Y.; Wu, Y.; Huang, W. Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline-Acidic Electrolyte. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2018, 6 (1), 1801665-1801665, DOI: 10.1002/advs.201801665.
(15) Wu, X.; Huang, B.; Wang, Q.; Wang, Y. Wide potential and high energy density for an asymmetric aqueous supercapacitor. Journal of Materials Chemistry A 2019, 7 (32), 19017-19025, DOI: 10.1039/C9TA06428A.
(16) Li, Z.; Xu, Z.; Wang, H.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X.; Mitlin, D. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy & Environmental Science 2014, 7 (5), 1708-1718, DOI: 10.1039/C3EE43979H.
(17) Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials 2017, 29 (21), 1605336, DOI: 10.1002/adma.201605336.
(18) Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M. S.; Tong, Y. Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials 2014, 26 (19), 3148-3155, DOI: 10.1002/adma.201305851.
(19) Wang, H.; Xu, Z.; Yi, H.; Wei, H.; Guo, Z.; Wang, X. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86-96, DOI: https://doi.org/10.1016/j.nanoen.2014.04.009.
(20) Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7 (5), 1597-1614, DOI: 10.1039/C3EE44164D.
(21) Mahmood, Q.; Yun, H. J.; Kim, W. S.; Park, H. S. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources 2013, 235, 187-192, DOI: https://doi.org/10.1016/j.jpowsour.2013.01.165.
(22) Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Advanced Functional Materials 2013, 23 (40), 5074-5083, DOI: 10.1002/adfm201301851.
(23) Li, G. R.; Wang, Z. L.; Zheng, F. L.; Ou, Y. N.; Tong, Y. X. ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry 2011, 21 (12), 4217-4221, DOI: 10.1039/C0JM03500A.
(24) Upadhyay, K. K.; Nguyen, T.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochimica Acta 2017, 225, 19-28, DOI: https://doi.org/10.1016/j.electacta.2016.12.106.
(25) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157.
(26) Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 2010, 4 (8), 4403-4411, DOI: 10.1021/nn100856y.
(27) Ng, K. C.; Zhang, S.; Peng, C.; Chen, G. Z. Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites. Journal of The Electrochemical Society 2009, 156 (11), A846-A853, DOI: 10.1149/1.3205482.
(28) Zhang, T.; Kong, L. B.; Liu, M. C.; Dai, Y. H.; Yan, K.; Hu, B.; Luo, Y. C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Materials & Design 2016, 112, 88-96, DOI: https://doi.org/10.1016/j.matdes.2016.09.054.
(29) Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials 2009, 19 (21), 3420-3426, DOI: 10.1002/adfm.200900971.
(30) Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials 2013, 25 (2), 267-272, DOI: 10.1002/adma.201203410.
(31) Yu, M.; Han, Y.; Cheng, X.; Hu, L.; Zeng, Y.; Chen, M.; Cheng, F.; Lu, X.; Tong, Y. Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials 2015, 27 (19), 3085-3091, DOI: 10.1002/adma.201500493.
(32) Jiang, K.; Sun, B.; Yao, M.; Wang, N.; Hu, W.; Komarneni, S. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials 2018, 265, 189-194, DOI: https://doi.org/10.1016/j.micromeso.2018.02.015.
(33) Zhao, Z. Y.; Zhang, W. B.; Ma, X. J.; Li, K.; Zhao, Y.; Gao, J. F.; Kang, L.; Kong, L. B. A Novel Capacitive Negative Electrode Material of Fe3N. Nano 2018, 13 (01), 1850002, DOI: 10.1142/s1793292018500029.
(34) Bing Liang, L.; Zhi, Z.; Michael Anthony, R.; Kevin, L.; Trevor, W.; Yunlong, A.; Xiaotao, Z.; Weilie, Z. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019.
(35) Yu, M.; Wang, Z.; Han, Y.; Tong, Y.; Lu, X.; Yang, S. Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A 2016, 4 (13), 4634-4658, DOI: 10.1039/C5TA10542K.
(36) Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chemical Engineering Journal 2016, 286, 165-173, DOI: https://doi.org/10.1016/j.cej.2015.10.068.
(37) Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9 (5), 5198-5207, DOI: 10.1021/acsnano.5b00582.
(38) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (27), 14843-14850, DOI: 10.1021/acsami.5b03126.
(39) Lee, K. K.; Deng, S.; Fan, H. M.; Mhaisalkar, S.; Tan, H. R.; Tok, E. S.; Loh, K. P.; Chin, W. S.; Sow, C. H. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 2012, 4 (9), 2958-2961, DOI: 10.1039/C2NR11902A.
(40) Zhu, M.; Wang, Y.; Meng, D.; Qin, X.; Diao, G. Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties. The Journal of Physical Chemistry C 2012, 116 (30), 16276-16285, DOI: 10.1021/jp304041m.
(41) Wu, M. S.; Lee, R. H.; Jow, J. J.; Yang, W. D.; Hsieh, C. Y.; Weng, B. J. Nanostructured Iron Oxide Films Prepared by Electrochemical Method for Electrochemical Capacitors. Electrochemical and Solid-State Letters 2009, 12 (1), A1-A4, DOI: 10.1149/1.2998547.
(42) Dong, Y.; Xing, L.; Hu, F.; Umar, A.; Wu, X. α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Materials Research Bulletin 2018, 107, 391-396, DOI: https://doi.org/10.1016/j.materresbull.2018.07.038.
(43) Zheng, X.; Yan, X.; Sun, Y.; Yu, Y.; Zhang, G.; Shen, Y.; Liang, Q.; Liao, Q.; Zhang, Y. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. Journal of Colloid and Interface Science 2016, 466, 291-296, DOI: https://doi.org/10.1016/j.jcis.2015.12.024.
(44) Li, J.; Wang, Y.; Xu, W.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X.; Zhang, C.; Gu, X.; Hu, C. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379-387, DOI: https://doi.org/10.1016/j.nanoen.2018.12.061.
(45) Zhu, S.; Zou, X.; Zhou, Y.; Zeng, Y.; Long, Y.; Yuan, Z.; Wu, Q.; Li, M.; Wang, Y.; Xiang, B. Hydrothermal synthesis of graphene-encapsulated 2D circular nanoplates of α-Fe2O3 towards enhanced electrochemical performance for supercapacitor. Journal of Alloys and Compounds 2019, 775, 63-71, DOI: https://doi.org/10.1016/j.jallcom.2018.10.085.
(46) Liu, T.; Ling, Y.; Yang, Y.; Finn, L.; Collazo, E.; Zhai, T.; Tong, Y.; Li, Y. Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 2015, 12, 169-177, DOI: https://doi.org/10.1016/j.nanoen.2014.12.023.
(47) Keppeler, M.; Shen, N.; Nageswaran, S.; Srinivasan, M. Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. Journal of Materials Chemistry A 2016, 4 (47), 18223-18239, DOI: 10.1039/C6TA08456G.
(48) Choi, H.; Yoon, H. Nanostructured Electrode Materials for Electrochemical Capacitor Applications. Nanomaterials (Basel) 2015, 5 (2), 906-936, DOI: 10.3390/nano5020906.
(49) Raut, S. S.; Sankapal, B. R. Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application. New Journal of Chemistry 2016, 40 (3), 2619-2627, DOI: 10.1039/C5NJ03628C.
(50) Wu, Z.; Li, L.; Yan, J. M.; Zhang, X. B. Materials Design and System Construction for Conventional and New-Concept Supercapacitors. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2017, 4 (6), 1600382-1600382, DOI: 10.1002/advs.201600382.
(51) Gulzar, U.; Goriparti, S.; Miele, E.; Li, T.; Maidecchi, G.; Toma, A.; De Angelis, F.; Capiglia, C.; Zaccaria, R. P. Next-generation textiles: from embedded supercapacitors to lithium ion batteries. Journal of Materials Chemistry A 2016, 4 (43), 16771-16800, DOI: 10.1039/C6TA06437J.
(52) Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy & Environmental Science 2018, 11 (11), 3096-3127, DOI: 10.1039/C8EE00640G.
(53) Li, X.; Shen, J.; Sun, W.; Hong, X.; Wang, R.; Zhao, X.; Yan, X. A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. Journal of Materials Chemistry A 2015, 3 (25), 13244-13253, DOI: 10.1039/C5TA01292A.
(54) Kalantari, K.; Bin Ahmad, M.; Shameli, K.; Khandanlou, R. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. Int J Nanomedicine 2013, 8, 1817-1823, DOI: 10.2147/IJN.S43693.
(55) Jyothibasu, J. P.; Lee, R. H. Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers 2018, 10 (11), 1247.
(56) Lindman, B.; Medronho, B.; Alves, L.; Costa, C.; Edlund, H.; Norgren, M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physical Chemistry Chemical Physics 2017, 19 (35), 23704-23718, DOI: 10.1039/C7CP02409F.
(57) Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. Journal of Materials Chemistry A 2013, 1 (3), 959-965, DOI: 10.1039/C2TA00315E.
(58) Samuel, E.; Kim, T.-G.; Park, C.-W.; Joshi, B.; Swihart, M. T.; Yoon, S. S. Supersonically Sprayed Zn2SnO4/SnO2/CNT Nanocomposites for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry & Engineering 2019, 7 (16), 14031-14040, DOI: 10.1021/acssuschemeng.9b02549.
(59) Su, H.; Ye, Z.; Hmidi, N.; Subramanian, R. Carbon nanosphere–iron oxide nanocomposites as high-capacity adsorbents for arsenic removal. RSC Advances 2017, 7 (57), 36138-36148, DOI: 10.1039/C7RA06187K.
(60) Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. Journal of Molecular Catalysis A: Chemical 2015, 400, 81-89, DOI: https://doi.org/10.1016/j.molcata.2015.02.007.
(61) Liu, Z.; Yuan, X.; Zhang, S.; Wang, J.; Huang, Q.; Yu, N.; Zhu, Y.; Fu, L.; Wang, F.; Chen, Y.; Wu, Y. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Materials 2019, 11 (1), 12, DOI: 10.1038/s41427-019-0112-3.
(62) Liu, S.; Yao, K.; Fu, L. H.; Ma, M. G. Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors. RSC Advances 2016, 6 (3), 2135-2140, DOI: 10.1039/C5RA22985E.
(63) Wang, L.; Yu, J.; Dong, X.; Li, X.; Xie, Y.; Chen, S.; Li, P.; Hou, H.; Song, Y. Three-Dimensional Macroporous Carbon/Fe3O4-Doped Porous Carbon Nanorods for High-Performance Supercapacitor. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1531-1537, DOI: 10.1021/acssuschemeng.5b01474.

CHAPTER 7
References

(1) Jyothibasu, J. P.; Lee, R. H. Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers 2018, 10 (11), 1247.
(2) Xu, J.; Zhu, L.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Organic Electronics 2013, 14 (12), 3331-3338, DOI: https://doi.org/10.1016/j.orgel.2013.09.042.
(3) Zhao, J.; Wu, J.; Li, B.; Du, W.; Huang, Q.; Zheng, M.; Xue, H.; Pang, H. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International 2016, 26 (3), 237-242, DOI: https://doi.org/10.1016/j.pnsc.2016.05.015.
(4) An, H.; Wang, Y.; Wang, X.; Zheng, L.; Wang, X.; Yi, L.; Bai, L.; Zhang, X. Polypyrrole/carbon aerogel composite materials for supercapacitor. Journal of Power Sources 2010, 195 (19), 6964-6969, DOI: https://doi.org/10.1016/j.jpowsour.2010.04.074.
(5) Li, Z.; Cai, J.; Cizek, P.; Niu, H.; Du, Y.; Lin, T. A self-supported, flexible, binder-free pseudo-supercapacitor electrode material with high capacitance and cycling stability from hollow, capsular polypyrrole fibers. Journal of Materials Chemistry A 2015, 3 (31), 16162-16167, DOI: 10.1039/C5TA03585F.
(6) Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Advanced Functional Materials 2015, 25 (29), 4626-4632, DOI: 10.1002/adfm.201501709.
(7) Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials 2017, 29 (21), 1605336, DOI: doi:10.1002/adma.201605336.
(8) Liu, P.; Wang, X.; Wang, Y. Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1795-1801, DOI: 10.1021/sc5001034.
(9) Lee, J.; Jeong, H.; L. Lavall, R.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (38), 33203-33211, DOI: 10.1021/acsami.7b11574.
(10) Cao, A.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, Y.; Li, T.; Han, Y. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synthetic Metals 2019, 252, 135-141, DOI: https://doi.org/10.1016/j.synthmet.2019.04.019.
(11) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 236, DOI: 10.1007/s11051-015-3046-x.
(12) Yang, X.; Lin, Z.; Zheng, J.; Huang, Y.; Chen, B.; Mai, Y.; Feng, X. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8 (16), 8650-8657, DOI: 10.1039/C6NR00468G.
(13) Huang, S.; Han, Y.; Lyu, S.; Lin, W.; Chen, P.; Fang, S. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 2017, 28 (43), 435204, DOI: 10.1088/1361-6528/aa84cb.
(14) Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299, DOI: https://doi.org/10.1016/j.orgel.2015.07.054.
(15) Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. Journal of Nanoscience and Nanotechnology 2008, 8 (10), 5036-5041, DOI: 10.1166/jnn.2008.1066.
(16) Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage. Electrochimica Acta 2014, 132, 112-117, DOI: https://doi.org/10.1016/j.electacta.2014.03.146.
(17) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B.
(18) Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Science & Engineering 2015, 3 (1), 2-26, DOI: doi:10.1002/ese3.50.
(19) Li, M.; Yang, L.; Zhang, Y. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Advances 2015, 5 (2), 1191-1197, DOI: 10.1039/C4RA12096E.
(20) Feng, J.; Lv, W.; Liu, J.; Li, J.; Yang, H.; Xu, H.; Yan, W. Enhanced capacitance of rectangular-sectioned polypyrrole microtubes as the electrode material for supercapacitors. RSC Advances 2014, 4 (77), 40686-40692, DOI: 10.1039/C4RA07750D.
(21) Ahn, K. J.; Lee, Y.; Choi, H.; Kim, M. S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Scientific Reports 2015, 5, 14097, DOI: 10.1038/srep14097
https://www.nature.com/articles/srep14097#supplementary-information.
(22) Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Interfaces 2017, 9 (47), 41496-41504, DOI: 10.1021/acsami.7b13874.
(23) Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules 2003, 36 (4), 1063-1067, DOI: 10.1021/ma021177b.
(24) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091, DOI: 10.1039/C4TA00484A.
(25) Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A 2019, 7 (17), 10751-10760, DOI: 10.1039/C9TA01856E.
(26) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 1-9, DOI: DOI:101007/s11051-015-3046-x.
(27) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2.
(28) Hewlings, S. J.; Kalman, D. S. Curcumin: A Review of Its' Effects on Human Health. Foods 2017, 6 (10), 92, DOI: 10.3390/foods6100092.
(29) Hazra, M. K.; Roy, S.; Bagchi, B. Hydrophobic hydration driven self-assembly of curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces. The Journal of Chemical Physics 2014, 141 (18), 18C501, DOI: 10.1063/1.4895539.
(30) Gupta, S. C.; Prasad, S.; Kim, J. H.; Patchva, S.; Webb, L. J.; Priyadarsini, I. K.; Aggarwal, B. B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011, 28 (12), 1937-1955, DOI: 10.1039/c1np00051a.
(31) Zhou, Y.; Candelaria, S. L.; Liu, Q.; Huang, Y.; Uchaker, E.; CaO, G. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. Journal of Materials Chemistry A 2014, 2 (22), 8472-8482, DOI: 10.1039/C4TA00894D.
(32) Alem, M.; Tarlani, A.; Aghabozorg, H. R. Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Advances 2017, 7 (62), 38935-38944, DOI: 10.1039/C7RA03231E.
(33) Singh, P. K.; Wani, K.; K. Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances 2014, 4 (104), 60334-60341, DOI: 10.1039/C4RA07300B.
(34) Cao, J.; Wang, Y.; Chen, J.; Li, X.; Walsh, F. C.; Ouyang, J. H.; Jia, D.; Zhou, Y. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A 2015, 3 (27), 14445-14457, DOI: 10.1039/C5TA02920A.
(35) Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H. J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources 2014, 263, 259-267, DOI: https://doi.org/10.1016/j.jpowsour.2014.04.039.
(36) Dubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry 2012, 22 (7), 3044-3052, DOI: 10.1039/C2JM14470K.
(37) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G.
(38) Fan, L. Q.; Liu, G. J.; Wu, J. H.; Liu, L.; Lin, J. M.; Wei, Y. L. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta 2014, 137, 26-33, DOI: https://doi.org/10.1016/j.electacta.2014.05.137.
(39) Zhang, Y. J.; Xue, J. Q.; Li, F.; Dai, J. I. Z.; Zhang, X. Z. Y. Preparation of polypyrrole/chitosan/carbon nanotube composite nano-electrode and application to capacitive deionization process for removing Cu2+. Chemical Engineering and Processing - Process Intensification 2019, 139, 121-129, DOI: https://doi.org/10.1016/j.cep.2019.03.004.
(40) Anwar, M.; Ahmad, I.; Warsi, M. H.; Mohapatra, S.; Ahmad, N.; Akhter, S.; Ali, A.; Ahmad, F. J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics 2015, 96, 162-172, DOI: https://doi.org/10.1016/j.ejpb.2015.07.021.
(41) Liu, Q.; Chen, Z.; Jing, S.; Zhuo, H.; Hu, Y.; Liu, J.; Zhong, L.; Peng, X.; Liu, C. A foldable composite electrode with excellent electrochemical performance using microfibrillated cellulose fibers as a framework. Journal of Materials Chemistry A 2018, 6 (41), 20338-20346, DOI: 10.1039/C8TA06635C.
(42) Wang, L.; Ji, H.; Wang, S.; Kong, L.; Jiang, X.; Yang, G. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 2013, 5 (9), 3793-3799, DOI: 10.1039/C3NR00256J.
(43) Zhao, J.; Li, Y.; Wang, G.; Wei, T.; Liu, Z.; Cheng, K.; Ye, K.; Zhu, K.; Cao, D.; Fan, Z. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A 2017, 5 (44), 23085-23093, DOI: 10.1039/C7TA07010A.
(44) Kim, M. S.; Moon, J. H.; Yoo, P. J.; Park, J. H. Hollow Polypyrrole Films: Applications for Energy Storage Devices. Journal of The Electrochemical Society 2012, 159 (7), A1052-A1056, DOI: 10.1149/2.062207jes.
(45) Ma, L.; Fan, H.; Wei, X.; Chen, S.; Hu, Q.; Liu, Y.; Zhi, C.; Lu, W.; Zapien, J. A.; Huang, H. Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A 2018, 6 (39), 19058-19065, DOI: 10.1039/C8TA07477A.
(46) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247.
(47) Zhang, Y.; Shang, Z.; Shen, M.; Chowdhury, S. P.; Ignaszak, A.; Sun, S.; Ni, Y. Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (13), 11175-11185, DOI: 10.1021/acssuschemeng.9b00321.
(48) Zhou, H.; Zhai, H. J. A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics 2016, 37, 197-206, DOI: https://doi.org/10.1016/j.orgel.2016.06.036.
(49) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327, 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091.
(50) Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011, 196 (1), 1-12, DOI: https://doi.org/10.1016/j.jpowsour.2010.06.084.
(51) Zhao, C.; Shu, K.; Wang, C.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta 2015, 172, 12-19, DOI: https://doi.org/10.1016/j.electacta.2015.05.019.

CHAPTER 8
References

(1) Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Advanced Functional Materials 2015, 25 (29), 4626-4632, DOI: 10.1002/adfm.201501709.
(2) Zhang, M. Y.; Song, Y.; Guo, D.; Yang, D.; Sun, X.; Liu, X. X. Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. Journal of Materials Chemistry A 2019, 7 (16), 9815-9821, DOI: 10.1039/C9TA00705A.
(3) Zhao, J.; Wu, J.; Li, B.; Du, W.; Huang, Q.; Zheng, M.; Xue, H.; Pang, H. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International 2016, 26 (3), 237-242, DOI: https://doi.org/10.1016/j.pnsc.2016.05.015.
(4) Kulandaivalu, S.; Suhaimi, N.; Sulaiman, Y. Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material. Scientific Reports 2019, 9 (1), 4884, DOI: 10.1038/s41598-019-41203-3.
(5) Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Research 2019, DOI: 10.1007/s12274-019-2360-5.
(6) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v.
(7) Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422-438, DOI: https://doi.org/10.1016/j.nanoen.2016.02.047.
(8) Eeu, Y. C.; Lim, H. N.; Lim, Y. S.; Zakarya, S. A.; Huang, N. M. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material. Journal of Nanomaterials 2013, 2013, 6, DOI: 10.1155/2013/653890.
(9) Lee, J.; Jeong, H.; L. Lavall, R.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (38), 33203-33211, DOI: 10.1021/acsami.7b11574.
(10) Luo, S.; Zhao, J.; Zou, J.; He, Z.; Xu, C.; Liu, F.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. ACS Applied Materials & Interfaces 2018, 10 (4), 3538-3548, DOI: 10.1021/acsami.7b15458.
(11) Yao, H.; Zhang, F.; Zhang, G.; Luo, H.; Liu, L.; Shen, M.; Yang, Y. A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chemical Engineering Journal 2018, 334, 2547-2557, DOI: https://doi.org/10.1016/j.cej.2017.12.013.
(12) Huang, L.; Yao, X.; Yuan, L.; Yao, B.; Gao, X.; Wan, J.; Zhou, P.; Xu, M.; Wu, J.; Yu, H.; Hu, Z.; Li, T.; Li, Y.; Zhou, J. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials 2018, 12, 191-196, DOI: https://doi.org/10.1016/j.ensm.2017.12.016.
(13) Huang, S.; Han, Y.; Lyu, S.; Lin, W.; Chen, P.; Fang, S. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 2017, 28 (43), 435204, DOI: 10.1088/1361-6528/aa84cb.
(14) Abdul Bashid, H. A.; Lim, H. N.; Kamaruzaman, S.; Abdul Rashid, S.; Yunus, R.; Huang, N. M.; Yin, C. Y.; Rahman, M. M.; Altarawneh, M.; Jiang, Z. T.; Alagarsamy, P. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Research Letters 2017, 12 (1), 246, DOI: 10.1186/s11671-017-2010-3.
(15) Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299, DOI: https://doi.org/10.1016/j.orgel.2015.07.054.
(16) Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. Journal of Nanoscience and Nanotechnology 2008, 8 (10), 5036-5041, DOI: 10.1166/jnn.2008.1066.
(17) Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage. Electrochimica Acta 2014, 132, 112-117, DOI: https://doi.org/10.1016/j.electacta.2014.03.146.
(18) Cao, A.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, Y.; Li, T.; Han, Y. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synthetic Metals 2019, 252, 135-141, DOI: https://doi.org/10.1016/j.synthmet.2019.04.019.
(19) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 236, DOI: 10.1007/s11051-015-3046-x.
(20) Ahn, K. J.; Lee, Y.; Choi, H.; Kim, M. S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Scientific Reports 2015, 5, 14097, DOI: 10.1038/srep14097
https://www.nature.com/articles/srep14097#supplementary-information.
(21) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091, DOI: 10.1039/C4TA00484A.
(22) Liu, P.; Wang, X.; Wang, Y. Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1795-1801, DOI: 10.1021/sc5001034.
(23) Wang, Z.; Zhang, C.; Xu, C.; Zhu, Z.; Chen, C. Hollow polypyrrole nanosphere embedded in nitrogen-doped graphene layers to obtain a three-dimensional nanostructure as electrode material for electrochemical supercapacitor. Ionics 2017, 23 (1), 147-156, DOI: 10.1007/s11581-016-1803-1.
(24) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B.
(25) Yang, X.; Lin, Z.; Zheng, J.; Huang, Y.; Chen, B.; Mai, Y.; Feng, X. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8 (16), 8650-8657, DOI: 10.1039/C6NR00468G.
(26) Li, M.; Yang, L.; Zhang, Y. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Advances 2015, 5 (2), 1191-1197, DOI: 10.1039/C4RA12096E.
(27) Feng, J.; Lv, W.; Liu, J.; Li, J.; Yang, H.; Xu, H.; Yan, W. Enhanced capacitance of rectangular-sectioned polypyrrole microtubes as the electrode material for supercapacitors. RSC Advances 2014, 4 (77), 40686-40692, DOI: 10.1039/C4RA07750D.
(28) Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Interfaces 2017, 9 (47), 41496-41504, DOI: 10.1021/acsami.7b13874.
(29) Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules 2003, 36 (4), 1063-1067, DOI: 10.1021/ma021177b.
(30) Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A 2019, 7 (17), 10751-10760, DOI: 10.1039/C9TA01856E.
(31) Zhang, X.; Manohar, S. K. Narrow Pore-Diameter Polypyrrole Nanotubes. Journal of the American Chemical Society 2005, 127 (41), 14156-14157, DOI: 10.1021/ja054789v.
(32) Schönenberger, C.; van der Zande, B. M. I.; Fokkink, L. G. J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U. Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. The Journal of Physical Chemistry B 1997, 101 (28), 5497-5505, DOI: 10.1021/jp963938g.
(33) Martin, C. R. Template synthesis of polymeric and metal microtubules. Advanced Materials 1991, 3 (9), 457-459, DOI: 10.1002/adma.19910030914.
(34) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 1-9, DOI: DOI:101007/s11051-015-3046-x.
(35) Dubal, D. P.; Caban-Huertas, Z.; Holze, R.; Gomez-Romero, P. Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochimica Acta 2016, 191, 346-354, DOI: https://doi.org/10.1016/j.electacta.2016.01.078.
(36) Wang, J. G.; Wei, B.; Kang, F. Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors. RSC Advances 2014, 4 (1), 199-202, DOI: 10.1039/C3RA45824E.
(37) Yang, X.; Zhu, Z.; Dai, T.; Lu, Y. Facile Fabrication of Functional Polypyrrole Nanotubes via a Reactive Self-Degraded Template. Macromolecular Rapid Communications 2005, 26 (21), 1736-1740, DOI: 10.1002/marc.200500514.
(38) Lai, X.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy & Environmental Science 2012, 5 (2), 5604-5618, DOI: 10.1039/C1EE02426D.
(39) Jyothibasu, J. P.; Lee, R. H. Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers 2018, 10 (11), 1247.
(40) Zhang, X. y.; Duan, C. t.; Zhao, N.; Xiao, H.; Shi, M. w.; Zhang, X. l.; Xu, J. Facile fabrication of large scale microtubes with a natural template — Kapok fiber. Chinese Journal of Polymer Science 2010, 28 (5), 841-847, DOI: 10.1007/s10118-010-0044-4.
(41) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Advances 2016, 6 (72), 68302-68311, DOI: 10.1039/C6RA16899J.
(42) Zhou, Y.; Hu, X.; Shang, Y.; Hua, C.; Song, P.; Li, X.; Zhang, Y.; Cao, A. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Advances 2016, 6 (67), 62062-62070, DOI: 10.1039/C6RA07297F.
(43) Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources 2015, 287, 68-74, DOI: https://doi.org/10.1016/j.jpowsour.2015.04.026.
(44) Yesi, Y.; Shown, I.; Ganguly, A.; Ngo, T. T.; Chen, L. C.; Chen, K. H. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for High-Performance Flexible Supercapacitors. ChemSusChem 2016, 9 (4), 370-378, DOI: 10.1002/cssc.201501495.
(45) Li, P.; Shi, E.; Yang, Y.; Shang, Y.; Peng, Q.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; Cao, A.; Wu, D. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research 2014, 7 (2), 209-218, DOI: 10.1007/s12274-013-0388-5.
(46) Zhu, Y.; Shi, K.; Zhitomirsky, I. Anionic dopant–dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading. Journal of Materials Chemistry A 2014, 2 (35), 14666-14673, DOI: 10.1039/C4TA02117G.
(47) Gupta, S. C.; Patchva, S.; Aggarwal, B. B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013, 15 (1), 195-218, DOI: 10.1208/s12248-012-9432-8.
(48) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2.
(49) Hewlings, S. J.; Kalman, D. S. Curcumin: A Review of Its' Effects on Human Health. Foods 2017, 6 (10), 92, DOI: 10.3390/foods6100092.
(50) Dubal, D. P.; Chodankar, N. R.; Caban Huertas, Z.; Wolfart, F.; Vidotti, M.; Holze, R.; Lokhande, C. D.; Gomez Romero, P. Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. Journal of Power Sources 2016, 308, 158-165, DOI: https://doi.org/10.1016/j.jpowsour.2016.01.074.
(51) Alem, M.; Tarlani, A.; Aghabozorg, H. R. Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Advances 2017, 7 (62), 38935-38944, DOI: 10.1039/C7RA03231E.
(52) Singh, P. K.; Wani, K.; K. Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances 2014, 4 (104), 60334-60341, DOI: 10.1039/C4RA07300B.
(53) Cao, J.; Wang, Y.; Chen, J.; Li, X.; Walsh, F. C.; Ouyang, J. H.; Jia, D.; Zhou, Y. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A 2015, 3 (27), 14445-14457, DOI: 10.1039/C5TA02920A.
(54) Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H. J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources 2014, 263, 259-267, DOI: https://doi.org/10.1016/j.jpowsour.2014.04.039.
(55) Dubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry 2012, 22 (7), 3044-3052, DOI: 10.1039/C2JM14470K.
(56) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G.
(57) Fan, L. Q.; Liu, G. J.; Wu, J. H.; Liu, L.; Lin, J. M.; Wei, Y. L. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta 2014, 137, 26-33, DOI: https://doi.org/10.1016/j.electacta.2014.05.137.
(58) Sahoo, N. G.; Jung, Y. C.; So, H. H.; Cho, J. W. Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties. Synthetic Metals 2007, 157 (8), 374-379, DOI: https://doi.org/10.1016/j.synthmet.2007.04.006.
(59) Anwar, M.; Ahmad, I.; Warsi, M. H.; Mohapatra, S.; Ahmad, N.; Akhter, S.; Ali, A.; Ahmad, F. J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics 2015, 96, 162-172, DOI: https://doi.org/10.1016/j.ejpb.2015.07.021.
(60) Bai, N.; Xu, Z.; Tian, Y.; Gai, L.; Jiang, H.; Marcus, K.; Liang, K. Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta 2017, 249, 360-368, DOI: https://doi.org/10.1016/j.electacta.2017.08.034.
(61) Zhao, Y.; Zhang, Z.; Ren, Y.; Ran, W.; Chen, X.; Wu, J.; Gao, F. Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. Journal of Power Sources 2015, 286, 1-9, DOI: https://doi.org/10.1016/j.jpowsour.2015.03.141.
(62) Zhao, J.; Li, Y.; Wang, G.; Wei, T.; Liu, Z.; Cheng, K.; Ye, K.; Zhu, K.; Cao, D.; Fan, Z. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A 2017, 5 (44), 23085-23093, DOI: 10.1039/C7TA07010A.
(63) Wei, H.; Wei, S.; Tian, W.; Zhu, D.; Liu, Y.; Yuan, L.; Li, X. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor. Scientific Reports 2014, 4, 7050, DOI: 10.1038/srep07050.
(64) Liu, L.; Weng, W.; Zhang, J.; Cheng, X.; Liu, N.; Yang, J.; Ding, X. Flexible supercapacitor with a record high areal specific capacitance based on a tuned porous fabric. Journal of Materials Chemistry A 2016, 4 (33), 12981-12986, DOI: 10.1039/C6TA04911G.
(65) Zhao, C.; Shu, K.; Wang, C.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta 2015, 172, 12-19, DOI: https://doi.org/10.1016/j.electacta.2015.05.019.
(66) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247.
(67) Chen, Z.; Liao, W.; Ni, X. Spherical polypyrrole nanoparticles growing on the reduced graphene oxide-coated carbon cloth for high performance and flexible all-solid-state supercapacitors. Chemical Engineering Journal 2017, 327, 1198-1207, DOI: https://doi.org/10.1016/j.cej.2017.06.098.
(68) Zhang, Y.; Shang, Z.; Shen, M.; Chowdhury, S. P.; Ignaszak, A.; Sun, S.; Ni, Y. Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (13), 11175-11185, DOI: 10.1021/acssuschemeng.9b00321.
(69) Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Zhang, Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. Journal of Power Sources 2016, 302 (Supplement C), 39-45, DOI: https://doi.org/10.1016/j.jpowsour.2015.10.035.
(70) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327, 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊