|
CHAPTER 1 References
(1) Noori, A.; El-Kady, M. F.; Rahmanifar, M. S.; Kaner, R. B.; Mousavi, M. F. Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews 2019, 48 (5), 1272-1341, DOI: 10.1039/C8CS00581H. (2) Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science 2017, 4 (7), 1600539, DOI: 10.1002/advs.201600539. (3) Shi, F.; Li, L.; Wang, X. l.; Gu, C. d.; Tu, J. p. Metal oxide/hydroxide-based materials for supercapacitors. RSC Advances 2014, 4 (79), 41910-41921, DOI: 10.1039/C4RA06136E. (4) Wang, Q.; Yan, J.; Fan, Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy & Environmental Science 2016, 9 (3), 729-762, DOI: 10.1039/C5EE03109E. (5) Kong, L. B. Nanomaterials for Supercapacitors, CRC Press, Taylor & Francis Group: 2017. (6) Lu, X.; Li, G.; Tong, Y. A review of negative electrode materials for electrochemical supercapacitors. Science China Technological Sciences 2015, 58 (11), 1799-1808, DOI: 10.1007/s11431-015-5931-z. (7) Sharma, V.; Singh, I.; Chandra, A. Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Scientific Reports 2018, 8 (1), 1307, DOI: 10.1038/s41598-018-19815-y. (8) Yu, M.; Wang, Z.; Han, Y.; Tong, Y.; Lu, X.; Yang, S. Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A 2016, 4 (13), 4634-4658, DOI: 10.1039/C5TA10542K. (9) Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews 2016, 45 (21), 5925-5950, DOI: 10.1039/C5CS00580A. (10) Palacín, M. R. Understanding ageing in Li-ion batteries: a chemical issue. Chemical Society Reviews 2018, 47 (13), 4924-4933, DOI: 10.1039/C7CS00889A. (11) Huang, Y.; Zeng, Y.; Yu, M.; Liu, P.; Tong, Y.; Cheng, F.; Lu, X. Recent Smart Methods for Achieving High-Energy Asymmetric Supercapacitors. Small Methods 2018, 2 (2), 1700230, DOI: 10.1002/smtd.201700230. (12) Wang, Y.; Xia, Y. Recent Progress in Supercapacitors: From Materials Design to System Construction. Advanced Materials 2013, 25 (37), 5336-5342, DOI: 10.1002/adma.201301932. (13) Williamson, S. S.; Cassani, P. A.; Lukic, S.; Blunier, B. Chapter 6 - Energy Storage. In Alternative Energy in Power Electronics; Rashid, M. H., Ed.; Butterworth-Heinemann: Boston, 2011; pp 267-315. (14) Halper, M. S.; Ellenbogen, J. C. Supercapacitors: A brief overview. The MITRE Corporation, McLean, Virginia, USA 2006, 1-34. (15) Zhao, X.; Sánchez, B. M.; Dobson, P. J.; Grant, P. S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3 (3), 839-855, DOI: 10.1039/C0NR00594K. (16) Shukla, A. K.; Banerjee, A.; Ravikumar, M. K.; Jalajakshi, A. Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica Acta 2012, 84, 165-173, DOI: https://doi.org/10.1016/j.electacta.2012.03.059. (17) Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. Journal of Power Sources 2006, 157 (1), 11-27, DOI: https://doi.org/10.1016/j.jpowsour.2006.02.065. (18) Salele Iro, Z. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628-10643, DOI: 10.20964/2016.12.50. (19) Sharma, P.; Bhatti, T. S. A review on electrochemical double-layer capacitors. Energy Conversion and Management 2010, 51 (12), 2901-2912, DOI: https://doi.org/10.1016/j.enconman.2010.06.031. (20) Wang, H.; Lin, J.; Shen, Z. X. Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices 2016, 1 (3), 225-255, DOI: https://doi.org/10.1016/j.jsamd.2016.08.001. (21) Saji, V. S.; Lee, C. W. Molybdenum, Molybdenum Oxides, and their Electrochemistry. ChemSusChem 2012, 5 (7), 1146-1161, DOI: 10.1002/cssc.201100660. (22) Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z. X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2017, 5 (1), 1700322-1700322, DOI: 10.1002/advs.201700322. (23) Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, CRC Press: 2017. (24) Frackowiak, E.; Meller, M.; Menzel, J.; Gastol, D.; Fic, K. Redox-active electrolyte for supercapacitor application. Faraday Discussions 2014, 172 (0), 179-198, DOI: 10.1039/C4FD00052H. (25) Shao, Y.; El-Kady, M. F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R. B. Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews 2018, 118 (18), 9233-9280, DOI: 10.1021/acs.chemrev.8b00252. (26) Fleischmann, S.; Widmaier, M.; Schreiber, A.; Shim, H.; Stiemke, F. M.; Schubert, T. J. S.; Presser, V. High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Materials 2019, 16, 391-399, DOI: https://doi.org/10.1016/j.ensm.2018.06.011. (27) Samantara, A. K.; Ratha, S. Components of Supercapacitor. In Materials Development for Active/Passive Components of a Supercapacitor: Background, Present Status and Future Perspective; Springer Singapore: Singapore, 2018; pp 11-39. (28) Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, Taylor & Francis: 2013. (29) Zhao, C.; Zheng, W. A Review for Aqueous Electrochemical Supercapacitors. Frontiers in Energy Research 2015, 3 (23), DOI: 10.3389/fenrg.2015.00023. (30) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015, 44 (21), 7484-7539, DOI: 10.1039/C5CS00303B. (31) Roth, E. P.; Orendorff, C. J. How Electrolytes Influence Battery Safety. The Electrochemical Society Interface 2012, 21 (2), 45-49, DOI: 10.1149/2.F04122if. (32) Sundriyal, S.; Kaur, H.; Bhardwaj, S. K.; Mishra, S.; Kim, K. H.; Deep, A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews 2018, 369, 15-38, DOI: https://doi.org/10.1016/j.ccr.2018.04.018. (33) Li, Q.; Li, K.; Sun, C.; Li, Y. An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. Journal of Electroanalytical Chemistry 2007, 611 (1), 43-50, DOI: https://doi.org/10.1016/j.jelechem.2007.07.022. (34) Senthilkumar, S. T.; Selvan, R. K.; Ponpandian, N.; Melo, J. S.; Lee, Y. S. Improved performance of electric double layer capacitor using redox additive (VO2+/VO2+) aqueous electrolyte. Journal of Materials Chemistry A 2013, 1 (27), 7913-7919, DOI: 10.1039/C3TA10998D. (35) Ren, L.; Zhang, G.; Yan, Z.; Kang, L.; Xu, H.; Shi, F.; Lei, Z.; Liu, Z. H. High capacitive property for supercapacitor using Fe3+/Fe2+ redox couple additive electrolyte. Electrochimica Acta 2017, 231, 705-712, DOI: https://doi.org/10.1016/j.electacta.2017.02.056. (36) Senthilkumar, S. T.; Selvan, R. K.; Lee, Y. S.; Melo, J. S. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. Journal of Materials Chemistry A 2013, 1 (4), 1086-1095, DOI: 10.1039/C2TA00210H. (37) Lota, G.; Frackowiak, E. Striking capacitance of carbon/iodide interface. Electrochemistry Communications 2009, 11 (1), 87-90, DOI: https://doi.org/10.1016/j.elecom.2008.10.026. (38) Su, L. H.; Zhang, X. G.; Mi, C. H.; Gao, B.; Liu, Y. Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Physical Chemistry Chemical Physics 2009, 11 (13), 2195-2202, DOI: 10.1039/B814844A. (39) Lamiel, C.; Nguyen, V. H.; Hussain, I.; Shim, J. J. Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte. Energy 2017, 140, 901-911, DOI: https://doi.org/10.1016/j.energy.2017.09.035. (40) Veerasubramani, G. K.; Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon 2016, 105, 638-648, DOI: https://doi.org/10.1016/j.carbon.2016.05.008. (41) Suárez-Guevara, J.; Ruiz, V.; Gomez-Romero, P. Hybrid energy storage: high voltage aqueous supercapacitors based on activated carbon–phosphotungstate hybrid materials. Journal of Materials Chemistry A 2014, 2 (4), 1014-1021, DOI: 10.1039/C3TA14455K. (42) Lian, K.; Li, C. M. Asymmetrical Electrochemical Capacitors Using Heteropoly Acid Electrolytes. Electrochemical and Solid-State Letters 2009, 12 (1), A10-A12, DOI: 10.1149/1.3007424. (43) Tian, Q.; Lian, K. In Situ Characterization of Heteropolyacid Based Electrochemical Capacitors. Electrochemical and Solid-State Letters 2010, 13 (1), A4-A6, DOI: 10.1149/1.3247071. (44) Roldán, S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Towards a Further Generation of High-Energy Carbon-Based Capacitors by Using Redox-Active Electrolytes. Angewandte Chemie International Edition 2011, 50 (7), 1699-1701, DOI: 10.1002/anie.201006811. (45) Roldán, S.; Granda, M.; Menéndez, R.; Santamaría, R.; Blanco, C. Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. The Journal of Physical Chemistry C 2011, 115 (35), 17606-17611, DOI: 10.1021/jp205100v. (46) Chen, Y. C.; Lin, L. Y. Investigating the redox behavior of activated carbon supercapacitors with hydroquinone and p-phenylenediamine dual redox additives in the electrolyte. Journal of Colloid and Interface Science 2019, 537, 295-305, DOI: https://doi.org/10.1016/j.jcis.2018.11.026. (47) Roldán, S.; Granda, M.; Menéndez, R.; Santamaría, R.; Blanco, C. Supercapacitor modified with methylene blue as redox active electrolyte. Electrochimica Acta 2012, 83, 241-246, DOI: https://doi.org/10.1016/j.electacta.2012.08.026. (48) Lota, G.; Milczarek, G. The effect of lignosulfonates as electrolyte additives on the electrochemical performance of supercapacitors. Electrochemistry Communications 2011, 13 (5), 470-473, DOI: https://doi.org/10.1016/j.elecom.2011.02.023. (49) Roldán, S.; González, Z.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochimica Acta 2011, 56 (9), 3401-3405, DOI: https://doi.org/10.1016/j.electacta.2010.10.017. (50) Yu, H.; Wu, J.; Fan, L.; Lin, Y.; Xu, K.; Tang, Z.; Cheng, C.; Tang, S.; Lin, J.; Huang, M.; Lan, Z. A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor. Journal of Power Sources 2012, 198, 402-407, DOI: https://doi.org/10.1016/j.jpowsour.2011.09.110. (51) Chen, L.; Chen, Y.; Wu, J.; Wang, J.; Bai, H.; Li, L. Electrochemical supercapacitor with polymeric active electrolyte. Journal of Materials Chemistry A 2014, 2 (27), 10526-10531, DOI: 10.1039/C4TA01319K. (52) Wu, J.; Yu, H.; Fan, L.; Luo, G.; Lin, J.; Huang, M. A simple and high-effective electrolyte mediated with p-phenylenediamine for supercapacitor. Journal of Materials Chemistry 2012, 22 (36), 19025-19030, DOI: 10.1039/C2JM33856D. (53) Yu, H.; Fan, L.; Wu, J.; Lin, Y.; Huang, M.; Lin, J.; Lan, Z. Redox-active alkaline electrolyte for carbon-based supercapacitor with pseudocapacitive performance and excellent cyclability. RSC Advances 2012, 2 (17), 6736-6740, DOI: 10.1039/C2RA20503C. (54) Wasiński, K.; Walkowiak, M.; Lota, G. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors. Journal of Power Sources 2014, 255, 230-234, DOI: https://doi.org/10.1016/j.jpowsour.2013.12.140. (55) Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews 2017, 46 (22), 6816-6854, DOI: 10.1039/C7CS00205J. (56) Chen, L.; Bai, H.; Huang, Z.; Li, L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy & Environmental Science 2014, 7 (5), 1750-1759, DOI: 10.1039/C4EE00002A. (57) Sun, J.; Wu, C.; Sun, X.; Hu, H.; Zhi, C.; Hou, L.; Yuan, C. Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. Journal of Materials Chemistry A 2017, 5 (20), 9443-9464, DOI: 10.1039/C7TA00932A. (58) Mensah Darkwa, K.; Zequine, C.; Kahol, P. K.; Gupta, R. K. Supercapacitor Energy Storage Device Using Biowastes: A Sustainable Approach to Green Energy. Sustainability 2019, 11 (2), 414. (59) Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research 2013, 46 (5), 1094-1103, DOI: 10.1021/ar200306b. (60) Schütter, C.; Pohlmann, S.; Balducci, A. Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Advanced Energy Materials 0 (0), 1900334, DOI: 10.1002/aenm.201900334. (61) Fang, B.; Binder, L. A Novel Carbon Electrode Material for Highly Improved EDLC Performance. The Journal of Physical Chemistry B 2006, 110 (15), 7877-7882, DOI: 10.1021/jp060110d. (62) Ma, W.; Chen, S.; Yang, S.; Chen, W.; Weng, W.; Zhu, M. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Applied Materials & Interfaces 2016, 8 (23), 14622-14627, DOI: 10.1021/acsami.6b04026. (63) Wang, F.; Xiao, S.; Hou, Y.; Hu, C.; Liu, L.; Wu, Y. Electrode materials for aqueous asymmetric supercapacitors. RSC Advances 2013, 3 (32), 13059-13084, DOI: 10.1039/C3RA23466E. (64) Du, G.; Bian, Q.; Zhang, J.; Yang, X. Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor. RSC Advances 2017, 7 (73), 46329-46335, DOI: 10.1039/C7RA08402A. (65) Zhi, J.; Wang, Y.; Deng, S.; Hu, A. Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Advances 2014, 4 (76), 40296-40300, DOI: 10.1039/C4RA06260D. (66) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society 2008, 130 (9), 2730-2731, DOI: 10.1021/ja7106178. (67) Yang, X.; Li, M.; Guo, N.; Yan, M.; Yang, R.; Wang, F. Functionalized porous carbon with appropriate pore size distribution and open hole texture prepared by H2O2 and EDTA-2Na treatment of loofa sponge and its excellent performance for supercapacitors. RSC Advances 2016, 6 (6), 4365-4376, DOI: 10.1039/C5RA24055G. (68) Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials 2013, 25 (18), 2554-2560, DOI: 10.1002/adma.201204576. (69) Xu, Y.; Ren, B.; Wang, S.; Zhang, L.; Liu, Z. Carbon aerogel-based supercapacitors modified by hummers oxidation method. Journal of Colloid and Interface Science 2018, 527, 25-32, DOI: https://doi.org/10.1016/j.jcis.2018.04.108. (70) Yang, I.; Kwon, D.; Kim, M. S.; Jung, J. C. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon 2018, 132, 503-511, DOI: https://doi.org/10.1016/j.carbon.2018.02.076. (71) Cai, X.; Tan, G.; Deng, Z.; Liu, J.; Gui, D. Preparation of Hierarchical Porous Carbon Aerogels by Microwave Assisted Sol-Gel Process for Supercapacitors. Polymers 2019, 11 (3), 429, DOI: 10.3390/polym11030429. (72) Kim, C. H. J.; Zhao, D.; Lee, G.; Liu, J. Strong, Machinable Carbon Aerogels for High Performance Supercapacitors. Advanced Functional Materials 2016, 26 (27), 4976-4983, DOI: 10.1002/adfm.201601010. (73) Crane, M. J.; Lim, M. B.; Zhou, X.; Pauzauskie, P. J. Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes. Microsystems &Amp; Nanoengineering 2017, 3, 17032, DOI: 10.1038/micronano.2017.32 https://www.nature.com/articles/micronano201732#supplementary-information. (74) Zuo, L.; Fan, W.; Zhang, Y.; Huang, Y.; Gao, W.; Liu, T. Bacterial cellulose-based sheet-like carbon aerogels for the in situ growth of nickel sulfide as high performance electrode materials for asymmetric supercapacitors. Nanoscale 2017, 9 (13), 4445-4455, DOI: 10.1039/C7NR00130D. (75) Zhuo, H.; Hu, Y.; Chen, Z.; Zhong, L. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohydrate Polymers 2019, 215, 322-329, DOI: https://doi.org/10.1016/j.carbpol.2019.03.101. (76) Zhuo, H.; Hu, Y.; Tong, X.; Zhong, L.; Peng, X.; Sun, R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Industrial Crops and Products 2016, 87, 229-235, DOI: https://doi.org/10.1016/j.indcrop.2016.04.041. (77) Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C. P.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6 (20), 12120-12129, DOI: 10.1039/C4NR03574G. (78) Li, S. C.; Hu, B. C.; Ding, Y. W.; Liang, H. W.; Li, C.; Yu, Z. Y.; Wu, Z. Y.; Chen, W. S.; Yu, S. H. Wood-Derived Ultrathin Carbon Nanofiber Aerogels. Angewandte Chemie International Edition 2018, 57 (24), 7085-7090, DOI: 10.1002/anie.201802753. (79) Ateh, D. D.; Navsaria, H. A.; Vadgama, P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 2006, 3 (11), 741-752, DOI: 10.1098/rsif.2006.0141. (80) Le, T. H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9 (4), 150. (81) Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011, 196 (1), 1-12, DOI: https://doi.org/10.1016/j.jpowsour.2010.06.084. (82) Han, Y.; Dai, L. Conducting Polymers for Flexible Supercapacitors. Macromolecular Chemistry and Physics 2019, 220 (3), 1800355, DOI: 10.1002/macp.201800355. (83) Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268-285, DOI: https://doi.org/10.1016/j.nanoen.2017.04.040. (84) Fong, K. D.; Wang, T.; Smoukov, S. K. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustainable Energy & Fuels 2017, 1 (9), 1857-1874, DOI: 10.1039/C7SE00339K. (85) Yu, G.; Xie, X.; Pan, L.; Bao, Z.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2 (2), 213-234, DOI: https://doi.org/10.1016/j.nanoen.2012.10.006. (86) González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206, DOI: https://doi.org/10.1016/j.rser.2015.12.249. (87) Shen, P. K.; Wang, C. Y.; Jiang, S. P.; Sun, X.; Zhang, J. Electrochemical Energy: Advanced Materials and Technologies, CRC Press: 2016. (88) Patake, V. D.; Joshi, S. S.; Lokhande, C. D.; Joo, O.-S. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Materials Chemistry and Physics 2009, 114 (1), 6-9, DOI: https://doi.org/10.1016/j.matchemphys.2008.09.031. (89) Zeng, W.; Zhang, G.; Hou, S.; Wang, T.; Duan, H. Facile Synthesis of Graphene@NiO/MoO3 Composite Nanosheet Arrays for High-performance Supercapacitors. Electrochimica Acta 2015, 151, 510-516, DOI: https://doi.org/10.1016/j.electacta.2014.11.088. (90) Shaheen, W.; Warsi, M. F.; Shahid, M.; Khan, M. A.; Asghar, M.; Ali, Z.; Sarfraz, M.; Anwar, H.; Nadeem, M.; Shakir, I. Carbon Coated MoO3 Nanowires/Graphene oxide Ternary Nanocomposite for High-Performance Supercapacitors. Electrochimica Acta 2016, 219, 330-338, DOI: https://doi.org/10.1016/j.electacta.2016.09.069. (91) Zhou, K.; Zhou, W.; Liu, X.; Sang, Y.; Ji, S.; Li, W.; Lu, J.; Li, L.; Niu, W.; Liu, H.; Chen, S. Ultrathin MoO3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy 2015, 12, 510-520, DOI: https://doi.org/10.1016/j.nanoen.2015.01.017. (92) Huang, C. C.; Xing, W.; Zhuo, S. P. Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scripta Materialia 2009, 61 (10), 985-987, DOI: https://doi.org/10.1016/j.scriptamat.2009.08.009. (93) Sun, X.; Xie, M.; Travis, J. J.; Wang, G.; Sun, H.; Lian, J.; George, S. M. Pseudocapacitance of Amorphous TiO2 Thin Films Anchored to Graphene and Carbon Nanotubes Using Atomic Layer Deposition. The Journal of Physical Chemistry C 2013, 117 (44), 22497-22508, DOI: 10.1021/jp4066955. (94) Zhang, Y.; Sun, W.; Rui, X.; Li, B.; Tan, H. T.; Guo, G.; Madhavi, S.; Zong, Y.; Yan, Q. One-Pot Synthesis of Tunable Crystalline Ni3S4@Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors. Small 2015, 11 (30), 3694-3702, DOI: 10.1002/smll.201403772. (95) Mahmood, Q.; Yun, H. J.; Kim, W. S.; Park, H. S. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources 2013, 235, 187-192, DOI: https://doi.org/10.1016/j.jpowsour.2013.01.165. (96) Yuan, C.; Li, J.; Hou, L.; Zhang, X.; Shen, L.; Lou, X. W. Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors. Advanced Functional Materials 2012, 22 (21), 4592-4597, DOI: 10.1002/adfm.201200994. (97) Zhang, G. Q.; Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou, X. W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy & Environmental Science 2012, 5 (11), 9453-9456, DOI: 10.1039/C2EE22572G. (98) Liu, M. C.; Kong, L. B.; Lu, C.; Li, X. M.; Luo, Y. C.; Kang, L. Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Materials Letters 2013, 94, 197-200, DOI: https://doi.org/10.1016/j.matlet.2012.12.057. (99) Liu, M. C.; Kong, L. B.; Kang, L.; Li, X.; Walsh, F. C.; Xing, M.; Lu, C.; Ma, X. J.; Luo, Y. C. Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry A 2014, 2 (14), 4919-4926, DOI: 10.1039/C4TA00582A. (100) Karthikeyan, K.; Kalpana, D.; Renganathan, N. G. Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 2009, 15 (1), 107-110, DOI: 10.1007/s11581-008-0227-y. (101) Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters 2011, 11 (3), 1215-1220, DOI: 10.1021/nl104205s. (102) Ghosh, D.; Giri, S.; Moniruzzaman, M.; Basu, T.; Mandal, M.; Das, C. K. α MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material. Dalton Transactions 2014, 43 (28), 11067-11076, DOI: 10.1039/C4DT00672K. (103) Zhao, J.; Cheng, Y.; Yan, X.; Sun, D.; Zhu, F.; Xue, Q. Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 2012, 14 (18), 5879-5885, DOI: 10.1039/C2CE25684C. (104) Chen, D.; Wang, Q.; Wang, R.; Shen, G. Ternary oxide nanostructured materials for supercapacitors: a review. Journal of Materials Chemistry A 2015, 3 (19), 10158-10173, DOI: 10.1039/C4TA06923D. (105) Elshahawy, A. M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S. J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162-171, DOI: https://doi.org/10.1016/j.nanoen.2017.06.042. (106) Du, W.; Kang, R.; Geng, P.; Xiong, X.; Li, D.; Tian, Q.; Pang, H. New asymmetric and symmetric supercapacitor cells based on nickel phosphide nanoparticles. Materials Chemistry and Physics 2015, 165, 207-214, DOI: https://doi.org/10.1016/j.matchemphys.2015.09.020. (107) Wang, H.; Xu, Z.; Yi, H.; Wei, H.; Guo, Z.; Wang, X. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86-96, DOI: https://doi.org/10.1016/j.nanoen.2014.04.009. (108) Zheng, Z.; Retana, M.; Hu, X.; Luna, R.; Ikuhara, Y. H.; Zhou, W. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (20), 16986-16994, DOI: 10.1021/acsami.7b01109. (109) Li, B.; Fu, Y.; Xia, H.; Wang, X. High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Materials Letters 2014, 122, 193-196, DOI: https://doi.org/10.1016/j.matlet.2014.02.046. (110) Li, X.; Shao, J.; Li, J.; Zhang, L.; Qu, Q.; Zheng, H. Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. Journal of Power Sources 2013, 237, 80-83, DOI: https://doi.org/10.1016/j.jpowsour.2013.03.020. (111) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research 2011, 4 (8), 729-736, DOI: 10.1007/s12274-011-0129-6. (112) Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Advanced Functional Materials 2013, 23 (40), 5074-5083, DOI: 10.1002/adfm201301851. (113) Li, G. R.; Wang, Z. L.; Zheng, F. L.; Ou, Y. N.; Tong, Y. X. ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry 2011, 21 (12), 4217-4221, DOI: 10.1039/C0JM03500A. (114) Upadhyay, K. K.; Nguyen, T.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochimica Acta 2017, 225, 19-28, DOI: https://doi.org/10.1016/j.electacta.2016.12.106. (115) Zhang, T.; Kong, L. B.; Liu, M. C.; Dai, Y. H.; Yan, K.; Hu, B.; Luo, Y. C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Materials & Design 2016, 112, 88-96, DOI: https://doi.org/10.1016/j.matdes.2016.09.054. (116) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157. (117) Zhai, T.; Lu, X.; Wang, H.; Wang, G.; Mathis, T.; Liu, T.; Li, C.; Tong, Y.; Li, Y. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters 2015, 15 (5), 3189-3194, DOI: 10.1021/acs.nanolett.5b00321. (118) Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials 2009, 19 (21), 3420-3426, DOI: 10.1002/adfm.200900971. (119) Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials 2013, 25 (2), 267-272, DOI: 10.1002/adma.201203410. (120) Liu, B.; Wang, Y.; Jiang, H. W.; Zou, B. X. WO3 Nanowires on Graphene Sheets as Negative Electrode for Supercapacitors. Journal of Nanomaterials 2017, 2017, 9, DOI: 10.1155/2017/2494109. (121) Wei, X. U.; Gui, X. U.; Deng Liang, W.; Jin Tian, L. I. N.; Yu, B. A. I.; Li Te, Z.; Jing Quan, M. O.; Dong Hua, F. A. N. In Preparation of WO3 Nano-material Negative Electrode for Asymmetric Supercapacitor, 2018 International Conference on Energy Development and Environmental Protection (EDEP 2018), 2018/10; Atlantis Press: 2018. (122) Chang, K. H.; Hu, C. C.; Huang, C. M.; Liu, Y. L.; Chang, C. I. Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3•0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources 2011, 196 (4), 2387-2392, DOI: https://doi.org/10.1016/j.jpowsour.2010.09.078. (123) Yu, M.; Han, Y.; Cheng, X.; Hu, L.; Zeng, Y.; Chen, M.; Cheng, F.; Lu, X.; Tong, Y. Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials 2015, 27 (19), 3085-3091, DOI: 10.1002/adma.201500493. (124) Zhou, X.; Shang, C.; Gu, L.; Dong, S.; Chen, X.; Han, P.; Li, L.; Yao, J.; Liu, Z.; Xu, H.; Zhu, Y.; Cui, G. Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2011, 3 (8), 3058-3063, DOI: 10.1021/am200564b. (125) Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Wang, H.; Liu, Z.; Han, P.; Yao, J.; Wang, L.; Cui, G.; Chen, L. TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin 2011, 46 (6), 835-839, DOI: https://doi.org/10.1016/j.materresbull.2011.02.028. (126) Choi, D.; Kumta, P. N. Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors. Journal of The Electrochemical Society 2006, 153 (12), A2298-A2303, DOI: 10.1149/1.2359692. (127) Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Xie, S.; Ling, Y.; Liang, C.; Tong, Y.; Li, Y. Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters 2012, 12 (10), 5376-5381, DOI: 10.1021/nl302761z. (128) Li, L.; Zhang, M.; Zhang, X.; Zhang, Z. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources 2017, 364, 234-241, DOI: https://doi.org/10.1016/j.jpowsour.2017.08.029. (129) Wang, R.; Yan, X.; Lang, J.; Zheng, Z.; Zhang, P. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. Journal of Materials Chemistry A 2014, 2 (32), 12724-12732, DOI: 10.1039/C4TA01296H. (130) Gao, Z. H.; Zhang, H.; Cao, G. P.; Han, M. F.; Yang, Y. S. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochimica Acta 2013, 87, 375-380, DOI: https://doi.org/10.1016/j.electacta.2012.09.075. (131) Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters 2013, 13 (6), 2628-2633, DOI: 10.1021/nl400760a. (132) Jin, W. H.; Cao, G. T.; Sun, J. Y. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. Journal of Power Sources 2008, 175 (1), 686-691, DOI: https://doi.org/10.1016/j.jpowsour.2007.08.115. (133) Jiang, K.; Sun, B.; Yao, M.; Wang, N.; Hu, W.; Komarneni, S. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials 2018, 265, 189-194, DOI: https://doi.org/10.1016/j.micromeso.2018.02.015. (134) Zhao, Z. Y.; Zhang, W. B.; Ma, X. J.; Li, K.; Zhao, Y.; Gao, J. F.; Kang, L.; Kong, L. B. A Novel Capacitive Negative Electrode Material of Fe3N. Nano 2018, 13 (01), 1850002, DOI: 10.1142/s1793292018500029. (135) Bing Liang, L.; Zhi, Z.; Michael Anthony, R.; Kevin, L.; Trevor, W.; Yunlong, A.; Xiaotao, Z.; Weilie, Z. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019. (136) Chen, Y. C.; Chen, Z. B.; Lin, Y. G.; Hsu, Y. K. Synthesis of Copper Phosphide Nanotube Arrays as Electrodes for Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering 2017, 5 (5), 3863-3870, DOI: 10.1021/acssuschemeng.6b03006. (137) Sankar, K. V.; Selvan, R. K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. Journal of Power Sources 2015, 275, 399-407, DOI: https://doi.org/10.1016/j.jpowsour.2014.10.183. (138) Lin, Y. P.; Wu, N. L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. Journal of Power Sources 2011, 196 (2), 851-854, DOI: https://doi.org/10.1016/j.jpowsour.2010.07.066. (139) Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chemical Engineering Journal 2016, 286, 165-173, DOI: https://doi.org/10.1016/j.cej.2015.10.068. (140) Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9 (5), 5198-5207, DOI: 10.1021/acsnano.5b00582. (141) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (27), 14843-14850, DOI: 10.1021/acsami.5b03126. (142) Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials 2017, 2, 16098, DOI: 10.1038/natrevmats.2016.98 https://www.nature.com/articles/natrevmats201698#supplementary-information. (143) VahidMohammadi, A.; Moncada, J.; Chen, H.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. Journal of Materials Chemistry A 2018, 6 (44), 22123-22133, DOI: 10.1039/C8TA05807E. (144) Mukherjee, S.; Ren, Z.; Singh, G. Beyond Graphene Anode Materials for Emerging Metal Ion Batteries and Supercapacitors. Nano-micro letters 2018, 10 (4), 70-70, DOI: 10.1007/s40820-018-0224-2. (145) Hou, S.; Xu, X.; Wang, M.; Xu, Y.; Lu, T.; Yao, Y.; Pan, L. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A 2017, 5 (36), 19054-19061, DOI: 10.1039/C7TA04720G. (146) Bendi, R.; Kumar, V.; Bhavanasi, V.; Parida, K.; Lee, P. S. Metal Organic Framework-Derived Metal Phosphates as Electrode Materials for Supercapacitors. Advanced Energy Materials 2016, 6 (3), 1501833, DOI: 10.1002/aenm.201501833. (147) ELECTRONICS, S. The intelligent tool that sets Galaxy Note9 apart. https://www.samsung.com/us/mobile/galaxy-note9/s-pen/ (accessed June 14). (148) Kim, B. K.; Sy, S.; Yu, A.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Conversion. In Handbook of Clean Energy Systems; John Wiley & Sons, Ltd: 2015. (149) Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Cellulose-based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials 2017, 7 (18), 1700130, DOI: 10.1002/aenm.201700130. (150) Thakur, V. K.; Thakur, M. K. Eco-friendly Polymer Nanocomposites: Chemistry and Applications, Springer India: 2015. (151) Shi, Z.; Phillips, G. O.; Yang, G. Nanocellulose electroconductive composites. Nanoscale 2013, 5 (8), 3194-3201, DOI: 10.1039/C3NR00408B.
CHAPTER 2 References
(1) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091, DOI: 10.1039/C4TA00484A. (2) Zhao, J.; Wu, J.; Li, B.; Du, W.; Huang, Q.; Zheng, M.; Xue, H.; Pang, H. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International 2016, 26 (3), 237-242, DOI: https://doi.org/10.1016/j.pnsc.2016.05.015. (3) Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Research 2019, DOI: 10.1007/s12274-019-2360-5. (4) Asen, P.; Shahrokhian, S. A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. The Journal of Physical Chemistry C 2017, 121 (12), 6508-6519, DOI: 10.1021/acs.jpcc.7b00534. (5) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v. (6) Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422-438, DOI: https://doi.org/10.1016/j.nanoen.2016.02.047. (7) Eeu, Y. C.; Lim, H. N.; Lim, Y. S.; Zakarya, S. A.; Huang, N. M. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material. Journal of Nanomaterials 2013, 2013, 6, DOI: 10.1155/2013/653890. (8) Lee, J.; Jeong, H.; L. Lavall, R.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (38), 33203-33211, DOI: 10.1021/acsami.7b11574. (9) Abu Thabit, N. Y.; Makhlouf, A. S. H. Smart Textile Supercapacitors Coated with Conducting Polymers for Energy Storage Applications. In Industrial Applications for Intelligent Polymers and Coatings; Hosseini, M.; Makhlouf, A. S. H., Eds.; Springer International Publishing: Cham, 2016; pp 437-477. (10) Huang, S.; Han, Y.; Lyu, S.; Lin, W.; Chen, P.; Fang, S. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 2017, 28 (43), 435204, DOI: 10.1088/1361-6528/aa84cb. (11) Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299, DOI: https://doi.org/10.1016/j.orgel.2015.07.054. (12) Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. Journal of Nanoscience and Nanotechnology 2008, 8 (10), 5036-5041, DOI: 10.1166/jnn.2008.1066. (13) Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage. Electrochimica Acta 2014, 132, 112-117, DOI: https://doi.org/10.1016/j.electacta.2014.03.146. (14) Cao, A.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, Y.; Li, T.; Han, Y. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synthetic Metals 2019, 252, 135-141, DOI: https://doi.org/10.1016/j.synthmet.2019.04.019. (15) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 236, DOI: 10.1007/s11051-015-3046-x. (16) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 1-9, DOI: DOI:101007/s11051-015-3046-x. (17) Ahn, K. J.; Lee, Y.; Choi, H.; Kim, M. S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Scientific Reports 2015, 5, 14097, DOI: 10.1038/srep14097 https://www.nature.com/articles/srep14097#supplementary-information. (18) Liu, P.; Wang, X.; Wang, Y. Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1795-1801, DOI: 10.1021/sc5001034. (19) Wang, Z.; Zhang, C.; Xu, C.; Zhu, Z.; Chen, C. Hollow polypyrrole nanosphere embedded in nitrogen-doped graphene layers to obtain a three-dimensional nanostructure as electrode material for electrochemical supercapacitor. Ionics 2017, 23 (1), 147-156, DOI: 10.1007/s11581-016-1803-1. (20) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B. (21) Yang, X.; Lin, Z.; Zheng, J.; Huang, Y.; Chen, B.; Mai, Y.; Feng, X. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8 (16), 8650-8657, DOI: 10.1039/C6NR00468G. (22) Li, M.; Yang, L.; Zhang, Y. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Advances 2015, 5 (2), 1191-1197, DOI: 10.1039/C4RA12096E. (23) Feng, J.; Lv, W.; Liu, J.; Li, J.; Yang, H.; Xu, H.; Yan, W. Enhanced capacitance of rectangular-sectioned polypyrrole microtubes as the electrode material for supercapacitors. RSC Advances 2014, 4 (77), 40686-40692, DOI: 10.1039/C4RA07750D. (24) Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Interfaces 2017, 9 (47), 41496-41504, DOI: 10.1021/acsami.7b13874. (25) Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules 2003, 36 (4), 1063-1067, DOI: 10.1021/ma021177b. (26) Han, H.; Lee, J. S.; Cho, S. Comparative Studies on Two-Electrode Symmetric Supercapacitors Based on Polypyrrole:Poly(4-styrenesulfonate) with Different Molecular Weights of Poly(4-styrenesulfonate). Polymers 2019, 11 (2), 232, DOI: 10.3390/polym11020232. (27) He, D.; Marsden, A. J.; Li, Z.; Zhao, R.; Xue, W.; Bissett, M. A. Fabrication of a Graphene-Based Paper-Like Electrode for Flexible Solid-State Supercapacitor Devices. Journal of the Electrochemical Society 2018, 165 (14), A3481-A3486, DOI: 10.1149/2.1041814jes. (28) Yuksel, R.; Uysal, N.; Aydinli, A.; Unalan, H. E. Paper Based, Expanded Graphite/Polypyrrole Nanocomposite Supercapacitors Free from Binders and Current Collectors. Journal of The Electrochemical Society 2018, 165 (2), A283-A290, DOI: 10.1149/2.1051802jes. (29) Nam, M. S.; Patil, U.; Park, B.; Sim, H. B.; Jun, S. C. A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application. RSC Advances 2016, 6 (103), 101592-101601, DOI: 10.1039/C6RA16078F. (30) Zhao, H.; Liu, L.; Vellacheri, R.; Lei, Y. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors. Advanced Science 2017, 4 (10), 1700188, DOI: 10.1002/advs.201700188. (31) Lee, J. H.; Kim, J. A.; Kim, J. M.; Lee, S. Y.; Yeon, S. H.; Lee, S. Y. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets. Scientific Reports 2017, 7, 41708-41708, DOI: 10.1038/srep41708. (32) Wang, Y.; He, J.; Roller, J.; Maric, R. One-step fabrication of binder-free three-dimensional Co3O4 electrodes by Reactive Spray Deposition Technology for application in high-performance supercapacitors. MRS Communications 2018, 8 (2), 597-603, DOI: 10.1557/mrc.2018.57. (33) Luo, S.; Zhao, J.; Zou, J.; He, Z.; Xu, C.; Liu, F.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. ACS Applied Materials & Interfaces 2018, 10 (4), 3538-3548, DOI: 10.1021/acsami.7b15458. (34) Wang, C.; Ding, Y.; Yuan, Y.; Cao, A.; He, X.; Peng, Q.; Li, Y. Multifunctional, Highly Flexible, Free-Standing 3D Polypyrrole Foam. Small 2016, 12 (30), 4070-4076, DOI: 10.1002/smll.201601905. (35) Bai, N.; Xu, Z.; Tian, Y.; Gai, L.; Jiang, H.; Marcus, K.; Liang, K. Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta 2017, 249, 360-368, DOI: https://doi.org/10.1016/j.electacta.2017.08.034. (36) Dubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry 2012, 22 (7), 3044-3052, DOI: 10.1039/C2JM14470K. (37) Zang, L.; Liu, Q.; Qiu, J.; Yang, C.; Wei, C.; Liu, C.; Lao, L. Design and Fabrication of an All-Solid-State Polymer Supercapacitor with Highly Mechanical Flexibility Based on Polypyrrole Hydrogel. ACS Applied Materials & Interfaces 2017, 9 (39), 33941-33947, DOI: 10.1021/acsami.7b10321. (38) Gao, B.; Wang, D.; Qu, N.; Zhao, C. Flexible Carbon Cloth Based PPy-Ag Nanoparticles Composite Film for Supercapacitors. IOP Conference Series: Materials Science and Engineering 2018, 394, 042005, DOI: 10.1088/1757-899x/394/4/042005. (39) Jang, J. Conducting Polymer Nanomaterials and Their Applications. In Emissive Materials Nanomaterials; Springer Berlin Heidelberg: Berlin, Heidelberg, 2006; pp 189-260. (40) Zhou, Y.; Hu, X.; Shang, Y.; Hua, C.; Song, P.; Li, X.; Zhang, Y.; Cao, A. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Advances 2016, 6 (67), 62062-62070, DOI: 10.1039/C6RA07297F. (41) Yesi, Y.; Shown, I.; Ganguly, A.; Ngo, T. T.; Chen, L. C.; Chen, K. H. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for High-Performance Flexible Supercapacitors. ChemSusChem 2016, 9 (4), 370-378, DOI: 10.1002/cssc.201501495. (42) Li, P.; Shi, E.; Yang, Y.; Shang, Y.; Peng, Q.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; Cao, A.; Wu, D. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research 2014, 7 (2), 209-218, DOI: 10.1007/s12274-013-0388-5. (43) Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A 2019, 7 (17), 10751-10760, DOI: 10.1039/C9TA01856E. (44) Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources 2015, 287, 68-74, DOI: https://doi.org/10.1016/j.jpowsour.2015.04.026. (45) Alcaraz-Espinoza, J. J.; de Melo, C. P.; de Oliveira, H. P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega 2017, 2 (6), 2866-2877, DOI: 10.1021/acsomega.7b00329. (46) Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Cellulose-based Supercapacitors: Material and Performance Considerations. Advanced Energy Materials 2017, 7 (18), 1700130, DOI: 10.1002/aenm.201700130. (47) Gui, Z.; Zhu, H.; Gillette, E.; Han, X.; Rubloff, G. W.; Hu, L.; Lee, S. B. Natural Cellulose Fiber as Substrate for Supercapacitor. ACS Nano 2013, 7 (7), 6037-6046, DOI: 10.1021/nn401818t. (48) Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 2013, 6 (2), 470-476, DOI: 10.1039/C2EE23977A. (49) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G. (50) Huang, L.; Yao, X.; Yuan, L.; Yao, B.; Gao, X.; Wan, J.; Zhou, P.; Xu, M.; Wu, J.; Yu, H.; Hu, Z.; Li, T.; Li, Y.; Zhou, J. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials 2018, 12, 191-196, DOI: https://doi.org/10.1016/j.ensm.2017.12.016. (51) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247. (52) De Adhikari, A.; Oraon, R.; Tiwari, S. K.; Lee, J. H.; Nayak, G. C. Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Advances 2015, 5 (35), 27347-27355, DOI: 10.1039/C4RA16174B. (53) Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23 (1), 637-648, DOI: 10.1007/s10570-015-0795-8. (54) Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Research 2019, 12 (5), 1129-1137, DOI: 10.1007/s12274-019-2360-5. (55) Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 2015, 7 (8), 3418-3423, DOI: 10.1039/C4NR07251K. (56) Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Advanced Energy Materials 2014, 4 (10), 1301655, DOI: 10.1002/aenm.201301655. (57) Chen, X.; Yuan, F.; Zhang, H.; Huang, Y.; Yang, J.; Sun, D. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials. Journal of Materials Science 2016, 51 (12), 5573-5588, DOI: 10.1007/s10853-016-9899-2. (58) Pérez-Madrigal, M. M.; Edo, M. G.; Alemán, C. Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry 2016, 18 (22), 5930-5956, DOI: 10.1039/C6GC02086K. (59) Liu, Y.; Zhou, J.; Tang, J.; Tang, W. Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chemistry of Materials 2015, 27 (20), 7034-7041, DOI: 10.1021/acs.chemmater.5b03060. (60) Li, S.; Huang, D.; Yang, J.; Zhang, B.; Zhang, X.; Yang, G.; Wang, M.; Shen, Y. Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 2014, 9, 309-317, DOI: https://doi.org/10.1016/j.nanoen.2014.08.004. (61) Xu, W.; Mu, B.; Wang, A. Morphology control of polyaniline by dopant grown on hollow carbon fibers as high-performance supercapacitor electrodes. Cellulose 2017, DOI: 10.1007/s10570-017-1505-5. (62) Zheng, Y.; Wang, A. Kapok Fiber: Structure and Properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K. R.; Jawaid, M.; Rashid, U., Eds.; Springer International Publishing: Cham, 2014; pp 101-110. (63) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Advances 2016, 6 (72), 68302-68311, DOI: 10.1039/C6RA16899J. (64) Xu, W.; Mu, B.; Wang, A. Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors. Electrochimica Acta 2017, 224 (Supplement C), 113-124, DOI: https://doi.org/10.1016/j.electacta.2016.12.032. (65) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile hydrothermal synthesis of tubular kapok fiber/MnO2 composites and application in supercapacitors. RSC Advances 2015, 5 (79), 64065-64075, DOI: 10.1039/C5RA13602D. (66) Xu, W.; Mu, B.; Wang, A. Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochimica Acta 2016, 194, 84-94, DOI: https://doi.org/10.1016/j.electacta.2016.02.072. (67) Xu, W.; Mu, B.; Wang, A. All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. Journal of Materials Science 2018, 53 (16), 11659-11670, DOI: 10.1007/s10853-018-2418-x. (68) Mu, B.; Zhang, W.; Xu, W.; Wang, A. Hollowed-out tubular carbon@MnO2 hybrid composites with controlled morphology derived from kapok fibers for supercapacitor electrode materials. Electrochimica Acta 2015, 178, 709-720, DOI: https://doi.org/10.1016/j.electacta.2015.08.091. (69) Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M. S.; Tong, Y. Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials 2014, 26 (19), 3148-3155, DOI: 10.1002/adma.201305851. (70) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research 2011, 4 (8), 729-736, DOI: 10.1007/s12274-011-0129-6. (71) Mahmood, Q.; Yun, H. J.; Kim, W. S.; Park, H. S. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources 2013, 235, 187-192, DOI: https://doi.org/10.1016/j.jpowsour.2013.01.165. (72) Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Advanced Functional Materials 2013, 23 (40), 5074-5083, DOI: 10.1002/adfm201301851. (73) Li, G. R.; Wang, Z. L.; Zheng, F. L.; Ou, Y. N.; Tong, Y. X. ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry 2011, 21 (12), 4217-4221, DOI: 10.1039/C0JM03500A. (74) Upadhyay, K. K.; Nguyen, T.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochimica Acta 2017, 225, 19-28, DOI: https://doi.org/10.1016/j.electacta.2016.12.106. (75) Zhang, T.; Kong, L. B.; Liu, M. C.; Dai, Y. H.; Yan, K.; Hu, B.; Luo, Y. C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Materials & Design 2016, 112, 88-96, DOI: https://doi.org/10.1016/j.matdes.2016.09.054. (76) Li, X.; Shao, J.; Li, J.; Zhang, L.; Qu, Q.; Zheng, H. Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. Journal of Power Sources 2013, 237, 80-83, DOI: https://doi.org/10.1016/j.jpowsour.2013.03.020. (77) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157. (78) Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 2010, 4 (8), 4403-4411, DOI: 10.1021/nn100856y. (79) Ng, K. C.; Zhang, S.; Peng, C.; Chen, G. Z. Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites. Journal of The Electrochemical Society 2009, 156 (11), A846-A853, DOI: 10.1149/1.3205482. (80) Zhai, T.; Lu, X.; Wang, H.; Wang, G.; Mathis, T.; Liu, T.; Li, C.; Tong, Y.; Li, Y. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg. Nano Letters 2015, 15 (5), 3189-3194, DOI: 10.1021/acs.nanolett.5b00321. (81) Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials 2009, 19 (21), 3420-3426, DOI: 10.1002/adfm.200900971. (82) Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials 2013, 25 (2), 267-272, DOI: 10.1002/adma.201203410. (83) Liu, B.; Wang, Y.; Jiang, H. W.; Zou, B. X. WO3 Nanowires on Graphene Sheets as Negative Electrode for Supercapacitors. Journal of Nanomaterials 2017, 2017, 9, DOI: 10.1155/2017/2494109. (84) Wei, X. U.; Gui, X. U.; Deng Liang, W.; Jin Tian, L. I. N.; Yu, B. A. I.; Li Te, Z.; Jing Quan, M. O.; Dong Hua, F. A. N. In Preparation of WO3 Nano-material Negative Electrode for Asymmetric Supercapacitor, 2018 International Conference on Energy Development and Environmental Protection (EDEP 2018), 2018/10; Atlantis Press: 2018. (85) Chang, K. H.; Hu, C. C.; Huang, C. M.; Liu, Y. L.; Chang, C. I. Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3•0.5H2O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources 2011, 196 (4), 2387-2392, DOI: https://doi.org/10.1016/j.jpowsour.2010.09.078. (86) Yu, M.; Han, Y.; Cheng, X.; Hu, L.; Zeng, Y.; Chen, M.; Cheng, F.; Lu, X.; Tong, Y. Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials 2015, 27 (19), 3085-3091, DOI: 10.1002/adma.201500493. (87) Zhou, X.; Shang, C.; Gu, L.; Dong, S.; Chen, X.; Han, P.; Li, L.; Yao, J.; Liu, Z.; Xu, H.; Zhu, Y.; Cui, G. Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core–shell Structures for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2011, 3 (8), 3058-3063, DOI: 10.1021/am200564b. (88) Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Wang, H.; Liu, Z.; Han, P.; Yao, J.; Wang, L.; Cui, G.; Chen, L. TiN/VN composites with core/shell structure for supercapacitors. Materials Research Bulletin 2011, 46 (6), 835-839, DOI: https://doi.org/10.1016/j.materresbull.2011.02.028. (89) Choi, D.; Kumta, P. N. Nanocrystalline TiN Derived by a Two-Step Halide Approach for Electrochemical Capacitors. Journal of The Electrochemical Society 2006, 153 (12), A2298-A2303, DOI: 10.1149/1.2359692. (90) Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Xie, S.; Ling, Y.; Liang, C.; Tong, Y.; Li, Y. Stabilized TiN Nanowire Arrays for High-Performance and Flexible Supercapacitors. Nano Letters 2012, 12 (10), 5376-5381, DOI: 10.1021/nl302761z. (91) Li, L.; Zhang, M.; Zhang, X.; Zhang, Z. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. Journal of Power Sources 2017, 364, 234-241, DOI: https://doi.org/10.1016/j.jpowsour.2017.08.029. (92) Wang, R.; Yan, X.; Lang, J.; Zheng, Z.; Zhang, P. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. Journal of Materials Chemistry A 2014, 2 (32), 12724-12732, DOI: 10.1039/C4TA01296H. (93) Gao, Z. H.; Zhang, H.; Cao, G. P.; Han, M. F.; Yang, Y. S. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor. Electrochimica Acta 2013, 87, 375-380, DOI: https://doi.org/10.1016/j.electacta.2012.09.075. (94) Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. High Energy Density Asymmetric Quasi-Solid-State Supercapacitor Based on Porous Vanadium Nitride Nanowire Anode. Nano Letters 2013, 13 (6), 2628-2633, DOI: 10.1021/nl400760a. (95) Khan, Z.; Bhattu, S.; Haram, S.; Khushalani, D. SWCNT/BiVO4 composites as anode materials for supercapacitor application. RSC Advances 2014, 4 (33), 17378-17381, DOI: 10.1039/C4RA01273A. (96) Jin, W. H.; Cao, G. T.; Sun, J. Y. Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. Journal of Power Sources 2008, 175 (1), 686-691, DOI: https://doi.org/10.1016/j.jpowsour.2007.08.115. (97) Jiang, K.; Sun, B.; Yao, M.; Wang, N.; Hu, W.; Komarneni, S. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials 2018, 265, 189-194, DOI: https://doi.org/10.1016/j.micromeso.2018.02.015. (98) Zhao, Z. Y.; Zhang, W. B.; Ma, X. J.; Li, K.; Zhao, Y.; Gao, J. F.; Kang, L.; Kong, L. B. A Novel Capacitive Negative Electrode Material of Fe3N. Nano 2018, 13 (01), 1850002, DOI: 10.1142/s1793292018500029. (99) Bing Liang, L.; Zhi, Z.; Michael Anthony, R.; Kevin, L.; Trevor, W.; Yunlong, A.; Xiaotao, Z.; Weilie, Z. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019. (100) Chen, Y. C.; Chen, Z. B.; Lin, Y. G.; Hsu, Y. K. Synthesis of Copper Phosphide Nanotube Arrays as Electrodes for Asymmetric Supercapacitors. ACS Sustainable Chemistry & Engineering 2017, 5 (5), 3863-3870, DOI: 10.1021/acssuschemeng.6b03006. (101) Elshahawy, A. M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y.; Wu, H.; Pennycook, S. J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162-171, DOI: https://doi.org/10.1016/j.nanoen.2017.06.042. (102) Zheng, Z.; Retana, M.; Hu, X.; Luna, R.; Ikuhara, Y. H.; Zhou, W. Three-Dimensional Cobalt Phosphide Nanowire Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (20), 16986-16994, DOI: 10.1021/acsami.7b01109. (103) Li, B.; Fu, Y.; Xia, H.; Wang, X. High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. Materials Letters 2014, 122, 193-196, DOI: https://doi.org/10.1016/j.matlet.2014.02.046. (104) Sankar, K. V.; Selvan, R. K. The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. Journal of Power Sources 2015, 275, 399-407, DOI: https://doi.org/10.1016/j.jpowsour.2014.10.183. (105) Lin, Y. P.; Wu, N. L. Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor. Journal of Power Sources 2011, 196 (2), 851-854, DOI: https://doi.org/10.1016/j.jpowsour.2010.07.066. (106) Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chemical Engineering Journal 2016, 286, 165-173, DOI: https://doi.org/10.1016/j.cej.2015.10.068. (107) Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9 (5), 5198-5207, DOI: 10.1021/acsnano.5b00582. (108) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (27), 14843-14850, DOI: 10.1021/acsami.5b03126. (109) Yu, M.; Wang, Z.; Han, Y.; Tong, Y.; Lu, X.; Yang, S. Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A 2016, 4 (13), 4634-4658, DOI: 10.1039/C5TA10542K. (110) Dong, Y.; Xing, L.; Hu, F.; Umar, A.; Wu, X. α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Materials Research Bulletin 2018, 107, 391-396, DOI: https://doi.org/10.1016/j.materresbull.2018.07.038. (111) Zheng, X.; Yan, X.; Sun, Y.; Yu, Y.; Zhang, G.; Shen, Y.; Liang, Q.; Liao, Q.; Zhang, Y. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. Journal of Colloid and Interface Science 2016, 466, 291-296, DOI: https://doi.org/10.1016/j.jcis.2015.12.024. (112) Li, J.; Wang, Y.; Xu, W.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X.; Zhang, C.; Gu, X.; Hu, C. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379-387, DOI: https://doi.org/10.1016/j.nanoen.2018.12.061. (113) Zhu, S.; Zou, X.; Zhou, Y.; Zeng, Y.; Long, Y.; Yuan, Z.; Wu, Q.; Li, M.; Wang, Y.; Xiang, B. Hydrothermal synthesis of graphene-encapsulated 2D circular nanoplates of α-Fe2O3 towards enhanced electrochemical performance for supercapacitor. Journal of Alloys and Compounds 2019, 775, 63-71, DOI: https://doi.org/10.1016/j.jallcom.2018.10.085. (114) Raut, S. S.; Sankapal, B. R. Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application. New Journal of Chemistry 2016, 40 (3), 2619-2627, DOI: 10.1039/C5NJ03628C. (115) Ling, Y.; Wang, G.; Reddy, J.; Wang, C.; Zhang, J. Z.; Li, Y. The Influence of Oxygen Content on the Thermal Activation of Hematite Nanowires. Angewandte Chemie International Edition 2012, 51 (17), 4074-4079, DOI: 10.1002/anie.201107467. (116) Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C. P.; Wang, Z. L. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes. Nano Letters 2014, 14 (2), 731-736, DOI: 10.1021/nl404008e. (117) Yang, Z.; Qiu, A.; Ma, J.; Chen, M. Conducting α-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Composites Science and Technology 2018, 156, 231-237, DOI: https://doi.org/10.1016/j.compscitech.2018.01.012.
CHAPTER 3 References
(1) Zheng, Y.; Wang, A. Kapok Fiber: Structure and Properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K. R.; Jawaid, M.; Rashid, U., Eds.; Springer International Publishing: Cham, 2014; pp 101-110. (2) Liu, Y.; Wang, J.; Zheng, Y.; Wang, A. Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology. Chemical Engineering Journal 2012, 184 (Supplement C), 248-255, DOI: https://doi.org/10.1016/j.cej.2012.01.049. (3) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2. (4) Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews 2016, 45 (21), 5925-5950, DOI: 10.1039/C5CS00580A. (5) Chen, D.; Wang, Q.; Wang, R.; Shen, G. Ternary oxide nanostructured materials for supercapacitors: a review. Journal of Materials Chemistry A 2015, 3 (19), 10158-10173, DOI: 10.1039/C4TA06923D.
CHAPTER 4 References
(1) Lai, H.; Wu, Q.; Zhao, J.; Shang, L.; Li, H.; Che, R.; Lyu, Z.; Xiong, J.; Yang, L.; Wang, X.; Hu, Z. Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy & Environmental Science 2016, 9 (6), 2053-2060, DOI: 10.1039/C6EE00603E. (2) Li, T.; Yu, H.; Zhi, L.; Zhang, W.; Dang, L.; Liu, Z.; Lei, Z. Facile Electrochemical Fabrication of Porous Fe2O3 Nanosheets for Flexible Asymmetric Supercapacitors. The Journal of Physical Chemistry C 2017, 121 (35), 18982-18991, DOI: 10.1021/acs.jpcc.7b04330. (3) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G. (4) Tao, J.; Liu, N.; Li, L.; Su, J.; Gao, Y. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 2014, 6 (5), 2922-2928, DOI: 10.1039/C3NR05845J. (5) Koga, H.; Tonomura, H.; Nogi, M.; Suganuma, K.; Nishina, Y. Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chemistry 2016, 18 (4), 1117-1124, DOI: 10.1039/C5GC01949D. (6) Anothumakkool, B.; Soni, R.; Bhange, S. N.; Kurungot, S. Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy & Environmental Science 2015, 8 (4), 1339-1347, DOI: 10.1039/C5EE00142K. (7) Liu, R.; Ma, L.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New Journal of Chemistry 2017, 41 (2), 857-864, DOI: 10.1039/C6NJ03107B. (8) Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Zhang, Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. Journal of Power Sources 2016, 302 (Supplement C), 39-45, DOI: https://doi.org/10.1016/j.jpowsour.2015.10.035. (9) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157. (10) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247. (11) Cao, Z.; Wei, B. A perspective: carbon nanotube macro-films for energy storage. Energy & Environmental Science 2013, 6 (11), 3183-3201, DOI: 10.1039/C3EE42261E. (12) Zhao, J.; Li, C.; Zhang, Q.; Zhang, J.; Wang, X.; Lin, Z.; Wang, J.; Lv, W.; Lu, C.; Wong, C.; Yao, Y. An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. Journal of Materials Chemistry A 2017, 5 (15), 6928-6936, DOI: 10.1039/C7TA01348E. (13) Yao, B.; Yuan, L.; Xiao, X.; Zhang, J.; Qi, Y.; Zhou, J.; Zhou, J.; Hu, B.; Chen, W. Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2013, 2 (6), 1071-1078, DOI: https://doi.org/10.1016/j.nanoen.2013.09.002. (14) Chen, Z.; Liao, W.; Ni, X. Spherical polypyrrole nanoparticles growing on the reduced graphene oxide-coated carbon cloth for high performance and flexible all-solid-state supercapacitors. Chemical Engineering Journal 2017, 327 (Supplement C), 1198-1207, DOI: https://doi.org/10.1016/j.cej.2017.06.098. (15) Lee, D.; Cho, Y. G.; Song, H. K.; Chun, S. J.; Park, S. B.; Choi, D. H.; Lee, S. Y.; Yoo, J.; Lee, S. Y. Coffee-Driven Green Activation of Cellulose and Its Use for All-Paper Flexible Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (27), 22568-22577, DOI: 10.1021/acsami.7b05712. (16) Liew, S. Y.; Walsh, D. A.; Thielemans, W. High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors. RSC Advances 2013, 3 (24), 9158-9162, DOI: 10.1039/C3RA41168K. (17) Wang, F.; Kim, H. J.; Park, S.; Kee, C. D.; Kim, S. J.; Oh, I. K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Composites Science and Technology 2016, 128 (Supplement C), 33-40, DOI: https://doi.org/10.1016/j.compscitech.2016.03.012. (18) Peng, S.; Fan, L.; Wei, C.; Liu, X.; Zhang, H.; Xu, W.; Xu, J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydrate Polymers 2017, 157 (Supplement C), 344-352, DOI: https://doi.org/10.1016/j.carbpol.2016.10.004. (19) Shi, Z.; Phillips, G. O.; Yang, G. Nanocellulose electroconductive composites. Nanoscale 2013, 5 (8), 3194-3201, DOI: 10.1039/C3NR00408B. (20) Ge, D.; Yang, L.; Fan, L.; Zhang, C.; Xiao, X.; Gogotsi, Y.; Yang, S. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 2015, 11 (Supplement C), 568-578, DOI: https://doi.org/10.1016/j.nanoen.2014.11.023. (21) Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Letters 2010, 10 (2), 708-714, DOI: 10.1021/nl903949m. (22) Su, H.; Zhu, P.; Zhang, L.; Zeng, W.; Zhou, F.; li, G.; Li, T.; Wang, Q.; Sun, R.; Wong, C. Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Advances 2016, 6 (87), 83564-83572, DOI: 10.1039/C6RA14885A. (23) Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology 2016, 137 (Supplement C), 87-93, DOI: https://doi.org/10.1016/j.compscitech.2016.10.027. (24) Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J.; Cheng, H. M. Graphene–Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials 2011, 1 (5), 917-922, DOI: 10.1002/aenm.201100312. (25) Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 2013, 6 (2), 470-476, DOI: 10.1039/C2EE23977A. (26) Wu, X.; Chabot, V. L.; Kim, B. K.; Yu, A.; Berry, R. M.; Tam, K. C. Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors. Electrochimica Acta 2014, 138 (Supplement C), 139-147, DOI: https://doi.org/10.1016/j.electacta.2014.06.089. (27) Zhang, L.; Yu, X.; Zhu, P.; Zhou, F.; Li, G.; Sun, R.; Wong, C. P. Laboratory filter paper as a substrate material for flexible supercapacitors. Sustainable Energy & Fuels 2017, DOI: 10.1039/c7se00411g, DOI: 10.1039/C7SE00411G. (28) Peng, S.; Xu, Q.; Fan, L.; Wei, C.; Bao, H.; Xu, W.; Xu, J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application. Synthetic Metals 2016, 222 (Part B), 285-292, DOI: https://doi.org/10.1016/j.synthmet.2016.11.002. (29) Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy & Environmental Science 2011, 4 (12), 5060-5067, DOI: 10.1039/C1EE02421C. (30) Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23 (1), 637-648, DOI: 10.1007/s10570-015-0795-8. (31) Liang, G.; Zhu, L.; Xu, J.; Fang, D.; Bai, Z.; Xu, W. Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochimica Acta 2013, 103 (Supplement C), 9-14, DOI: https://doi.org/10.1016/j.electacta.2013.04.065. (32) Wang, Z.; Tammela, P.; Zhang, P.; Huo, J.; Ericson, F.; Stromme, M.; Nyholm, L. Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. Nanoscale 2014, 6 (21), 13068-13075, DOI: 10.1039/C4NR04642K. (33) Yao, B.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-Based Electrodes for Flexible Energy Storage Devices. Advanced Science 2017, 4 (7), 1700107, DOI: 10.1002/advs.201700107. (34) Lv, S.; Fu, F.; Wang, S.; Huang, J.; Hu, L. Novel wood-based all-solid-state flexible supercapacitors fabricated with a natural porous wood slice and polypyrrole. RSC Advances 2015, 5 (4), 2813-2818, DOI: 10.1039/C4RA13456G. (35) Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews 2016, 116 (16), 9305-9374, DOI: 10.1021/acs.chemrev.6b00225. (36) Perez-Madrigal, M. M.; Edo, M. G.; Aleman, C. Powering the future: application of cellulose-based materials for supercapacitors. Green Chemistry 2016, 18 (22), 5930-5956, DOI: 10.1039/C6GC02086K. (37) Xu, J.; Zhu, L.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Organic Electronics 2013, 14 (12), 3331-3338, DOI: https://doi.org/10.1016/j.orgel.2013.09.042. (38) Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences 2015, 16 (7), 14832-14849, DOI: 10.3390/ijms160714832. (39) Huang, S.; Chen, P.; Lin, W.; Lyu, S.; Chen, G.; Yin, X.; Chen, W. Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Advances 2016, 6 (16), 13359-13364, DOI: 10.1039/C5RA24214B. (40) Xu, W.; Mu, B.; Wang, A. Morphology control of polyaniline by dopant grown on hollow carbon fibers as high-performance supercapacitor electrodes. Cellulose 2017, DOI: 10.1007/s10570-017-1505-5. (41) Zheng, Y.; Wang, A. Kapok Fiber: Structure and Properties. In Biomass and Bioenergy: Processing and Properties; Hakeem, K. R.; Jawaid, M.; Rashid, U., Eds.; Springer International Publishing: Cham, 2014; pp 101-110. (42) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Advances 2016, 6 (72), 68302-68311, DOI: 10.1039/C6RA16899J. (43) Xu, W.; Mu, B.; Wang, A. Three-dimensional hollow microtubular carbonized kapok fiber/cobalt-nickel binary oxide composites for high-performance electrode materials of supercapacitors. Electrochimica Acta 2017, 224 (Supplement C), 113-124, DOI: https://doi.org/10.1016/j.electacta.2016.12.032. (44) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile hydrothermal synthesis of tubular kapok fiber/MnO2 composites and application in supercapacitors. RSC Advances 2015, 5 (79), 64065-64075, DOI: 10.1039/C5RA13602D. (45) Foulk, J. A.; Chao, W. Y.; Akin, D. E.; Dodd, R. B.; Layton, P. A. Analysis of Flax and Cotton Fiber Fabric Blends and Recycled Polyethylene Composites. Journal of Polymers and the Environment 2006, 14 (1), 15-25, DOI: 10.1007/s10924-005-8703-1. (46) Lee, K. Y.; Blaker, J. J.; Bismarck, A. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Composites Science and Technology 2009, 69 (15), 2724-2733, DOI: https://doi.org/10.1016/j.compscitech.2009.08.016. (47) Cai, X.; Hansen, R. V.; Zhang, L.; Li, B.; Poh, C. K.; Lim, S. H.; Chen, L.; Yang, J.; Lai, L.; Lin, J.; Shen, Z. Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. Journal of Materials Chemistry A 2015, 3 (44), 22043-22052, DOI: 10.1039/C5TA05961E. (48) Wei, H.; Wang, Y.; Guo, J.; Yan, X.; O'Connor, R.; Zhang, X.; Shen, N. Z.; Weeks, B. L.; Huang, X.; Wei, S.; Guo, Z. Electropolymerized Polypyrrole Nanocoatings on Carbon Paper for Electrochemical Energy Storage. ChemElectroChem 2015, 2 (1), 119-126, DOI: doi:10.1002/celc.201402258. (49) Yang, C.; Shen, J.; Wang, C.; Fei, H.; Bao, H.; Wang, G. All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes. Journal of Materials Chemistry A 2014, 2 (5), 1458-1464, DOI: 10.1039/C3TA13953K. (50) Feng, D. Y.; Song, Y.; Huang, Z. H.; Xu, X. X.; Liu, X. X. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. Journal of Power Sources 2016, 324, 788-797, DOI: https://doi.org/10.1016/j.jpowsour.2016.05.112. (51) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v. (52) Yesi, Y.; Shown, I.; Ganguly, A.; Ngo, T. T.; Chen, L. C.; Chen, K. H. Directly‐Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for High‐Performance Flexible Supercapacitors. ChemSusChem 2016, 9 (4), 370-378, DOI: doi:10.1002/cssc.201501495. (53) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B. (54) Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science 2013, 6 (4), 1185-1191, DOI: 10.1039/C2EE24203F. (55) Avilés, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47 (13), 2970-2975, DOI: https://doi.org/10.1016/j.carbon.2009.06.044. (56) Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46 (6), 833-840, DOI: https://doi.org/10.1016/j.carbon.2008.02.012. (57) Liu, P.; Wang, X.; Li, H. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance. Synthetic Metals 2013, 181 (Supplement C), 72-78, DOI: https://doi.org/10.1016/j.synthmet.2013.08.010. (58) Saleh, T. A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Applied Surface Science 2011, 257 (17), 7746-7751, DOI: https://doi.org/10.1016/j.apsusc.2011.04.020. (59) Reddy, K. R.; Sin, B. C.; Ryu, K. S.; Kim, J. C.; Chung, H.; Lee, Y. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synthetic Metals 2009, 159 (7), 595-603, DOI: https://doi.org/10.1016/j.synthmet.2008.11.030. (60) Fu, H.; Du, Z. j.; Zou, W.; Li, H. q.; Zhang, C. Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode. Journal of Materials Chemistry A 2013, 1 (47), 14943-14950, DOI: 10.1039/C3TA12844J. (61) Xu, L.; Jia, M.; Li, Y.; Zhang, S.; Jin, X. Design and synthesis of graphene/activated carbon/polypyrrole flexible supercapacitor electrodes. RSC Advances 2017, 7 (50), 31342-31351, DOI: 10.1039/C7RA04566B. (62) Shu, K.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. Electrochimica Acta 2016, 212, 561-571, DOI: https://doi.org/10.1016/j.electacta.2016.07.052. (63) Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Duan, L.; Wang, L.; Bao, H.; Xu, W. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Organic Electronics 2015, 24, 153-159, DOI: https://doi.org/10.1016/j.orgel.2015.05.037. (64) Li, N.; Li, X.; Yang, C.; Wang, F.; Li, J.; Wang, H.; Chen, C.; Liu, S.; Pan, Y.; Li, D. Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Advances 2016, 6 (89), 86744-86751, DOI: 10.1039/C6RA19529F. (65) Yang, C.; Li, D. Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Materials Letters 2015, 155 (Supplement C), 78-81, DOI: https://doi.org/10.1016/j.matlet.2015.04.096. (66) Zhang, X.; Tao, L.; He, P.; Zhang, X.; He, M.; Dong, F.; He, S.; Li, C.; Liu, H.; Wang, S.; Zhang, Y. A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: Spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors. Electrochimica Acta 2018, 259, 793-802, DOI: https://doi.org/10.1016/j.electacta.2017.11.007. (67) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327 (Supplement C), 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091. (68) Muhamad, S. U.; Idris, N. H.; Yusoff, H. M.; Din, M. F. M.; Majid, S. R. In-situ encapsulation of nickel nanoparticles in polypyrrole nanofibres with enhanced performance for supercapacitor. Electrochimica Acta 2017, 249 (Supplement C), 9-15, DOI: https://doi.org/10.1016/j.electacta.2017.07.174. (69) Tang, L.; Yang, Z.; Duan, F.; Chen, M. Hierarchical architecture of ultrashort carbon nanotubes/polyaniline nanocables coated on graphene sheets for advanced supercapacitors. Journal of Materials Science: Materials in Electronics 2017, 28 (21), 15804-15818, DOI: 10.1007/s10854-017-7475-4. (70) Xiao, X.; Li, T.; Peng, Z.; Jin, H.; Zhong, Q.; Hu, Q.; Yao, B.; Luo, Q.; Zhang, C.; Gong, L.; Chen, J.; Gogotsi, Y.; Zhou, J. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 2014, 6 (Supplement C), 1-9, DOI: https://doi.org/10.1016/j.nanoen.2014.02.014. (71) Shu, K.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. A Free-standing Graphene-Polypyrrole Hybrid Paper via Electropolymerization with an Enhanced Areal Capacitance. Electrochimica Acta 2016, 212 (Supplement C), 561-571, DOI: https://doi.org/10.1016/j.electacta.2016.07.052. (72) Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Wang, Y.; Zhang, Y. High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Applied Surface Science 2016, 387 (Supplement C), 666-673, DOI: https://doi.org/10.1016/j.apsusc.2016.06.149. (73) Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources 2015, 287 (Supplement C), 68-74, DOI: https://doi.org/10.1016/j.jpowsour.2015.04.026. (74) Chen, J.; Wang, Y.; Cao, J.; Liu, Y.; Zhou, Y.; Ouyang, J.-H.; Jia, D. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film. ACS Applied Materials & Interfaces 2017, 9 (23), 19831-19842, DOI: 10.1021/acsami.7b03786. (75) Liang, Y.; Weng, W.; Yang, J.; Liu, L.; Zhang, Y.; Yang, L.; Luo, X.; Cheng, Y.; Zhu, M. Asymmetric fabric supercapacitor with a high areal energy density and excellent flexibility. RSC Advances 2017, 7 (77), 48934-48941, DOI: 10.1039/C7RA08703A. (76) Yuan, L.; Xiao, X.; Ding, T.; Zhong, J.; Zhang, X.; Shen, Y.; Hu, B.; Huang, Y.; Zhou, J.; Wang, Z. L. Paper-Based Supercapacitors for Self-Powered Nanosystems. Angewandte Chemie International Edition 2012, 51 (20), 4934-4938, DOI: doi:10.1002/anie.201109142. (77) Zhou, H.; Zhai, H.-J. A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics 2016, 37 (Supplement C), 197-206, DOI: https://doi.org/10.1016/j.orgel.2016.06.036. (78) Zeng, S.; Chen, H.; Cai, F.; Kang, Y.; Chen, M.; Li, Q. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. Journal of Materials Chemistry A 2015, 3 (47), 23864-23870, DOI: 10.1039/C5TA05937B. (79) Ramadoss, A.; Yoon, K.-Y.; Kwak, M.-J.; Kim, S.-I.; Ryu, S.-T.; Jang, J.-H. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. Journal of Power Sources 2017, 337 (Supplement C), 159-165, DOI: https://doi.org/10.1016/j.jpowsour.2016.10.091. (80) Fu, D.; Zhou, H.; Zhang, X.-M.; Han, G.; Chang, Y.; Li, H. Flexible solid–state supercapacitor of metal–organic framework coated on carbon nanotube film interconnected by electrochemically -codeposited PEDOT-GO. ChemistrySelect 2016, 1 (2), 285-289, DOI: 10.1002/slct.201600084. (81) Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong, J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B. Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society 2015, 137 (15), 4920-4923, DOI: 10.1021/jacs.5b01613. (82) Fu, D.; Li, H.; Zhang, X.-M.; Han, G.; Zhou, H.; Chang, Y. Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT. Materials Chemistry and Physics 2016, 179 (Supplement C), 166-173, DOI: https://doi.org/10.1016/j.matchemphys.2016.05.024. (83) Wang, S.; Zhu, J.; Shao, Y.; Li, W.; Wu, Y.; Zhang, L.; Hao, X. Three-Dimensional MoS2@CNT/RGO Network Composites for High-Performance Flexible Supercapacitors. Chemistry – A European Journal 2017, 23 (14), 3438-3446, DOI: 10.1002/chem.201605465.
CHAPTER 5 References
(1) Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes – A review. Journal of Materiomics 2016, 2 (1), 37-54, DOI: https://doi.org/10.1016/j.jmat.2016.01.001. (2) Boris, D.; Volker, P.; Min, H.; R., L. M.; Majid, B.; Yury, G. Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem 2013, 6 (12), 2269-2280, DOI: doi:10.1002/cssc.201300852. (3) Chang, C.; Zhang, L.; Zhou, J.; Zhang, L.; Kennedy, J. F. Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers 2010, 82 (1), 122-127, DOI: https://doi.org/10.1016/j.carbpol.2010.04.033. (4) Yuan, L.; Yao, B.; Hu, B.; Huo, K.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science 2013, 6 (2), 470-476, DOI: 10.1039/C2EE23977A. (5) Zhang, L.; Yu, X.; Zhu, P.; Zhou, F.; Li, G.; Sun, R.; Wong, C.-p. Laboratory filter paper as a substrate material for flexible supercapacitors. Sustainable Energy & Fuels 2018, 2 (1), 147-154, DOI: 10.1039/C7SE00411G. (6) Liu, R.; Ma, L.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New Journal of Chemistry 2017, 41 (2), 857-864, DOI: 10.1039/C6NJ03107B. (7) Wang, F.; Kim, H. J.; Park, S.; Kee, C. D.; Kim, S. J.; Oh, I. K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Composites Science and Technology 2016, 128 (Supplement C), 33-40, DOI: https://doi.org/10.1016/j.compscitech.2016.03.012. (8) Peng, S.; Fan, L.; Wei, C.; Liu, X.; Zhang, H.; Xu, W.; Xu, J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydrate Polymers 2017, 157 (Supplement C), 344-352, DOI: https://doi.org/10.1016/j.carbpol.2016.10.004. (9) Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Composites Science and Technology 2016, 137 (Supplement C), 87-93, DOI: https://doi.org/10.1016/j.compscitech.2016.10.027. (10) Su, H.; Zhu, P.; Zhang, L.; Zeng, W.; Zhou, F.; li, G.; Li, T.; Wang, Q.; Sun, R.; Wong, C. Low cost, high performance flexible asymmetric supercapacitor based on modified filter paper and an ultra-fast packaging technique. RSC Advances 2016, 6 (87), 83564-83572, DOI: 10.1039/C6RA14885A. (11) Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, Porous, and Conductive Energy Textiles. Nano Letters 2010, 10 (2), 708-714, DOI: 10.1021/nl903949m. (12) Jost, K.; Perez, C. R.; McDonough, J. K.; Presser, V.; Heon, M.; Dion, G.; Gogotsi, Y. Carbon coated textiles for flexible energy storage. Energy & Environmental Science 2011, 4 (12), 5060-5067, DOI: 10.1039/C1EE02421C. (13) Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23 (1), 637-648, DOI: 10.1007/s10570-015-0795-8. (14) Liang, G.; Zhu, L.; Xu, J.; Fang, D.; Bai, Z.; Xu, W. Investigations of poly(pyrrole)-coated cotton fabrics prepared in blends of anionic and cationic surfactants as flexible electrode. Electrochimica Acta 2013, 103 (Supplement C), 9-14, DOI: https://doi.org/10.1016/j.electacta.2013.04.065. (15) Koga, H.; Tonomura, H.; Nogi, M.; Suganuma, K.; Nishina, Y. Fast, scalable, and eco-friendly fabrication of an energy storage paper electrode. Green Chemistry 2016, 18 (4), 1117-1124, DOI: 10.1039/C5GC01949D. (16) Härdelin, L.; Hagström, B. Wet spun fibers from solutions of cellulose in an ionic liquid with suspended carbon nanoparticles. Journal of Applied Polymer Science 2015, 132 (6), 41417, DOI: doi:10.1002/app.41417. (17) Rui-Hong, X.; Peng-Gang, R.; Jian, H.; Fang, R.; Lian-Zhen, R.; Zhen-Feng, S. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydrate Polymers 2016, 138, 222-228, DOI: https://doi.org/10.1016/j.carbpol.2015.11.042. (18) Liu, X.; Zhang, T.; Pang, K.; Duan, Y.; Zhang, J. Graphene oxide/cellulose composite films with enhanced UV-shielding and mechanical properties prepared in NaOH/urea aqueous solution. RSC Advances 2016, 6 (77), 73358-73364, DOI: 10.1039/C6RA16535D. (19) Meftahi, A.; Khajavi, R.; Rashidi, A.; Rahimi, M. K.; Bahador, A. Preventing the collapse of 3D bacterial cellulose network via citric acid. Journal of Nanostructure in Chemistry 2018, DOI: 10.1007/s40097-018-0275-4. (20) Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strømme, M. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. The Journal of Physical Chemistry B 2010, 114 (12), 4178-4182, DOI: 10.1021/jp911272m. (21) Clasen, C.; Sultanova, B.; Wilhelms, T.; Heisig, P.; Kulicke, W.-M. Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromolecular Symposia 2006, 244 (1), 48-58, DOI: doi:10.1002/masy.200651204. (22) Liu, S.; He, K.; Wu, X.; Luo, X.; Li, B. Surface modification of cellulose scaffold with polypyrrole for the fabrication of flexible supercapacitor electrode with enhanced capacitance. RSC Advances 2015, 5 (106), 87266-87276, DOI: 10.1039/C5RA17201B. (23) Wang, Y.; Chang, C.; Zhang, L. Effects of Freezing/Thawing Cycles and Cellulose Nanowhiskers on Structure and Properties of Biocompatible Starch/PVA Sponges. Macromolecular Materials and Engineering 2010, 295 (2), 137-145, DOI: doi:10.1002/mame.200900212. (24) Chami Khazraji, A.; Robert, S. Self-Assembly and Intermolecular Forces When Cellulose and Water Interact Using Molecular Modeling. Journal of Nanomaterials 2013, 2013, 12, DOI: 10.1155/2013/745979. (25) Lee, T.-W.; Han, M.; Lee, S.-E.; Jeong, Y. G. Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Composites Science and Technology 2016, 123, 57-64, DOI: https://doi.org/10.1016/j.compscitech.2015.12.006. (26) Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Duan, L.; Wang, L.; Bao, H.; Xu, W. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Organic Electronics 2015, 24, 153-159, DOI: https://doi.org/10.1016/j.orgel.2015.05.037. (27) Alcaraz-Espinoza, J. J.; de Melo, C. P.; de Oliveira, H. P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega 2017, 2 (6), 2866-2877, DOI: 10.1021/acsomega.7b00329. (28) Pang, J.-H.; Liu, X.; Wu, M.; Wu, Y.-Y.; Zhang, X.-M.; Sun, R.-C. Fabrication and Characterization of Regenerated Cellulose Films Using Different Ionic Liquids. Journal of Spectroscopy 2014, 2014, 8, DOI: 10.1155/2014/214057. (29) Qi, H.; Schulz, B.; Vad, T.; Liu, J.; Mäder, E.; Seide, G.; Gries, T. Novel Carbon Nanotube/Cellulose Composite Fibers As Multifunctional Materials. ACS Applied Materials & Interfaces 2015, 7 (40), 22404-22412, DOI: 10.1021/acsami.5b06229. (30) Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T. I. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydrate Polymers 2016, 151, 96-102, DOI: https://doi.org/10.1016/j.carbpol.2016.05.054. (31) Lay, M.; González, I.; Tarrés, J. A.; Pellicer, N.; Bun, K. N.; Vilaseca, F. High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes. European Polymer Journal 2017, 91, 1-9, DOI: https://doi.org/10.1016/j.eurpolymj.2017.03.021. (32) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G. (33) Gemeiner, P.; Kuliček, J.; Mikula, M.; Hatala, M.; Švorc, Ľ.; Hlavatá, L.; Mičušík, M.; Omastová, M. Polypyrrole-coated multi-walled carbon nanotubes for the simple preparation of counter electrodes in dye-sensitized solar cells. Synthetic Metals 2015, 210, 323-331, DOI: https://doi.org/10.1016/j.synthmet.2015.10.020. (34) Hsu, Y.-C.; Tseng, L.-C.; Lee, R.-H. Graphene oxide sheet–polyaniline nanohybrids for enhanced photovoltaic performance of dye-sensitized solar cells. Journal of Polymer Science Part B: Polymer Physics 2014, 52 (4), 321-332, DOI: doi:10.1002/polb.23416. (35) Hsu, Y.-C.; Chen, G.-L.; Lee, R.-H. Graphene oxide sheet-polyaniline nanocomposite prepared through in-situ polymerization/deposition method for counter electrode of dye-sensitized solar cell. Journal of Polymer Research 2014, 21 (5), 440, DOI: 10.1007/s10965-014-0440-5. (36) Gonzalez, J. S.; Ludueña, L. N.; Ponce, A.; Alvarez, V. A. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Materials Science and Engineering: C 2014, 34, 54-61, DOI: https://doi.org/10.1016/j.msec.2013.10.006. (37) Dichiara, A. B.; Song, A.; Goodman, S. M.; He, D.; Bai, J. Smart papers comprising carbon nanotubes and cellulose microfibers for multifunctional sensing applications. Journal of Materials Chemistry A 2017, 5 (38), 20161-20169, DOI: 10.1039/C7TA04329E. (38) H., Z.; G., W. Z.; N., Z. Z.; J., W.; J., Z.; S., H. J. Regenerated-Cellulose/Multiwalled- Carbon-Nanotube Composite Fibers with Enhanced Mechanical Properties Prepared with the Ionic Liquid 1-Allyl-3-methylimidazolium Chloride. Advanced Materials 2007, 19 (5), 698-704, DOI: doi:10.1002/adma.200600442. (39) Wang, X.; Li, Y.; Li, X.; Yu, J.; Al-Deyab, S. S.; Ding, B. Equipment-free chromatic determination of formaldehyde by utilizing pararosaniline-functionalized cellulose nanofibrous membranes. Sensors and Actuators B: Chemical 2014, 203, 333-339, DOI: https://doi.org/10.1016/j.snb.2014.06.101. (40) Raghunathan, S. P.; Narayanan, S.; Poulose, A. C.; Joseph, R. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydrate Polymers 2017, 157, 1024-1032, DOI: https://doi.org/10.1016/j.carbpol.2016.10.065. (41) Zhu, C.; Richardson, R. M.; Potter, K. D.; Koutsomitopoulou, A. F.; van Duijneveldt, J. S.; Vincent, S. R.; Wanasekara, N. D.; Eichhorn, S. J.; Rahatekar, S. S. High Modulus Regenerated Cellulose Fibers Spun from a Low Molecular Weight Microcrystalline Cellulose Solution. ACS Sustainable Chemistry & Engineering 2016, 4 (9), 4545-4553, DOI: 10.1021/acssuschemeng.6b00555. (42) Li, N.; Li, X.; Yang, C.; Wang, F.; Li, J.; Wang, H.; Chen, C.; Liu, S.; Pan, Y.; Li, D. Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Advances 2016, 6 (89), 86744-86751, DOI: 10.1039/C6RA19529F. (43) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327, 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091. (44) Tang, L.; Yang, Z.; Duan, F.; Chen, M. Hierarchical architecture of ultrashort carbon nanotubes/polyaniline nanocables coated on graphene sheets for advanced supercapacitors. Journal of Materials Science: Materials in Electronics 2017, 28 (21), 15804-15818, DOI: 10.1007/s10854-017-7475-4. (45) Xiao, X.; Li, T.; Peng, Z.; Jin, H.; Zhong, Q.; Hu, Q.; Yao, B.; Luo, Q.; Zhang, C.; Gong, L.; Chen, J.; Gogotsi, Y.; Zhou, J. Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 2014, 6 (Supplement C), 1-9, DOI: https://doi.org/10.1016/j.nanoen.2014.02.014. (46) Zhao, Y.; Zhang, Z.; Ren, Y.; Ran, W.; Chen, X.; Wu, J.; Gao, F. Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. Journal of Power Sources 2015, 286, 1-9, DOI: https://doi.org/10.1016/j.jpowsour.2015.03.141. (47) Jiang, H.; Ma, H.; Jin, Y.; Wang, L.; Gao, F.; Lu, Q. Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode. Scientific Reports 2016, 6, 31751, DOI: 10.1038/srep31751 https://www.nature.com/articles/srep31751#supplementary-information. (48) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v. (49) Wei, H.; Zhu, J.; Wu, S.; Wei, S.; Guo, Z. Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 2013, 54 (7), 1820-1831, DOI: https://doi.org/10.1016/j.polymer.2013.01.051. (50) Wu, W.; Yang, L.; Chen, S.; Shao, Y.; Jing, L.; Zhao, G.; Wei, H. Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Advances 2015, 5 (111), 91645-91653, DOI: 10.1039/C5RA17036B. (51) Wei, H.; Wei, S.; Tian, W.; Zhu, D.; Liu, Y.; Yuan, L.; Li, X. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor. Scientific Reports 2014, 4, 7050, DOI: 10.1038/srep07050. (52) Zhao, C.; Shu, K.; Wang, C.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta 2015, 172, 12-19, DOI: https://doi.org/10.1016/j.electacta.2015.05.019. (53) Li, S.; Huang, D.; Zhang, B.; Xu, X.; Wang, M.; Yang, G.; Shen, Y. Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Advanced Energy Materials 2014, 4 (10), 1301655, DOI: doi:10.1002/aenm.201301655.
CHAPTER 6 References
(1) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2. (2) Gür, T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science 2018, 11 (10), 2696-2767, DOI: 10.1039/C8EE01419A. (3) Zhang, F.; Zhang, T.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science 2013, 6 (5), 1623-1632, DOI: 10.1039/C3EE40509E. (4) Chen, D.; Zhou, S.; Quan, H.; Zou, R.; Gao, W.; Luo, X.; Guo, L. Tetsubo-like α-Fe2O3/C nanoarrays on carbon cloth as negative electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal 2018, 341, 102-111, DOI: https://doi.org/10.1016/j.cej.2018.02.021. (5) Yang, Z.; Qiu, A.; Ma, J.; Chen, M. Conducting α-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Composites Science and Technology 2018, 156, 231-237, DOI: https://doi.org/10.1016/j.compscitech.2018.01.012. (6) Ma, J.; Guo, X.; Yan, Y.; Xue, H.; Pang, H. FeOx-Based Materials for Electrochemical Energy Storage. Advanced Science 2018, 5 (6), 1700986, DOI: 10.1002/advs.201700986. (7) Zhang, W.; Zhao, B.; Yin, Y.; Yin, T.; Cheng, J.; Zhan, K.; Yan, Y.; Yang, J.; Li, J. Fe2O3-decorated millimeter-long vertically aligned carbon nanotube arrays as advanced anode materials for asymmetric supercapacitors with high energy and power densities. Journal of Materials Chemistry A 2016, 4 (48), 19026-19036, DOI: 10.1039/C6TA07720J. (8) Yang, P.; Ding, Y.; Lin, Z.; Chen, Z.; Li, Y.; Qiang, P.; Ebrahimi, M.; Mai, W.; Wong, C. P.; Wang, Z. L. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes. Nano Letters 2014, 14 (2), 731-736, DOI: 10.1021/nl404008e. (9) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews 2015, 44 (21), 7484-7539, DOI: 10.1039/C5CS00303B. (10) Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances 2019, 1 (10), 3807-3835, DOI: 10.1039/C9NA00374F. (11) Roth, E. P.; Orendorff, C. J. How Electrolytes Influence Battery Safety. The Electrochemical Society Interface 2012, 21 (2), 45-49, DOI: 10.1149/2.F04122if. (12) Sundriyal, S.; Kaur, H.; Bhardwaj, S. K.; Mishra, S.; Kim, K. H.; Deep, A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews 2018, 369, 15-38, DOI: https://doi.org/10.1016/j.ccr.2018.04.018. (13) Barzegar, F.; Momodu, D. Y.; Fashedemi, O. O.; Bello, A.; Dangbegnon, J. K.; Manyala, N. Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Advances 2015, 5 (130), 107482-107487, DOI: 10.1039/C5RA21962K. (14) Li, C.; Wu, W.; Wang, P.; Zhou, W.; Wang, J.; Chen, Y.; Fu, L.; Zhu, Y.; Wu, Y.; Huang, W. Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline-Acidic Electrolyte. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2018, 6 (1), 1801665-1801665, DOI: 10.1002/advs.201801665. (15) Wu, X.; Huang, B.; Wang, Q.; Wang, Y. Wide potential and high energy density for an asymmetric aqueous supercapacitor. Journal of Materials Chemistry A 2019, 7 (32), 19017-19025, DOI: 10.1039/C9TA06428A. (16) Li, Z.; Xu, Z.; Wang, H.; Ding, J.; Zahiri, B.; Holt, C. M. B.; Tan, X.; Mitlin, D. Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy & Environmental Science 2014, 7 (5), 1708-1718, DOI: 10.1039/C3EE43979H. (17) Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials 2017, 29 (21), 1605336, DOI: 10.1002/adma.201605336. (18) Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M. S.; Tong, Y. Oxygen-Deficient Hematite Nanorods as High-Performance and Novel Negative Electrodes for Flexible Asymmetric Supercapacitors. Advanced Materials 2014, 26 (19), 3148-3155, DOI: 10.1002/adma.201305851. (19) Wang, H.; Xu, Z.; Yi, H.; Wei, H.; Guo, Z.; Wang, X. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors. Nano Energy 2014, 7, 86-96, DOI: https://doi.org/10.1016/j.nanoen.2014.04.009. (20) Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7 (5), 1597-1614, DOI: 10.1039/C3EE44164D. (21) Mahmood, Q.; Yun, H. J.; Kim, W. S.; Park, H. S. Highly uniform deposition of MoO3 nanodots on multiwalled carbon nanotubes for improved performance of supercapacitors. Journal of Power Sources 2013, 235, 187-192, DOI: https://doi.org/10.1016/j.jpowsour.2013.01.165. (22) Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; Lee, Y. H. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Advanced Functional Materials 2013, 23 (40), 5074-5083, DOI: 10.1002/adfm201301851. (23) Li, G. R.; Wang, Z. L.; Zheng, F. L.; Ou, Y. N.; Tong, Y. X. ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances. Journal of Materials Chemistry 2011, 21 (12), 4217-4221, DOI: 10.1039/C0JM03500A. (24) Upadhyay, K. K.; Nguyen, T.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F. Electrodeposited MoOx films as negative electrode materials for redox supercapacitors. Electrochimica Acta 2017, 225, 19-28, DOI: https://doi.org/10.1016/j.electacta.2016.12.106. (25) Feng, J. X.; Ye, S. H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Asymmetric Paper Supercapacitor Based on Amorphous Porous Mn3O4 Negative Electrode and Ni(OH)2 Positive Electrode: A Novel and High-Performance Flexible Electrochemical Energy Storage Device. ACS Applied Materials & Interfaces 2015, 7 (21), 11444-11451, DOI: 10.1021/acsami.5b02157. (26) Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal-Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes. ACS Nano 2010, 4 (8), 4403-4411, DOI: 10.1021/nn100856y. (27) Ng, K. C.; Zhang, S.; Peng, C.; Chen, G. Z. Individual and Bipolarly Stacked Asymmetrical Aqueous Supercapacitors of CNTs / SnO2 and CNTs / MnO2 Nanocomposites. Journal of The Electrochemical Society 2009, 156 (11), A846-A853, DOI: 10.1149/1.3205482. (28) Zhang, T.; Kong, L. B.; Liu, M. C.; Dai, Y. H.; Yan, K.; Hu, B.; Luo, Y. C.; Kang, L. Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors. Materials & Design 2016, 112, 88-96, DOI: https://doi.org/10.1016/j.matdes.2016.09.054. (29) Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials 2009, 19 (21), 3420-3426, DOI: 10.1002/adfm.200900971. (30) Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. H-TiO2@MnO2//H-TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors. Advanced Materials 2013, 25 (2), 267-272, DOI: 10.1002/adma.201203410. (31) Yu, M.; Han, Y.; Cheng, X.; Hu, L.; Zeng, Y.; Chen, M.; Cheng, F.; Lu, X.; Tong, Y. Holey Tungsten Oxynitride Nanowires: Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion and Electrochemical Energy Storage. Advanced Materials 2015, 27 (19), 3085-3091, DOI: 10.1002/adma.201500493. (32) Jiang, K.; Sun, B.; Yao, M.; Wang, N.; Hu, W.; Komarneni, S. In situ hydrothermal preparation of mesoporous Fe3O4 film for high-performance negative electrodes of supercapacitors. Microporous and Mesoporous Materials 2018, 265, 189-194, DOI: https://doi.org/10.1016/j.micromeso.2018.02.015. (33) Zhao, Z. Y.; Zhang, W. B.; Ma, X. J.; Li, K.; Zhao, Y.; Gao, J. F.; Kang, L.; Kong, L. B. A Novel Capacitive Negative Electrode Material of Fe3N. Nano 2018, 13 (01), 1850002, DOI: 10.1142/s1793292018500029. (34) Bing Liang, L.; Zhi, Z.; Michael Anthony, R.; Kevin, L.; Trevor, W.; Yunlong, A.; Xiaotao, Z.; Weilie, Z. Synthesis of FeP nanotube arrays as negative electrode for solid-state asymmetric supercapacitor. Nanotechnology 2019. (35) Yu, M.; Wang, Z.; Han, Y.; Tong, Y.; Lu, X.; Yang, S. Recent progress in the development of anodes for asymmetric supercapacitors. Journal of Materials Chemistry A 2016, 4 (13), 4634-4658, DOI: 10.1039/C5TA10542K. (36) Quan, H.; Cheng, B.; Xiao, Y.; Lei, S. One-pot synthesis of α-Fe2O3 nanoplates-reduced graphene oxide composites for supercapacitor application. Chemical Engineering Journal 2016, 286, 165-173, DOI: https://doi.org/10.1016/j.cej.2015.10.068. (37) Guan, C.; Liu, J.; Wang, Y.; Mao, L.; Fan, Z.; Shen, Z.; Zhang, H.; Wang, J. Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability. ACS Nano 2015, 9 (5), 5198-5207, DOI: 10.1021/acsnano.5b00582. (38) Lu, X. F.; Chen, X. Y.; Zhou, W.; Tong, Y. X.; Li, G. R. α-Fe2O3@PANI Core–Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2015, 7 (27), 14843-14850, DOI: 10.1021/acsami.5b03126. (39) Lee, K. K.; Deng, S.; Fan, H. M.; Mhaisalkar, S.; Tan, H. R.; Tok, E. S.; Loh, K. P.; Chin, W. S.; Sow, C. H. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 2012, 4 (9), 2958-2961, DOI: 10.1039/C2NR11902A. (40) Zhu, M.; Wang, Y.; Meng, D.; Qin, X.; Diao, G. Hydrothermal Synthesis of Hematite Nanoparticles and Their Electrochemical Properties. The Journal of Physical Chemistry C 2012, 116 (30), 16276-16285, DOI: 10.1021/jp304041m. (41) Wu, M. S.; Lee, R. H.; Jow, J. J.; Yang, W. D.; Hsieh, C. Y.; Weng, B. J. Nanostructured Iron Oxide Films Prepared by Electrochemical Method for Electrochemical Capacitors. Electrochemical and Solid-State Letters 2009, 12 (1), A1-A4, DOI: 10.1149/1.2998547. (42) Dong, Y.; Xing, L.; Hu, F.; Umar, A.; Wu, X. α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Materials Research Bulletin 2018, 107, 391-396, DOI: https://doi.org/10.1016/j.materresbull.2018.07.038. (43) Zheng, X.; Yan, X.; Sun, Y.; Yu, Y.; Zhang, G.; Shen, Y.; Liang, Q.; Liao, Q.; Zhang, Y. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. Journal of Colloid and Interface Science 2016, 466, 291-296, DOI: https://doi.org/10.1016/j.jcis.2015.12.024. (44) Li, J.; Wang, Y.; Xu, W.; Wang, Y.; Zhang, B.; Luo, S.; Zhou, X.; Zhang, C.; Gu, X.; Hu, C. Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 2019, 57, 379-387, DOI: https://doi.org/10.1016/j.nanoen.2018.12.061. (45) Zhu, S.; Zou, X.; Zhou, Y.; Zeng, Y.; Long, Y.; Yuan, Z.; Wu, Q.; Li, M.; Wang, Y.; Xiang, B. Hydrothermal synthesis of graphene-encapsulated 2D circular nanoplates of α-Fe2O3 towards enhanced electrochemical performance for supercapacitor. Journal of Alloys and Compounds 2019, 775, 63-71, DOI: https://doi.org/10.1016/j.jallcom.2018.10.085. (46) Liu, T.; Ling, Y.; Yang, Y.; Finn, L.; Collazo, E.; Zhai, T.; Tong, Y.; Li, Y. Investigation of hematite nanorod–nanoflake morphological transformation and the application of ultrathin nanoflakes for electrochemical devices. Nano Energy 2015, 12, 169-177, DOI: https://doi.org/10.1016/j.nanoen.2014.12.023. (47) Keppeler, M.; Shen, N.; Nageswaran, S.; Srinivasan, M. Synthesis of α-Fe2O3/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. Journal of Materials Chemistry A 2016, 4 (47), 18223-18239, DOI: 10.1039/C6TA08456G. (48) Choi, H.; Yoon, H. Nanostructured Electrode Materials for Electrochemical Capacitor Applications. Nanomaterials (Basel) 2015, 5 (2), 906-936, DOI: 10.3390/nano5020906. (49) Raut, S. S.; Sankapal, B. R. Comparative studies on MWCNTs, Fe2O3 and Fe2O3/MWCNTs thin films towards supercapacitor application. New Journal of Chemistry 2016, 40 (3), 2619-2627, DOI: 10.1039/C5NJ03628C. (50) Wu, Z.; Li, L.; Yan, J. M.; Zhang, X. B. Materials Design and System Construction for Conventional and New-Concept Supercapacitors. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2017, 4 (6), 1600382-1600382, DOI: 10.1002/advs.201600382. (51) Gulzar, U.; Goriparti, S.; Miele, E.; Li, T.; Maidecchi, G.; Toma, A.; De Angelis, F.; Capiglia, C.; Zaccaria, R. P. Next-generation textiles: from embedded supercapacitors to lithium ion batteries. Journal of Materials Chemistry A 2016, 4 (43), 16771-16800, DOI: 10.1039/C6TA06437J. (52) Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy & Environmental Science 2018, 11 (11), 3096-3127, DOI: 10.1039/C8EE00640G. (53) Li, X.; Shen, J.; Sun, W.; Hong, X.; Wang, R.; Zhao, X.; Yan, X. A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. Journal of Materials Chemistry A 2015, 3 (25), 13244-13253, DOI: 10.1039/C5TA01292A. (54) Kalantari, K.; Bin Ahmad, M.; Shameli, K.; Khandanlou, R. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. Int J Nanomedicine 2013, 8, 1817-1823, DOI: 10.2147/IJN.S43693. (55) Jyothibasu, J. P.; Lee, R. H. Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers 2018, 10 (11), 1247. (56) Lindman, B.; Medronho, B.; Alves, L.; Costa, C.; Edlund, H.; Norgren, M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physical Chemistry Chemical Physics 2017, 19 (35), 23704-23718, DOI: 10.1039/C7CP02409F. (57) Yu, X.; Tong, S.; Ge, M.; Zuo, J.; Cao, C.; Song, W. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. Journal of Materials Chemistry A 2013, 1 (3), 959-965, DOI: 10.1039/C2TA00315E. (58) Samuel, E.; Kim, T.-G.; Park, C.-W.; Joshi, B.; Swihart, M. T.; Yoon, S. S. Supersonically Sprayed Zn2SnO4/SnO2/CNT Nanocomposites for High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry & Engineering 2019, 7 (16), 14031-14040, DOI: 10.1021/acssuschemeng.9b02549. (59) Su, H.; Ye, Z.; Hmidi, N.; Subramanian, R. Carbon nanosphere–iron oxide nanocomposites as high-capacity adsorbents for arsenic removal. RSC Advances 2017, 7 (57), 36138-36148, DOI: 10.1039/C7RA06187K. (60) Lv, H.; Zhao, H.; Cao, T.; Qian, L.; Wang, Y.; Zhao, G. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. Journal of Molecular Catalysis A: Chemical 2015, 400, 81-89, DOI: https://doi.org/10.1016/j.molcata.2015.02.007. (61) Liu, Z.; Yuan, X.; Zhang, S.; Wang, J.; Huang, Q.; Yu, N.; Zhu, Y.; Fu, L.; Wang, F.; Chen, Y.; Wu, Y. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Materials 2019, 11 (1), 12, DOI: 10.1038/s41427-019-0112-3. (62) Liu, S.; Yao, K.; Fu, L. H.; Ma, M. G. Selective synthesis of Fe3O4, γ-Fe2O3, and α-Fe2O3 using cellulose-based composites as precursors. RSC Advances 2016, 6 (3), 2135-2140, DOI: 10.1039/C5RA22985E. (63) Wang, L.; Yu, J.; Dong, X.; Li, X.; Xie, Y.; Chen, S.; Li, P.; Hou, H.; Song, Y. Three-Dimensional Macroporous Carbon/Fe3O4-Doped Porous Carbon Nanorods for High-Performance Supercapacitor. ACS Sustainable Chemistry & Engineering 2016, 4 (3), 1531-1537, DOI: 10.1021/acssuschemeng.5b01474.
CHAPTER 7 References
(1) Jyothibasu, J. P.; Lee, R. H. Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers 2018, 10 (11), 1247. (2) Xu, J.; Zhu, L.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Organic Electronics 2013, 14 (12), 3331-3338, DOI: https://doi.org/10.1016/j.orgel.2013.09.042. (3) Zhao, J.; Wu, J.; Li, B.; Du, W.; Huang, Q.; Zheng, M.; Xue, H.; Pang, H. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International 2016, 26 (3), 237-242, DOI: https://doi.org/10.1016/j.pnsc.2016.05.015. (4) An, H.; Wang, Y.; Wang, X.; Zheng, L.; Wang, X.; Yi, L.; Bai, L.; Zhang, X. Polypyrrole/carbon aerogel composite materials for supercapacitor. Journal of Power Sources 2010, 195 (19), 6964-6969, DOI: https://doi.org/10.1016/j.jpowsour.2010.04.074. (5) Li, Z.; Cai, J.; Cizek, P.; Niu, H.; Du, Y.; Lin, T. A self-supported, flexible, binder-free pseudo-supercapacitor electrode material with high capacitance and cycling stability from hollow, capsular polypyrrole fibers. Journal of Materials Chemistry A 2015, 3 (31), 16162-16167, DOI: 10.1039/C5TA03585F. (6) Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Advanced Functional Materials 2015, 25 (29), 4626-4632, DOI: 10.1002/adfm.201501709. (7) Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials 2017, 29 (21), 1605336, DOI: doi:10.1002/adma.201605336. (8) Liu, P.; Wang, X.; Wang, Y. Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1795-1801, DOI: 10.1021/sc5001034. (9) Lee, J.; Jeong, H.; L. Lavall, R.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (38), 33203-33211, DOI: 10.1021/acsami.7b11574. (10) Cao, A.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, Y.; Li, T.; Han, Y. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synthetic Metals 2019, 252, 135-141, DOI: https://doi.org/10.1016/j.synthmet.2019.04.019. (11) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 236, DOI: 10.1007/s11051-015-3046-x. (12) Yang, X.; Lin, Z.; Zheng, J.; Huang, Y.; Chen, B.; Mai, Y.; Feng, X. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8 (16), 8650-8657, DOI: 10.1039/C6NR00468G. (13) Huang, S.; Han, Y.; Lyu, S.; Lin, W.; Chen, P.; Fang, S. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 2017, 28 (43), 435204, DOI: 10.1088/1361-6528/aa84cb. (14) Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299, DOI: https://doi.org/10.1016/j.orgel.2015.07.054. (15) Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. Journal of Nanoscience and Nanotechnology 2008, 8 (10), 5036-5041, DOI: 10.1166/jnn.2008.1066. (16) Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage. Electrochimica Acta 2014, 132, 112-117, DOI: https://doi.org/10.1016/j.electacta.2014.03.146. (17) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B. (18) Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Science & Engineering 2015, 3 (1), 2-26, DOI: doi:10.1002/ese3.50. (19) Li, M.; Yang, L.; Zhang, Y. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Advances 2015, 5 (2), 1191-1197, DOI: 10.1039/C4RA12096E. (20) Feng, J.; Lv, W.; Liu, J.; Li, J.; Yang, H.; Xu, H.; Yan, W. Enhanced capacitance of rectangular-sectioned polypyrrole microtubes as the electrode material for supercapacitors. RSC Advances 2014, 4 (77), 40686-40692, DOI: 10.1039/C4RA07750D. (21) Ahn, K. J.; Lee, Y.; Choi, H.; Kim, M. S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Scientific Reports 2015, 5, 14097, DOI: 10.1038/srep14097 https://www.nature.com/articles/srep14097#supplementary-information. (22) Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Interfaces 2017, 9 (47), 41496-41504, DOI: 10.1021/acsami.7b13874. (23) Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules 2003, 36 (4), 1063-1067, DOI: 10.1021/ma021177b. (24) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091, DOI: 10.1039/C4TA00484A. (25) Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A 2019, 7 (17), 10751-10760, DOI: 10.1039/C9TA01856E. (26) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 1-9, DOI: DOI:101007/s11051-015-3046-x. (27) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2. (28) Hewlings, S. J.; Kalman, D. S. Curcumin: A Review of Its' Effects on Human Health. Foods 2017, 6 (10), 92, DOI: 10.3390/foods6100092. (29) Hazra, M. K.; Roy, S.; Bagchi, B. Hydrophobic hydration driven self-assembly of curcumin in water: Similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces. The Journal of Chemical Physics 2014, 141 (18), 18C501, DOI: 10.1063/1.4895539. (30) Gupta, S. C.; Prasad, S.; Kim, J. H.; Patchva, S.; Webb, L. J.; Priyadarsini, I. K.; Aggarwal, B. B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 2011, 28 (12), 1937-1955, DOI: 10.1039/c1np00051a. (31) Zhou, Y.; Candelaria, S. L.; Liu, Q.; Huang, Y.; Uchaker, E.; CaO, G. Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. Journal of Materials Chemistry A 2014, 2 (22), 8472-8482, DOI: 10.1039/C4TA00894D. (32) Alem, M.; Tarlani, A.; Aghabozorg, H. R. Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Advances 2017, 7 (62), 38935-38944, DOI: 10.1039/C7RA03231E. (33) Singh, P. K.; Wani, K.; K. Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances 2014, 4 (104), 60334-60341, DOI: 10.1039/C4RA07300B. (34) Cao, J.; Wang, Y.; Chen, J.; Li, X.; Walsh, F. C.; Ouyang, J. H.; Jia, D.; Zhou, Y. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A 2015, 3 (27), 14445-14457, DOI: 10.1039/C5TA02920A. (35) Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H. J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources 2014, 263, 259-267, DOI: https://doi.org/10.1016/j.jpowsour.2014.04.039. (36) Dubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry 2012, 22 (7), 3044-3052, DOI: 10.1039/C2JM14470K. (37) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G. (38) Fan, L. Q.; Liu, G. J.; Wu, J. H.; Liu, L.; Lin, J. M.; Wei, Y. L. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta 2014, 137, 26-33, DOI: https://doi.org/10.1016/j.electacta.2014.05.137. (39) Zhang, Y. J.; Xue, J. Q.; Li, F.; Dai, J. I. Z.; Zhang, X. Z. Y. Preparation of polypyrrole/chitosan/carbon nanotube composite nano-electrode and application to capacitive deionization process for removing Cu2+. Chemical Engineering and Processing - Process Intensification 2019, 139, 121-129, DOI: https://doi.org/10.1016/j.cep.2019.03.004. (40) Anwar, M.; Ahmad, I.; Warsi, M. H.; Mohapatra, S.; Ahmad, N.; Akhter, S.; Ali, A.; Ahmad, F. J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics 2015, 96, 162-172, DOI: https://doi.org/10.1016/j.ejpb.2015.07.021. (41) Liu, Q.; Chen, Z.; Jing, S.; Zhuo, H.; Hu, Y.; Liu, J.; Zhong, L.; Peng, X.; Liu, C. A foldable composite electrode with excellent electrochemical performance using microfibrillated cellulose fibers as a framework. Journal of Materials Chemistry A 2018, 6 (41), 20338-20346, DOI: 10.1039/C8TA06635C. (42) Wang, L.; Ji, H.; Wang, S.; Kong, L.; Jiang, X.; Yang, G. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 2013, 5 (9), 3793-3799, DOI: 10.1039/C3NR00256J. (43) Zhao, J.; Li, Y.; Wang, G.; Wei, T.; Liu, Z.; Cheng, K.; Ye, K.; Zhu, K.; Cao, D.; Fan, Z. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A 2017, 5 (44), 23085-23093, DOI: 10.1039/C7TA07010A. (44) Kim, M. S.; Moon, J. H.; Yoo, P. J.; Park, J. H. Hollow Polypyrrole Films: Applications for Energy Storage Devices. Journal of The Electrochemical Society 2012, 159 (7), A1052-A1056, DOI: 10.1149/2.062207jes. (45) Ma, L.; Fan, H.; Wei, X.; Chen, S.; Hu, Q.; Liu, Y.; Zhi, C.; Lu, W.; Zapien, J. A.; Huang, H. Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A 2018, 6 (39), 19058-19065, DOI: 10.1039/C8TA07477A. (46) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247. (47) Zhang, Y.; Shang, Z.; Shen, M.; Chowdhury, S. P.; Ignaszak, A.; Sun, S.; Ni, Y. Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (13), 11175-11185, DOI: 10.1021/acssuschemeng.9b00321. (48) Zhou, H.; Zhai, H. J. A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Organic Electronics 2016, 37, 197-206, DOI: https://doi.org/10.1016/j.orgel.2016.06.036. (49) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327, 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091. (50) Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011, 196 (1), 1-12, DOI: https://doi.org/10.1016/j.jpowsour.2010.06.084. (51) Zhao, C.; Shu, K.; Wang, C.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta 2015, 172, 12-19, DOI: https://doi.org/10.1016/j.electacta.2015.05.019.
CHAPTER 8 References
(1) Song, Y.; Liu, T. Y.; Xu, X. X.; Feng, D. Y.; Li, Y.; Liu, X. X. Pushing the Cycling Stability Limit of Polypyrrole for Supercapacitors. Advanced Functional Materials 2015, 25 (29), 4626-4632, DOI: 10.1002/adfm.201501709. (2) Zhang, M. Y.; Song, Y.; Guo, D.; Yang, D.; Sun, X.; Liu, X. X. Strongly coupled polypyrrole/molybdenum oxide hybrid films via electrochemical layer-by-layer assembly for pseudocapacitors. Journal of Materials Chemistry A 2019, 7 (16), 9815-9821, DOI: 10.1039/C9TA00705A. (3) Zhao, J.; Wu, J.; Li, B.; Du, W.; Huang, Q.; Zheng, M.; Xue, H.; Pang, H. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials. Progress in Natural Science: Materials International 2016, 26 (3), 237-242, DOI: https://doi.org/10.1016/j.pnsc.2016.05.015. (4) Kulandaivalu, S.; Suhaimi, N.; Sulaiman, Y. Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide|polypyrrole/manganese oxide electrode material. Scientific Reports 2019, 9 (1), 4884, DOI: 10.1038/s41598-019-41203-3. (5) Wang, L.; Zhang, C.; Jiao, X.; Yuan, Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Research 2019, DOI: 10.1007/s12274-019-2360-5. (6) Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v. (7) Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 2016, 22, 422-438, DOI: https://doi.org/10.1016/j.nanoen.2016.02.047. (8) Eeu, Y. C.; Lim, H. N.; Lim, Y. S.; Zakarya, S. A.; Huang, N. M. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material. Journal of Nanomaterials 2013, 2013, 6, DOI: 10.1155/2013/653890. (9) Lee, J.; Jeong, H.; L. Lavall, R.; Busnaina, A.; Kim, Y.; Jung, Y. J.; Lee, H. Polypyrrole Films with Micro/Nanosphere Shapes for Electrodes of High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (38), 33203-33211, DOI: 10.1021/acsami.7b11574. (10) Luo, S.; Zhao, J.; Zou, J.; He, Z.; Xu, C.; Liu, F.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability. ACS Applied Materials & Interfaces 2018, 10 (4), 3538-3548, DOI: 10.1021/acsami.7b15458. (11) Yao, H.; Zhang, F.; Zhang, G.; Luo, H.; Liu, L.; Shen, M.; Yang, Y. A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor. Chemical Engineering Journal 2018, 334, 2547-2557, DOI: https://doi.org/10.1016/j.cej.2017.12.013. (12) Huang, L.; Yao, X.; Yuan, L.; Yao, B.; Gao, X.; Wan, J.; Zhou, P.; Xu, M.; Wu, J.; Yu, H.; Hu, Z.; Li, T.; Li, Y.; Zhou, J. 4-Butylbenzenesulfonate modified polypyrrole paper for supercapacitor with exceptional cycling stability. Energy Storage Materials 2018, 12, 191-196, DOI: https://doi.org/10.1016/j.ensm.2017.12.016. (13) Huang, S.; Han, Y.; Lyu, S.; Lin, W.; Chen, P.; Fang, S. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors. Nanotechnology 2017, 28 (43), 435204, DOI: 10.1088/1361-6528/aa84cb. (14) Abdul Bashid, H. A.; Lim, H. N.; Kamaruzaman, S.; Abdul Rashid, S.; Yunus, R.; Huang, N. M.; Yin, C. Y.; Rahman, M. M.; Altarawneh, M.; Jiang, Z. T.; Alagarsamy, P. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor. Nanoscale Research Letters 2017, 12 (1), 246, DOI: 10.1186/s11671-017-2010-3. (15) Xu, J.; Wang, D.; Fan, L.; Yuan, Y.; Wei, W.; Liu, R.; Gu, S.; Xu, W. Fabric electrodes coated with polypyrrole nanorods for flexible supercapacitor application prepared via a reactive self-degraded template. Organic Electronics 2015, 26, 292-299, DOI: https://doi.org/10.1016/j.orgel.2015.07.054. (16) Lee, S.; Cho, M. S.; Nam, J. D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. Journal of Nanoscience and Nanotechnology 2008, 8 (10), 5036-5041, DOI: 10.1166/jnn.2008.1066. (17) Lei, W.; He, P.; Wang, Y.; Zhang, S.; Dong, F.; Liu, H. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage. Electrochimica Acta 2014, 132, 112-117, DOI: https://doi.org/10.1016/j.electacta.2014.03.146. (18) Cao, A.; Chen, Z.; Wang, Y.; Zhang, J.; Wang, Y.; Li, T.; Han, Y. Redox-active doped polypyrrole microspheres induced by phosphomolybdic acid as supercapacitor electrode materials. Synthetic Metals 2019, 252, 135-141, DOI: https://doi.org/10.1016/j.synthmet.2019.04.019. (19) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 236, DOI: 10.1007/s11051-015-3046-x. (20) Ahn, K. J.; Lee, Y.; Choi, H.; Kim, M. S.; Im, K.; Noh, S.; Yoon, H. Surfactant-Templated Synthesis of Polypyrrole Nanocages as Redox Mediators for Efficient Energy Storage. Scientific Reports 2015, 5, 14097, DOI: 10.1038/srep14097 https://www.nature.com/articles/srep14097#supplementary-information. (21) Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A 2014, 2 (17), 6086-6091, DOI: 10.1039/C4TA00484A. (22) Liu, P.; Wang, X.; Wang, Y. Design of Carbon Black/Polypyrrole Composite Hollow Nanospheres and Performance Evaluation as Electrode Materials for Supercapacitors. ACS Sustainable Chemistry & Engineering 2014, 2 (7), 1795-1801, DOI: 10.1021/sc5001034. (23) Wang, Z.; Zhang, C.; Xu, C.; Zhu, Z.; Chen, C. Hollow polypyrrole nanosphere embedded in nitrogen-doped graphene layers to obtain a three-dimensional nanostructure as electrode material for electrochemical supercapacitor. Ionics 2017, 23 (1), 147-156, DOI: 10.1007/s11581-016-1803-1. (24) Santino, L. M.; Acharya, S.; D'Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. Journal of Materials Chemistry A 2017, 5 (23), 11772-11780, DOI: 10.1039/C7TA00369B. (25) Yang, X.; Lin, Z.; Zheng, J.; Huang, Y.; Chen, B.; Mai, Y.; Feng, X. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors. Nanoscale 2016, 8 (16), 8650-8657, DOI: 10.1039/C6NR00468G. (26) Li, M.; Yang, L.; Zhang, Y. Hierarchical structure of hollow thorn-like polypyrrole microtubes with enhanced electrochemical performance. RSC Advances 2015, 5 (2), 1191-1197, DOI: 10.1039/C4RA12096E. (27) Feng, J.; Lv, W.; Liu, J.; Li, J.; Yang, H.; Xu, H.; Yan, W. Enhanced capacitance of rectangular-sectioned polypyrrole microtubes as the electrode material for supercapacitors. RSC Advances 2014, 4 (77), 40686-40692, DOI: 10.1039/C4RA07750D. (28) Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Applied Materials & Interfaces 2017, 9 (47), 41496-41504, DOI: 10.1021/acsami.7b13874. (29) Qu, L.; Shi, G.; Chen, F.; Zhang, J. Electrochemical Growth of Polypyrrole Microcontainers. Macromolecules 2003, 36 (4), 1063-1067, DOI: 10.1021/ma021177b. (30) Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. Journal of Materials Chemistry A 2019, 7 (17), 10751-10760, DOI: 10.1039/C9TA01856E. (31) Zhang, X.; Manohar, S. K. Narrow Pore-Diameter Polypyrrole Nanotubes. Journal of the American Chemical Society 2005, 127 (41), 14156-14157, DOI: 10.1021/ja054789v. (32) Schönenberger, C.; van der Zande, B. M. I.; Fokkink, L. G. J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U. Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. The Journal of Physical Chemistry B 1997, 101 (28), 5497-5505, DOI: 10.1021/jp963938g. (33) Martin, C. R. Template synthesis of polymeric and metal microtubules. Advanced Materials 1991, 3 (9), 457-459, DOI: 10.1002/adma.19910030914. (34) Wang, J.; Cao, Y.; Lu, Y. Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research 2015, 17 (5), 1-9, DOI: DOI:101007/s11051-015-3046-x. (35) Dubal, D. P.; Caban-Huertas, Z.; Holze, R.; Gomez-Romero, P. Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochimica Acta 2016, 191, 346-354, DOI: https://doi.org/10.1016/j.electacta.2016.01.078. (36) Wang, J. G.; Wei, B.; Kang, F. Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors. RSC Advances 2014, 4 (1), 199-202, DOI: 10.1039/C3RA45824E. (37) Yang, X.; Zhu, Z.; Dai, T.; Lu, Y. Facile Fabrication of Functional Polypyrrole Nanotubes via a Reactive Self-Degraded Template. Macromolecular Rapid Communications 2005, 26 (21), 1736-1740, DOI: 10.1002/marc.200500514. (38) Lai, X.; Halpert, J. E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy & Environmental Science 2012, 5 (2), 5604-5618, DOI: 10.1039/C1EE02426D. (39) Jyothibasu, J. P.; Lee, R. H. Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors. Polymers 2018, 10 (11), 1247. (40) Zhang, X. y.; Duan, C. t.; Zhao, N.; Xiao, H.; Shi, M. w.; Zhang, X. l.; Xu, J. Facile fabrication of large scale microtubes with a natural template — Kapok fiber. Chinese Journal of Polymer Science 2010, 28 (5), 841-847, DOI: 10.1007/s10118-010-0044-4. (41) Xu, W.; Mu, B.; Zhang, W.; Wang, A. Facile fabrication of well-defined polyaniline microtubes derived from natural kapok fibers for supercapacitors with long-term cycling stability. RSC Advances 2016, 6 (72), 68302-68311, DOI: 10.1039/C6RA16899J. (42) Zhou, Y.; Hu, X.; Shang, Y.; Hua, C.; Song, P.; Li, X.; Zhang, Y.; Cao, A. Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Advances 2016, 6 (67), 62062-62070, DOI: 10.1039/C6RA07297F. (43) Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources 2015, 287, 68-74, DOI: https://doi.org/10.1016/j.jpowsour.2015.04.026. (44) Yesi, Y.; Shown, I.; Ganguly, A.; Ngo, T. T.; Chen, L. C.; Chen, K. H. Directly-Grown Hierarchical Carbon Nanotube@Polypyrrole Core–Shell Hybrid for High-Performance Flexible Supercapacitors. ChemSusChem 2016, 9 (4), 370-378, DOI: 10.1002/cssc.201501495. (45) Li, P.; Shi, E.; Yang, Y.; Shang, Y.; Peng, Q.; Wu, S.; Wei, J.; Wang, K.; Zhu, H.; Yuan, Q.; Cao, A.; Wu, D. Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research 2014, 7 (2), 209-218, DOI: 10.1007/s12274-013-0388-5. (46) Zhu, Y.; Shi, K.; Zhitomirsky, I. Anionic dopant–dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading. Journal of Materials Chemistry A 2014, 2 (35), 14666-14673, DOI: 10.1039/C4TA02117G. (47) Gupta, S. C.; Patchva, S.; Aggarwal, B. B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 2013, 15 (1), 195-218, DOI: 10.1208/s12248-012-9432-8. (48) Jyothibasu, J. P.; Kuo, D. W.; Lee, R. H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26 (7), 4495-4513, DOI: 10.1007/s10570-019-02376-2. (49) Hewlings, S. J.; Kalman, D. S. Curcumin: A Review of Its' Effects on Human Health. Foods 2017, 6 (10), 92, DOI: 10.3390/foods6100092. (50) Dubal, D. P.; Chodankar, N. R.; Caban Huertas, Z.; Wolfart, F.; Vidotti, M.; Holze, R.; Lokhande, C. D.; Gomez Romero, P. Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. Journal of Power Sources 2016, 308, 158-165, DOI: https://doi.org/10.1016/j.jpowsour.2016.01.074. (51) Alem, M.; Tarlani, A.; Aghabozorg, H. R. Synthesis of nanostructured alumina with ultrahigh pore volume for pH-dependent release of curcumin. RSC Advances 2017, 7 (62), 38935-38944, DOI: 10.1039/C7RA03231E. (52) Singh, P. K.; Wani, K.; K. Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances 2014, 4 (104), 60334-60341, DOI: 10.1039/C4RA07300B. (53) Cao, J.; Wang, Y.; Chen, J.; Li, X.; Walsh, F. C.; Ouyang, J. H.; Jia, D.; Zhou, Y. Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A 2015, 3 (27), 14445-14457, DOI: 10.1039/C5TA02920A. (54) Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H. J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources 2014, 263, 259-267, DOI: https://doi.org/10.1016/j.jpowsour.2014.04.039. (55) Dubal, D. P.; Lee, S. H.; Kim, J. G.; Kim, W. B.; Lokhande, C. D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. Journal of Materials Chemistry 2012, 22 (7), 3044-3052, DOI: 10.1039/C2JM14470K. (56) Wan, C.; Jiao, Y.; Li, J. Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. Journal of Materials Chemistry A 2017, 5 (8), 3819-3831, DOI: 10.1039/C6TA04844G. (57) Fan, L. Q.; Liu, G. J.; Wu, J. H.; Liu, L.; Lin, J. M.; Wei, Y. L. Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes. Electrochimica Acta 2014, 137, 26-33, DOI: https://doi.org/10.1016/j.electacta.2014.05.137. (58) Sahoo, N. G.; Jung, Y. C.; So, H. H.; Cho, J. W. Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties. Synthetic Metals 2007, 157 (8), 374-379, DOI: https://doi.org/10.1016/j.synthmet.2007.04.006. (59) Anwar, M.; Ahmad, I.; Warsi, M. H.; Mohapatra, S.; Ahmad, N.; Akhter, S.; Ali, A.; Ahmad, F. J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics 2015, 96, 162-172, DOI: https://doi.org/10.1016/j.ejpb.2015.07.021. (60) Bai, N.; Xu, Z.; Tian, Y.; Gai, L.; Jiang, H.; Marcus, K.; Liang, K. Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta 2017, 249, 360-368, DOI: https://doi.org/10.1016/j.electacta.2017.08.034. (61) Zhao, Y.; Zhang, Z.; Ren, Y.; Ran, W.; Chen, X.; Wu, J.; Gao, F. Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode. Journal of Power Sources 2015, 286, 1-9, DOI: https://doi.org/10.1016/j.jpowsour.2015.03.141. (62) Zhao, J.; Li, Y.; Wang, G.; Wei, T.; Liu, Z.; Cheng, K.; Ye, K.; Zhu, K.; Cao, D.; Fan, Z. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A 2017, 5 (44), 23085-23093, DOI: 10.1039/C7TA07010A. (63) Wei, H.; Wei, S.; Tian, W.; Zhu, D.; Liu, Y.; Yuan, L.; Li, X. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor. Scientific Reports 2014, 4, 7050, DOI: 10.1038/srep07050. (64) Liu, L.; Weng, W.; Zhang, J.; Cheng, X.; Liu, N.; Yang, J.; Ding, X. Flexible supercapacitor with a record high areal specific capacitance based on a tuned porous fabric. Journal of Materials Chemistry A 2016, 4 (33), 12981-12986, DOI: 10.1039/C6TA04911G. (65) Zhao, C.; Shu, K.; Wang, C.; Gambhir, S.; Wallace, G. G. Reduced graphene oxide and polypyrrole/reduced graphene oxide composite coated stretchable fabric electrodes for supercapacitor application. Electrochimica Acta 2015, 172, 12-19, DOI: https://doi.org/10.1016/j.electacta.2015.05.019. (66) Chen, Y.; Cai, K.; Liu, C.; Song, H.; Yang, X. High-Performance and Breathable Polypyrrole Coated Air-Laid Paper for Flexible All-Solid-State Supercapacitors. Advanced Energy Materials 2017, 7 (21), 1701247, DOI: 10.1002/aenm.201701247. (67) Chen, Z.; Liao, W.; Ni, X. Spherical polypyrrole nanoparticles growing on the reduced graphene oxide-coated carbon cloth for high performance and flexible all-solid-state supercapacitors. Chemical Engineering Journal 2017, 327, 1198-1207, DOI: https://doi.org/10.1016/j.cej.2017.06.098. (68) Zhang, Y.; Shang, Z.; Shen, M.; Chowdhury, S. P.; Ignaszak, A.; Sun, S.; Ni, Y. Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry & Engineering 2019, 7 (13), 11175-11185, DOI: 10.1021/acssuschemeng.9b00321. (69) Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Zhang, Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. Journal of Power Sources 2016, 302 (Supplement C), 39-45, DOI: https://doi.org/10.1016/j.jpowsour.2015.10.035. (70) Lyu, S.; Chang, H.; Fu, F.; Hu, L.; Huang, J.; Wang, S. Cellulose-coupled graphene/polypyrrole composite electrodes containing conducting networks built by carbon fibers as wearable supercapacitors with excellent foldability and tailorability. Journal of Power Sources 2016, 327, 438-446, DOI: https://doi.org/10.1016/j.jpowsour.2016.07.091.
|