跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 14:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭伯亮
研究生(外文):Po-Liang Cheng
論文名稱:影響鳥禽類睪丸再生因子之分析
論文名稱(外文):Analysis of factors affecting testis regeneration in avian species
指導教授:鄭旭辰
口試委員:陳志峰唐品琦李秀香黃貞祥
口試日期:2019-12-11
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:70
中文關鍵詞:老化再生睪丸季節性繁殖轉錄組分析
外文關鍵詞:AgingRegenerationTestesSeasonal reproductionGooseChickenTranscriptome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
成體幹細胞負責維持組織的恆定性、受傷後的修復和再生。我們先前的研究發現只有未成熟的雞的睪丸組織具有再生的能力。睪丸組織從年輕到老化的轉變主要有兩個,分別是:身體本身年齡狀況的老化和睪丸內產精作用狀況的改變。我們想要了解不同的身體年齡狀況和不同的睪丸產經作用狀態分別如何去影響睪丸的再生能力。在先前不同年齡的睪丸異體互換實驗裡發現維繫睪丸再生能力的因子存在於年輕的睪丸內而非身體年齡的影響。在本篇的研究中,我們利用年輕和年老睪丸組織的共同培養實驗,證明年輕睪丸組織產生的旁泌因子可以促進年老睪丸重新獲得再生能力,並且利用轉錄組(Transcriptome)分析找出可能的候選旁泌因子,未來將會繼續利用這些後選旁泌因子進行功能性分析。為了在動物成熟後改變睪丸組織的產精作用狀態,我們利用具有季節性繁殖的動物來達到這個效果。我們首先觀察兩種被報導為具有季節性繁殖習性的鳥禽類,番鴨(Muscovy duck)和鵝(Goose)的睪丸在季節感變過程中的變化。由實驗結果發現,雖然番鴨被報導為季節性繁殖的動物,但是可能因為長期育種的關係產生了對季節性有反應和沒有反應的兩個群體,目前我們無法預先區分出這兩種群體,另一方面,鵝則是對季節性有很明顯且一致的反應,因此鵝相較於番鴨是更適合我們實驗的模式生物。我們發現,休眠期的鵝的睪丸是因為減數分裂的抑制而導致產精作用的停止,進而停止繁殖的能力。然而透過繁殖期的血清和額外給予刺激減數分裂開始的因子,都不足以誘導產經作用的重新開始。因此可能在季節性繁殖動物的睪丸內有另一機制控制睪丸是否能夠回應季節改變的訊號。最後,我們分別移植休眠期的鵝睪丸和經過強迫換羽而停止產精作用的公雞睪丸,來了解是否只改變睪丸的產精作用狀態,就足以令其回覆再生的能力。結果顯示,休眠期的鵝睪丸能夠再生成功而經過強迫換羽的公雞睪丸則否。由以上的實驗,我們認為只改變產精作用狀態是不足以回復再生能力的,且睪丸組織的再生能力是受到其內部機制的調控,並且可以在動物老化後可以使用某些機制去活化並回復再生能力。
Adult stem cells are responsible for tissue homeostasis and, post-injury repair or regeneration. In our previous study we found that testis only regenerates in immature chicken. There are two major differences between young and old testis: body situation, which changes from young to old, and testis status, which changes from resting to activating spermatogenesis. We wonder how the interaction of different body situation and testis status affect testis regeneration. Previous hetero-transplantation experiment shown inter-testis factor cause aged testis loss regeneration ability. In this study, through young and old testis co-cultured experiment, we further demonstrated that the decreased ability to regenerate caused by aging was inter-testis paracrine factors. We also use transcriptome analysis to find out a list of candidate paracrine factors for further functional analysis. Animals with seasonal reproduction phenomenon are a good model for different testis status analysis. However, we found there may have two seasonal response groups of Muscovy, but we could not distinguish them. On the other hand, goose was consistent response to seasonality, therefore goose is a better animal model than Muscovy. After examining the testes resting caused by season, we found that resting goose testis was arrested at meiosis. To evaluate whether status change is sufficient to recover regeneration ability, seasonal caused resting testis and fasting caused resting testis were used to compare their ability to regenerate. We found that seasonal caused resting testis recovered its regeneration ability. In the contrast, fasting caused resting testis could not. Therefore, we concluded that simply changing testis status is not sufficient to recover regeneration ability; and testis regeneration ability was an inter organ mechanism and could be activated in some way when animal aged.
Index
摘要 i
Abstract iii
Index v
List of Table vii
List of Figures vii
List of Supplementary Figures viii
1. Introduction 1
1.1. Regeneration 1
1.2. Aging effected regeneration 2
1.2.1. The consequence of stem cell aging 2
1.2.2. Factors cause stem cell aging 3
1.2.3. Rejuvenate strategies 3
1.3. Seasonal reproduction caused regeneration 5
1.3.1. Phenomenon of seasonal reproduction 5
1.3.2. Seasonal reproduction related hormones 5
1.3.3. Paracrine and autocrine interactions in testis 7
2. Materials and methods 10
2.1. Ethical statement on animal care 10
2.2. Testicular tissue regeneration surgery 10
2.3. Organ culture 11
2.4. Hormone concentration estimate 11
2.5. Stranded RNA sequencing 12
2.6. RNA-Seq data analysis 13
2.7. Identification of differentially expressed genes (DEGs) 13
2.8. RNA extraction and qPCR 14
2.9. Histological examination 14
2.10. Statistical analysis 15
3. Part I: Aging related regeneration 16
3.1. Results 16
3.1.1. Reciprocal testicular tissue transplantation between 9 weeks and 50 weeks males enabled regeneration 16
3.1.2. Young and old cell cocultures could reform tubule structures with old germ cells inside 17
3.1.3. Young cells induced old cells to regain their regeneration capability and to reform tubular structures 18
3.1.4. Discovery of putative rejuvenating growth factors by genomic analysis 19
3.2. Discussion 20
4. Part II: Seasonal related regeneration 25
4.1. Results 25
4.1.1. Muscovy duck testicle weight and reproductive hormone variation with seasonal change 25
4.1.2. Goose testicle weight and reproduction-related hormone variation with seasonal change 26
4.1.3. Meiosis initiation arrest causes a dramatic testicle size change 27
4.1.4. Exogenous growth factors failed to initiate meiosis in resting goose testis 28
4.2. Discussion 29
5. Part III: Regeneration 32
5.1. Results 32
5.1.1. Fasting could change spermatogenesis status but only partially restored regeneration potential 32
5.1.2. Resting goose testis could regenerate 34
5.2. Discussion 35
6. Conclusion Summary 36
7. Reference 37
1. S. A. Newman, The interaction of the organizing regions in hydra and its possible relation to the role of the cut end in regeneration. J. Embryol. Exp. Morphol. 31, 541–555 (1974).
2. L. Gentile, F. Cebrià, K. Bartscherer, The planarian flatworm: An in vivo model for stem cell biology and nervous system regeneration. DMM Dis. Model. Mech. 4, 12–19 (2011).
3. R. J. Goss, Regenerative inhibition following limb amputation and immediate insertion into the body cavity. Anat. Rec. 126, 15–27 (1956).
4. K. P. Krafts, Tissue repair: The hidden drama. Organogenesis. 6 (2010), pp. 225–233.
5. H. G. Kuhn, H. Dickinson-Anson, F. H. Gage, Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033 (1996).
6. A. Y. Maslov, T. A. Barone, R. J. Plunkett, S. C. Pruitt, Neural Stem Cell Detection, Characterization, and Age-Related Changes in the Subventricular Zone of Mice. J. Neurosci. 24, 1726–1733 (2004).
7. J. Doles, M. Storer, L. Cozzuto, G. Roma, W. M. Keyes, Age-associated inflammation inhibits epidermal stem cell function. Genes Dev. 26, 2144–2153 (2012).
8. B. E. Keyes et al., Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), doi:10.1073/pnas.1320301110.
9. C. C. Chen et al., Regenerative hair waves in aging mice and extra-follicular modulators follistatin, Dkk1, and Sfrp4. J. Invest. Dermatol. 134, 2086–2096 (2014).
10. C. Paul, M. Nagano, B. Robaire, Aging Results in Molecular Changes in an Enriched Population of Undifferentiated Rat Spermatogonia1. Biol. Reprod. 89 (2013), doi:10.1095/biolreprod.113.112995.
11. B.-Y. Ryu, K. E. Orwig, J. M. Oatley, M. R. Avarbock, R. L. Brinster, Effects of Aging and Niche Microenvironment on Spermatogonial Stem Cell Self-Renewal. Stem Cells (2006), doi:10.1634/stemcells.2005-0580.
12. X. Zhang, K. T. Ebata, B. Robaire, M. C. Nagano, Aging of Male Germ Line Stem Cells in Mice1. Biol. Reprod. 74, 119–124 (2006).
13. H. Toledano, C. D’Alterio, B. Czech, E. Levine, D. L. Jones, The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature. 485, 605–610 (2012).
14. M. R. Wallenfang, R. Nayak, S. DiNardo, Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell. 5, 297–304 (2006).
15. L. Pan et al., Stem Cell Aging Is Controlled Both Intrinsically and Extrinsically in the Drosophila Ovary. Cell Stem Cell. 1, 458–469 (2007).
16. J. V. Chakkalakal, K. M. Jones, M. A. Basson, A. S. Brack, The aged niche disrupts muscle stem cell quiescence. Nature. 490, 355–360 (2012).
17. D. G. Blackmore, M. G. Golmohammadi, B. Large, M. J. Waters, R. L. Rietze, Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice. Stem Cells. 27, 2044–2052 (2009).
18. H. J. Hsu, D. Drummond-Barbosa, Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 106, 1117–1121 (2009).
19. R. J. Lichtenwalner et al., Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience. 107, 603–613 (2001).
20. J. M. Ruckh et al., Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell. 10, 96–103 (2012).
21. S. A. Villeda et al., Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).
22. J. M. Castellano et al., Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature. 544, 488–492 (2017).
23. S. A. Villeda et al., The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 477, 90–94 (2011).
24. L. K. Smith et al., Β2-Microglobulin Is a Systemic Pro-Aging Factor That Impairs Cognitive Function and Neurogenesis. Nat. Med. 21, 932–937 (2015).
25. F. S. Loffredo et al., Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 153, 828–839 (2013).
26. T. Poggioli et al., Circulating Growth Differentiation Factor 11/8 Levels Decline with Age. Circ. Res. 118, 29–37 (2016).
27. R. De Cabo, D. Carmona-Gutierrez, M. Bernier, M. N. Hall, F. Madeo, The search for antiaging interventions: From elixirs to fasting regimens. Cell. 157 (2014), pp. 1515–1526.
28. P. Kapahi, M. Kaeberlein, M. Hansen, Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Res. Rev. 39 (2017), pp. 3–14.
29. S. C. Johnson, P. S. Rabinovitch, M. Kaeberlein, MTOR is a key modulator of ageing and age-related disease. Nature. 493 (2013), pp. 338–345.
30. R. Zoncu, A. Efeyan, D. M. Sabatini, MTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12 (2011), pp. 21–35.
31. S. ichiro Imai, L. Guarente, NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24 (2014), pp. 464–471.
32. D. J. Baker et al., Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 479, 232–236 (2011).
33. S. Mahmoudi, A. Brunet, Aging and reprogramming: A two-way street. Curr. Opin. Cell Biol. 24 (2012), pp. 744–756.
34. J. D. Miller et al., Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 13, 691–705 (2013).
35. L. Lapasset et al., Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 25, 2248–2253 (2011).
36. S. T. Suhr et al., Mitochondrial Rejuvenation After Induced Pluripotency. PLoS One. 5 (2010), doi:10.1371/journal.pone.0014095.
37. J. M. Polo et al., A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 151, 1617–1632 (2012).
38. K. Hochedlinger, K. Plath, Epigenetic reprogramming and induced pluripotency. Development. 136 (2009), pp. 509–523.
39. A. Ocampo et al., In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell. 167, 1719-1733.e12 (2016).
40. T. Nishiwaki-Ohkawa, T. Yoshimura, Molecular basis for regulating seasonal reproduction in vertebrates. J. Endocrinol. 229 (2016), pp. R117–R127.
41. N. G. Wreford, T. R. Kumar, M. M. Matzuk, D. M. De Kretser, Analysis of the testicular phenotype of the follicle-stimulating hormone β-subunit knockout and the activin type II receptor knockout mice by stereological analysis. Endocrinology. 142, 2916–2920 (2001).
42. T. R. Kumar, Y. Wang, N. Lu, M. M. Matzuk, Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat. Genet. 15, 201–204 (1997).
43. T. Pakarainen, F. P. Zhang, S. Mäkelä, M. Poutanen, I. Huhtaniemi, Testosterone replacement therapy induces spermatogenesis and partially restores fertility in luteinizing hormone receptor knockout mice. Endocrinology. 146, 596–606 (2005).
44. N. Binart et al., Male reproductive function is not affected in prolactin receptor-deficient mice. Endocrinology. 144, 3779–3782 (2003).
45. H. R. Christensen, M. K. Murawsky, N. D. Horseman, T. A. Willson, K. A. Gregerson, Completely humanizing prolactin rescues infertility in prolactin knockout mice and leads to human prolactin expression in extrapituitary mouse tissues. Endocrinology. 154, 4777–4789 (2013).
46. T. Yoshimura et al., Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature. 426, 178–181 (2003).
47. K. Ikegami et al., Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression. Endocrinology. 156, 647–659 (2015).
48. J. Bowles, P. Koopman, Retinoic acid, meiosis and germ cell fate in mammals. Development. 134 (2007), pp. 3401–3411.
49. J. Bowles et al., FGF9 suppresses meiosis and promotes male germ cell fate in mice. Dev. Cell. 19, 440–449 (2010).
50. F. Barrios et al., Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J. Cell Sci. 123, 871–880 (2010).
51. N. Kosaka, H. Sakamoto, M. Terada, T. Ochiya, Pleiotropic function of FGF-4: Its role in development and stem cells. Dev. Dyn. 238 (2009), pp. 265–276.
52. A. L. Laslett, J. R. McFarlane, M. T. W. Hearn, G. P. Risbridger, Requirement for heparan sulphate proteoglycans to mediate basic fibroblast growth factor (FGF-2)-induced stimulation of Leydig cell steroidogenesis. J. Steroid Biochem. Mol. Biol. 54, 245–250 (1995).
53. G. Q. Zhao, L. Liaw, B. L. M. Hogan, Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development. 125, 1103–1112 (1998).
54. G. Q. Zhao, K. Deng, P. A. Labosky, L. Liaw, B. L. M. Hogan, The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev. 10, 1657–1669 (1996).
55. J. C. Neumann et al., Mutation in the type IB bone morphogenetic protein receptor alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 108, 13153–13158 (2011).
56. J. Hu et al., Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Dev. Biol. 276, 158–171 (2004).
57. Y. Yang et al., BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia. Stem Cells Int. 2016 (2016), doi:10.1155/2016/9536192.
58. A. M. Clark, K. K. Garland, L. D. Russell, Desert hedgehog (Dhh) Gene Is Required in the Mouse Testis for Formation of Adult-Type Leydig Cells and Normal Development of Peritubular Cells and Seminiferous Tubules. Biol. Reprod. 63, 1825–1838 (2000).
59. M. J. Bitgood, L. Shen, A. P. McMahon, Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6, 298–304 (1996).
60. C. R. Morales, A. Fox, M. El-Alfy, X. Ni, W. S. Argraves, Expression of patched-1 and smoothened in testicular meiotic and post-meiotic cells. Microsc. Res. Tech. 72, 809–815 (2009).
61. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120 (2014).
62. D. Kim, B. Langmead, S. L. Salzberg, HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 12, 357–360 (2015).
63. M. Pertea, D. Kim, G. M. Pertea, J. T. Leek, S. L. Salzberg, Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).
64. M. Pertea et al., StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
65. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (2014), doi:10.1186/s13059-014-0550-8.
66. P.-L. Cheng, H.-R. Wu, C.-Y. Li, C.-F. Chen, H.-C. Cheng, Characterization of the testicular regeneration potential in premature cockerels. J. Reprod. Dev. 63 (2017), doi:10.1262/jrd.2017-090.
67. L. Cheng-Yan, thesis (2015).
68. S. Mahmoudi, L. Xu, A. Brunet, Turning back time with emerging rejuvenation strategies. Nat. Cell Biol. 21 (2019), pp. 32–43.
69. S. Basciani, S. Mariani, G. Spera, L. Gnessi, Role of platelet-derived growth factors in the testis. Endocr. Rev. 31 (2010), pp. 916–939.
70. J. Brennan, C. Tilmann, B. Capel, Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 17, 800–810 (2003).
71. H. M. Odeh, C. Kleinguetl, R. Ge, B. R. Zirkin, H. Chen, Regulation of the Proliferation and Differentiation of Leydig Stem Cells in the Adult Testis1. Biol. Reprod. 90 (2014), doi:10.1095/biolreprod.114.117473.
72. N. Golestaneh et al., Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction. 138, 151–162 (2009).
73. X. N. Wang et al., The Wilms Tumor Gene, Wt1, Is Critical for Mouse Spermatogenesis via Regulation of Sertoli Cell Polarity and Is Associated with Non-Obstructive Azoospermia in Humans. PLoS Genet. 9 (2013), doi:10.1371/journal.pgen.1003645.
74. H. M. Takase, R. Nusse, Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc. Natl. Acad. Sci. U. S. A. 113, E1489–E1497 (2016).
75. K. A. Molyneaux et al., The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development. 130, 4279–4286 (2003).
76. A. I. Packer, P. Besmer, R. F. Bachvarova, Kit ligand mediates survival of type a spermatogonia and dividing spermatocytes in postnatal mouse testes. Mol. Reprod. Dev. 42, 303–310 (1995).
77. S. G. Moreno et al., TGFβ signaling in male germ cells regulates gonocyte quiescence and fertility in mice. Dev. Biol. 342, 74–84 (2010).
78. G. Ricci, A. Catizone, Pleiotropic activities of HGF/c-Met system in testicular physiology: Paracrine and endocrine implications. Front. Endocrinol. (Lausanne). 5 (2014), , doi:10.3389/fendo.2014.00038.
79. T. M. Clement, R. K. Bhandari, I. Sadler-Riggleman, M. K. Skinner, SRY Directly Regulates the Neurotrophin 3 Promoter During Male Sex Determination and Testis Development in Rats1. Biol. Reprod. 85, 277–284 (2011).
80. Y.-M. Chou, thesis (2019).
81. M. L. Gumulka, I. Rozenboim, Breeding period-associated changes in semen quality, concentrations of LH, PRL, gonadal steroid and thyroid hormones in domestic goose ganders (Anser anser f. domesticus). Anim. Reprod. Sci. (2015), doi:10.1016/j.anireprosci.2014.11.021.
82. E. M. Snyder, J. C. Davis, Q. Zhou, R. Evanoff, M. D. Griswold, Exposure to Retinoic Acid in the Neonatal but Not Adult Mouse Results in Synchronous Spermatogenesis1. Biol. Reprod. 84, 886–893 (2011).
83. A. H. Miller, The Occurrence and Maintenance of the Refractory Period in Crowned Sparrows. Condor. 56, 13–20 (1954).
84. A. Dawson, Annual gonadal cycles in birds: Modeling the effects of photoperiod on seasonal changes in GnRH-1 secretion. Front. Neuroendocrinol. 37 (2015), pp. 52–64.
85. L.-Y. Lu, thesis (2015).
86. J. M. Wells, F. M. Watt, Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature. 557 (2018), pp. 322–328.
87. K. Ikegami, T. Yoshimura, Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. Gen. Comp. Endocrinol. 227, 64–68 (2016).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊