跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴韻文
研究生(外文):Yun-Wen Lai
論文名稱:探討克弗爾肽對於佐劑誘導大鼠關節炎模式之抗發炎與骨質保護功效
論文名稱(外文):Anti-inflammation and Bone Protection Effects of Kefir Peptides in a Rat Model of Adjuvant-induced Arthritis
指導教授:陳全木陳全木引用關係
指導教授(外文):Chuan-Mu Chen
口試委員:張國友顏至慶劉英明范洪春
口試委員(外文):Kowit-Yu ChongChih-Ching YenYing-Ming LiouHueng-Chuen Fan
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:96
中文關鍵詞:類風濕性關節炎發炎反應骨骼侵蝕克弗爾肽
外文關鍵詞:Rheumatoid arthritisInflammationBone erosionKefir peptides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
類風溼性關節炎(Rheumatoid Arthritis, RA)是種慢性自體免疫疾病,全球約有1%的人口受其影響,主要病徵包括關節的滑膜發炎、軟骨侵蝕與關節結構破壞等症狀。其中發炎反應被認為在類風濕性關節炎中案演重要關鍵,吸引免疫細胞並釋放細胞激素進而影響關節與全身系統。而長期的慢性發炎容易引發諸多併發症,如骨質疏鬆與心血管疾病等,也是造成類風濕性關節患者死亡率居高不下的原因。目前仍無方法可以完全治癒類風濕性關節炎,臨床治療的策略為減緩疼痛與延阻關節炎的惡化。本實驗室自行開發的克弗爾肽在過去研究中發現在心血管疾病、骨質疏鬆與肺發炎疾病中皆展現出良好的減緩與治療功效。故本實驗進一步將克弗爾肽應用於類風濕性關節炎動物模式中,欲探討克弗爾肽是否能減緩發炎與抑制骨質流失。研究中使用6週齡的Lewis大鼠進行佐劑誘導關節炎,將大鼠分為:(1)正常鼠對照組、(2)佐劑誘導關節炎疾病對照組、(3)佐劑誘導關節炎+低劑量克弗爾肽實驗組、(4)佐劑誘導關節+高劑量克弗爾肽實驗組、(5)佐劑誘導關節炎+生物製劑藥物正對照組。在佐劑誘導後15天開始進行連續兩週治療,實驗結束後犧牲大鼠採集踝關節組織進行後續分析。結果顯示關節炎臨床評估中高劑量克弗爾肽能有效減緩關節炎的症狀。在超音波影像、X光片與組織病理切片中亦顯示在高劑量克弗爾肽治療後能減少滑膜炎與骨質流失。而在活體螢光影像中則顯示克弗爾肽有降低MMP表現量的趨勢。在組織mRNA含量分析中,高劑量克弗爾肽能有效減少巨噬細胞分泌的TNF-α、IL-1β與IL-6等發炎因子,且能降低RANKL/OPG的比值,抑制蝕骨細胞的活化。組織蛋白含量分析的部分則能降低NF-κB途徑的活性,減少下游產生TNF-α。綜合上述結果,克弗爾肽可以透過減少組織中NF-κB途徑的活性與降低巨噬細胞分泌發炎因子來減緩關節中的發炎反應與骨骼侵蝕作用。因此相當具有潛力作為類風濕性關節炎患者的新穎治療物質。
Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting 1% of people in the world. The pathological characteristics include synovial inflammation, bone erosion, and joint structure damages. Furthermore, the inflammatory responses of rheumatoid arthritis attract immune cells to aggregate in joints and release cytokines to cause bone erosion. Chronic inflammation can lead to many complications, such as osteoporosis and cardiovascular disease, which is also the reason for the high mortality rate of rheumatoid arthritis patients. Our previous studies have shown that kefir peptides, derived from kefir fermented product, can reduce cardiovascular disease, osteoporosis and lung inflammation, but the anti-inflammatory effect of kefir peptides on RA is still unknown. To investigate the anti-inflammatory effect of kefir peptides on RA, kefir peptides were used to treat the rat model of adjuvant-induced arthritis (AIA). The animals were divided into five groups, normal, arthritis- induced alone (Mock), arthritis-induced and supplemented with low-dose kefir peptides (KPs-L), arthritis-induced high-dose kefir peptides (KPs-H) and Tofacitinib drug. When the arthritis onset, each group was treated with water (Mock), kefir peptides or Tofacitinib, respectively. After 14 days treatment, the ankle joint tissue were collected for analysis. In the clinical arthritis assessment, result showed that the KPs-H group has lower arthritis score than the Mock group, and the ultrasonography, radiograph and histological demonstrated that decreased severity of the synovitis and bone erosion of the ankle joint after high dose kefir peptides treatment. In non invasion in vivo imaging system (IVIS) fluorescence images also showed all kefir peptides groups have less MMP expression than the arthritis-induced mock group. Moreover, the administration of kefir peptides also decrease inflammation in ankle joint by decreaseing the mRNA expression of TNF-α, IL-1β, IL-6, MMP-13 and RANKL/OPG ratio. In protein analysis, high dose kefir peptides has reduce the NF-κB pathway and TNF-α expression. These results indicated that kefir peptides may have an anti-inflammatory effect and reduce the bone erosion of ankle joint by decrease macrophage product inflammation cytokines. This study confirmed that kefir peptides is a potentially promising substance for the treatment of rheumatoid arthritis.
摘要 i
Abstract ii
目次 iii
圖次 vi
表次 vii
壹、緒論 1
貳、文獻探討 2
一、自體免疫疾病 (Autoimmune disease) 2
(一)免疫耐受性 (Immune tolerance) 2
(二)常見的自體免疫疾病種類 3
二、類風濕性關節炎 (Rheumatoid Arthritis, RA) 7
(一)關節的組成與基本構造 7
(二)類風濕性關節炎疾病的發展過程 11
(三)類風濕性關節炎罹病風險 13
(四)現今的治療策略 14
三、類風濕性關節炎參與的發炎反應 17
(一)先天性免疫(Innate immunity) 17
(二)適應性免疫(Adaptive Immunity) 19
(三)免疫反應中參與的發炎途徑與細胞激素 21
四、類風濕性關節炎動物疾病模式 24
(一)佐劑誘導關節炎(adjuvant-induced arthritis, AIA) 24
(二)二型膠原蛋白誘導關節炎(collagen type II induced arthritis, CIA) 25
(三)鏈球菌細胞壁誘導關節炎(Streptococcal cell wall arthritis, SCW) 26
五、生物醫學影像 28
(一)常見的醫學影像技術 28
(二)藥物開發研究活體分子影像技術 31
六、克弗爾(Kefir)發酵產物 33
(一)克弗爾的組成成分 33
(二)克弗爾的保健功效 33
七、研究動機與目的 37
參、材料與方法 38
一、建立關節炎動物模式 38
(一)實驗動物品系來源與飼養條件 38
(二)佐劑誘導關節炎動物模式 38
二、實驗流程 40
(一)實驗架構規劃 40
(三)試驗材料製備 43
三、動物犧牲與採集組織樣品 43
(一)犧牲前器具準備 43
(二)血清 43
(三)胸腺 44
(四)脾臟 44
(五)後腳組織 44
(六)其他 44
四、X光片影像分析 45
五、非侵入式螢光活體分子影像系統 (non invasion in vivo imaging system, IVIS) 45
(一)MMPsense 750 FAST製備與注射 45
(二)IVIS操作與參數設定 46
(三)影像訊號分析與定量 46
六、超音波掃瞄影像 46
(一)前置準備與儀器開啟 46
(二)老鼠擺位與探頭掃描角度 47
(三)滑膜炎分級評估 47
七、組織病理學分析 48
(一)組織前處理 48
(二)石蠟包埋與切片 48
(三)蘇木紫-伊紅染色 49
(四)組織病理評分 49
(五)免疫組織化學染色 49
八、mRNA表現量分析 53
(一)樣品RNA萃取 53
(二)RNA定量、DNA去汙與合成cDNA 53
(三)定量即時聚合酶鏈鎖反應 (Quantitative real time polymerase chain reaction, qRT-PCR) 54
九、蛋白質表現量分析 57
(一)樣品總蛋白質萃取 57
(二)蛋白質濃度測定 57
(三)西方墨點法 57
十、統計分析與繪圖軟體 61
肆、結果 62
一、建立佐劑誘導關節炎動物模式與克弗爾肽最適治療時間 62
(一)佐劑誘導關節炎動物模式發病變化 62
二、克弗爾肽治療對於佐劑誘導關節炎大鼠之生理參數與臨床關節評估 64
(一)體重變化 64
(二)臨床關節炎評分 64
(三)踝關節腫脹變化 65
(四)後腳發炎照片 65
三、評估克弗爾肽治療對於組織病理與切片改善功效 70
(一) X光片影像 70
(二)超音波影像 70
(三)IVIS系統螢光影像 71
(四)組織切片H&E染色與病理評分 71
四、 評估克弗爾肽治療對於發炎因子濃度與發炎途徑活化程度變化 78
(一) mRNA表現量分析 78
(二)蛋白表現量分析 80
伍、討論 84
一、建立佐劑誘導關節炎動物模式之材料方法與發病率 84
二、活體醫學影像對於佐劑誘導關節炎動物模式病變追蹤與評估 84
三、克弗爾肽對於佐劑誘導關節炎之功效評估 85
(一)克弗爾肽對於佐劑誘導關節炎之抗發炎功效 85
(二)克弗爾肽對於佐劑誘導關節炎之骨保護功效 85
(三)克弗爾肽對於佐劑誘導關節炎治療之可能作用機制 86
陸、結論 88
柒、參考文獻 89
張宏棋、辛和宗、王明仁、陳家蓁、陳秀珍、陳雪芬、蔡秋帆、陳淑瑩與葉慧容。(2019)。基礎生理學 (三版修訂版)。臺北市:華格那出版社, 第9章。
Abramowicz J. S. (2013). Benefits and risks of ultrasound in pregnancy. Seminars in Perinatology, 37(5), 295–300.
Abulhasan, J. F., & Grey, M. J. (2017). Anatomy and physiology of knee stability. Journal of Functional Morphology and Kinesiology, 2(4), 34-44.
Ahmed, Z., Wang, Y., Ahmad, A., Khan, S. T., Nisa, M., Ahmad, H., & Afreen, A. (2013). Kefir and health: a contemporary perspective. Food Science and Nutrition, 53(5), 422–434.
Alam, J., Jantan, I., & Bukhari, S. (2017). Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomedicine & Pharmacotherapy, 92, 615–633.
Allison, M. C., Howatson, A. G., Torrance, C. J., Lee, F. D., & Russell, R. I. (1992). Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs. New England Journal of Medicine, 327(11), 749-754.
Álvarez, P., Genre, F., Iglesias, M., Augustin, J. J., Tamayo, E., Escolà‐Gil, J.C., Lavín, B., Blanco‐Vaca, F., Merino, R., & Merino, J. (2016). Modulation of autoimmune arthritis severity in mice by apolipoprotein E (ApoE) and cholesterol. Clinical & Experimental Immunology, 186(3), 292-303.
Arab, H. H., Salama, S. A., Abdelghany, T. M., Omar, H. A., Arafa, E. A., Alrobaian, M. M., & Maghrabi, I. A. (2017). Camel milk attenuates rheumatoid arthritis via inhibition of mitogen activated protein kinase pathway. Cellular Physiology and Biochemistry, 43(2), 540-552.
Arend, W. P. (2001). The innate immune system in rheumatoid arthritis. Arthritis and Rheumatism, 44(10), 2224-2234.
Arts, E. E., Fransen, J., Den Broeder, A. A., van Riel, P., & Popa, C. D. (2017). Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: a time-dependent Cox regression analysis in a large cohort study. Annals of the Rheumatic Diseases, 76(10), 1693–1699.
Asquith, D. L., Miller, A. M., McInnes, I. B., & Liew, F. Y. (2009). Animal models of rheumatoid arthritis. European Journal of Immunology, 39(8), 2040–2044.
Balagué, C., Kunkel, S. L., & Godessart, N. (2009). Understanding autoimmune disease: new targets for drug discovery. Drug Discovery Today, 14(19-20), 926–934.
Bankman, I. (2008). Handbook of medical image processing and analysis. Amsterdam, Netherlands: Elsevier. pp. 725-753.
Benjamin, O., Bansal, P., Goyal, A., & Lappin, S. L. (2019). Disease modifying anti-rheumatic drugs (DMARD). Treasure Island ,FL, USA: StatPearls. pp. 1-10.
Bevaart, L., Vervoordeldonk, M. J., & Tak, P. P. (2010). Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis?. Arthritis and Rheumatism, 62(8), 2192–2205.
Bolon, B., Stolina, M., King, C., Middleton, S., Gasser, J., Zack, D., & Feige, U. (2011). Rodent preclinical models for developing novel antiarthritic molecules: comparative biology and preferred methods for evaluating efficacy. Journal of Biomedicine & Biotechnology, 2011, 569068.
Borhade, N., Pathan, A. R., Halder, S., Karwa, M., Dhiman, M., Pamidiboina, V., Gund, M., Deshattiwar, J. J., Mali, S. V., Deshmukh, N. J., Senthilkumar, S. P., Gaikwad, P., Tipparam, S. G., Mudgal, J., Dutta, M. C., Burhan, A. U., Thakre, G., Sharma, A., Deshpande, S., Desai, D. C., Dubash, N. P., Jain, A. K., Sharma, S., Nemmani, K., & Satyam, A. (2012). NO-NSAIDs. Part 3: nitric oxide-releasing prodrugs of non-steroidal anti-inflammatory drugs. Chemical & Pharmaceutical Bulletin, 60(4), 465–481.
Boyce, B. F., & Xing, L. (2007). Biology of RANK, RANKL, and osteoprotegerin. Arthritis Research & Therapy, 9 (Suppl 1), S1.
Brand, D. D., Latham, K. A., & Rosloniec, E. F. (2007). Collagen-induced arthritis. Nature Protocols, 2(5), 1269–1275.
Burke, R., & White, N. (2014). Biologic disease-modifying antirheumatic drugs. Pharmacotherapy self-assessment program, Chronic illnesses II. Lenexa, KA, USA: American College of Clinical Pharmacy. pp. 9-31.
Burrage, P. S., Mix, K. S., & Brinckerhoff, C. E. (2006). Matrix metalloproteinases: role in arthritis. Frontiers in Bioscience, 11, 529–543.
Campbell, I. K., Hamilton, J. A., & Wicks, I. P. (2000). Collagen-induced arthritis in C57BL/6 (H-2b) mice: new insights into an important disease model of rheumatoid arthritis. European Journal of Immunology, 30(6), 1568–1575.
Chang, K., Yang, S. M., Kim, S. H., Han, K. H., Park, S. J., & Shin, J. I. (2014). Smoking and rheumatoid arthritis. International Journal of Molecular Sciences, 15(12), 22279–22295.
Chen, H. L., Tung, Y. T., Chuang, C. H., Tu, M. Y., Tsai, T. C., Chang, S. Y., & Chen, C. M. (2015). Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis. Osteoporosis International, 26(2), 589–599.
Chen, H. L., Hung, K. F., Yen, C. C., Laio, C. H., Wang, J. L., Lan, Y. W., Chong, K. Y., Fan, H. C., & Chen, C. M. (2019). Kefir peptides alleviate particulate matter <4 μm (PM4.0)-induced pulmonary inflammation by inhibiting the NF-κB pathway using luciferase transgenic mice. Scientific Reports, 9(1), 11529.
Chijimatsu, R., & Saito, T. (2019). Mechanisms of synovial joint and articular cartilage development. Cellular and Molecular Life Sciences, 76(20), 3939–3952.
Coppens, P., & Penner-Hahn, J. (2001). Introduction: X-rays in chemistry. Chemical Reviews, 101(6), 1567-1568.
Crofford, L. J. (2000). The role of COX-2 in rheumatoid arthritis synovial tissues. Arthritis Research & Therapy, 1(Suppl 1), S30.
Crofford L. J. (2013). Use of NSAIDs in treating patients with arthritis. Arthritis Research & Therapy, 15 Suppl 3(Suppl 3), S2.
Deane, K. D., Demoruelle, M. K., Kelmenson, L. B., Kuhn, K. A., Norris, J. M., & Holers, V. M. (2017). Genetic and environmental risk factors for rheumatoid arthritis. Best Practice & Research: Clinical Rheumatology, 31(1), 3–18.
Deschner, J., Rath-Deschner, B., & Agarwal, S. (2006). Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis and Cartilage, 14(3), 264–272.
Dey, P., Panga, V., & Raghunathan, S. (2016). A Cytokine Signalling Network for the Regulation of Inducible Nitric Oxide Synthase Expression in Rheumatoid Arthritis. PloS One, 11(9), e0161306.
Di Paola, R., & Cuzzocrea, S. (2008). Predictivity and sensitivity of animal models of arthritis. Autoimmunity Reviews, 8(1), 73–75.
Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis - a review. European Journal of Neurology, 26(1), 27–40.
El Golli-Bennour, E., Timoumi, R., Koroit, M., Bacha, H., & Abid-Essefi, S. (2019). Protective effects of kefir against zearalenone toxicity mediated by oxidative stress in cultured HCT-116 cells. Toxicon, 157, 25–34.
Emery, P. (2006). Treatment of rheumatoid arthritis. British Medical Journal, 332(7534), 152-155.
Falgarone, G., Jaen, O., & Boissier, M. C. (2005). Role for innate immunity in rheumatoid arthritis. Joint Bone Spine, 72(1), 17–25.
Farag, M. A., Jomaa, S. A., El-Wahed, A. A., & El-Seedi, A. (2020). The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients, 12(2), 346.
Farnworth, E. R. (2005). Kefir–a complex probiotic. Food Science & Technology Bulletin Functional Foods, 2(1), 1-17.
Feldmann, M., Andreakos, E., Smith, C., Bondeson, J., Yoshimura, S., Kiriakidis, S., Monaco, C., Gasparini, C., Sacre, S., Lundberg, A., Paleolog, E., Horwood, N. J., Brennan, F. M., & Foxwell, B. M. (2002). Is NF-kappaB a useful therapeutic target in rheumatoid arthritis?. Annals of the Rheumatic Diseases, 61(Suppl 2), ii13–ii18.
Felson, D. T., Smolen, J. S., Wells, G., Zhang, B., van Tuyl, L. H., Funovits, J., Aletaha, D., Allaart, C. F., Bathon, J., Bombardieri, S., Brooks, P., Brown, A., Matucci-Cerinic, M., Choi, H., Combe, B., de Wit, M., Dougados, M., Emery, P., Furst, D., Gomez-Reino, J., Hawker, G., Keystone, E., Khanna, D., Kirwan, J., Kvien, T. K., Landewé, R., Listing, J., Michaud, K., Martin-Mola, E., Montie, P., Pincus, T., Richards, P., Siegel, J. N., Simon, L. S., Sokka, T., Strand, V., Tugwell, P., Tyndall, A., Heijde, D., Verstappen, S., White, B., Wolfe, F., Zink, A., & Boers, M. (2011). American College of Rheumatology/European League against Rheumatism provisional definition of remission in rheumatoid arthritis for clinical trials. Annals of the Rheumatic Diseases, 70(3), 404–413.
Fernández, A., & Vendrell, M. (2016). Smart fluorescent probes for imaging macrophage activity. Chemical Society Reviews, 45(5), 1182–1196.
Feuerstein, J. D., & Cheifetz, A. S. (2014). Ulcerative colitis: epidemiology, diagnosis, and management. Mayo Clinic Proceedings, 89(11), 1553–1563.
Firestein G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356–361.
Frisbie, D.D. (2012). Synovial joint anatomy, biology and pathobiology. Equine Surgery 4th Edition, Amsterdam, Netherlands: Elsevier. pp. 1096-1114.
Fucikova, J., Palova-Jelinkova, L., Bartunkova, J., & Spisek, R. (2019). Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Frontiers in Immunology, 10, 2393.
Geusens P. (2012). The role of RANK ligand/osteoprotegerin in rheumatoid arthritis. Therapeutic Advances in Musculoskeletal Disease, 4(4), 225–233.
Gierut, A., Perlman, H., & Pope, R. M. (2010). Innate immunity and rheumatoid arthritis. Rheumatic Diseases Clinics of North America, 36(2), 271–296.
Grover, V. P., Tognarelli, J. M., Crossey, M. M., Cox, I. J., Taylor-Robinson, S. D., & McPhail, M. J. (2015). Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. Journal of Clinical and Experimental Hepatology, 5(3), 246–255.
Guo, Q., Wang, Y., Xu, D., Nossent, J., Pavlos, N. J., & Xu, J. (2018). Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Research, 6, 15-28.
Harman, H., & Tekeoğlu, İ. (2017). Ankle pathologies in patients with inflammatory rheumatic diseases: a clinical and ultrasonographic study. International Journal of Rheumatic Diseases, 20(6), 675–684.
Hertzler, S. R., & Clancy, S. M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. Journal of the American Dietetic Association, 103(5), 582–587.
Kalaiselvan, S., & Rasool, M. K. (2016). Triphala herbal extract suppresses inflammatory responses in LPS-stimulated RAW 264.7 macrophages and adjuvant-induced arthritic rats via inhibition of NF-κB pathway. Journal of Immunotoxicology, 13(4), 509–525.
Katti, G., Ara, S. A., & Shireen, A. (2011). Magnetic resonance imaging (MRI)–A review. International Journal of Clinical Pediatric Dentistry, 3(1), 65-70.
Klareskog, L., Amara, K., & Malmström, V. (2014). Adaptive immunity in rheumatoid arthritis: anticitrulline and other antibodies in the pathogenesis of rheumatoid arthritis. Current Opinion in Rheumatology, 26(1), 72–79.
Kohashi, O., Aihara, K., Ozawa, A., Kotani, S., & Azuma, I. (1982). New model of a synthetic adjuvant, N-acetylmuramyl-L-alanyl-D-isoglutamine- induced arthritis: clinical and histologic studies in athymic nude and euthymic rats. Laboratory Investigation, 47(1), 27–36.
Koo, V., Hamilton, P. W., & Williamson, K. (2006). Non-invasive in vivo imaging in small animal research. Cellular Oncology, 28(4), 127–139.
Koundal, D., & Sharma, B. (2019). Challenges and future directions in neutrosophic set-based medical image analysis. Neutrosophic Set in Medical Image Analysis, 313-343.
Kurkó, J., Besenyei, T., Laki, J., Glant, T. T., Mikecz, K., & Szekanecz, Z. (2013). Genetics of rheumatoid arthritis - a comprehensive review. Allergy & Immunology, 45(2), 170–179.
Kusumoto, K. (2002). The protective anti-oxidant effects of Kefir on SFME neural stem cells. Animal Cell Technology: Basic & Applied Aspects, 12, 353-357.
Laugisch, O., Wong, A., Sroka, A., Kantyka, T., Koziel, J., Neuhaus, K., Sculean, A., Venables, P. J., Potempa, J., Möller, B., & Eick, S. (2016). Citrullination in the periodontium--a possible link between periodontitis and rheumatoid arthritis. Clinical Oral Investigations, 20(4), 675–683.
Lerner, A., Jeremias, P., & Matthias, T. (2015). The world incidence and prevalence of autoimmune diseases is increasing. International Journal of Celiac Disease, 3(4), 151-155.
Liu, J., Ma, W., Liu, F., Hu, Y., Yang, J., & Xu, X.. (2007). Study and application of medical image visualization technology. International Conference on Digital Human Modeling, 4561, 668-677.
Lu, G., Hao, X., Chen, W. H., & Mu, S. (2018). GAAD: A Gene and Autoimmiune Disease Association Database. Genomics, Proteomics & Bioinformatics, 16(4), 252–261.
Luo, X., Miller, S. D., & Shea, L. D. (2016). Immune Tolerance for Autoimmune Disease and Cell Transplantation. Annual Review of Biomedical Engineering, 18, 181–205.
Makarov, S. S. (2001). NF-κB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Research, & Therapy, 3(4), 1-7.
Mastrandrea, L. D. (2015). An overview of organ-specific autoimmune diseases including immunotherapy. Immunological Investigations, 44(8), 803-816.
Mateen, S., Zafar, A., Moin, S., Khan, A. Q., & Zubair, S. (2016). Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clinica Chimica Acta, 455, 161-171.
McGonagle, D., Watad, A., & Savic, S. (2018). Mechanistic immunological based classification of rheumatoid arthritis. Autoimmunity Reviews, 17(11), 1115-1123.
Mohammed, R., & Elmakhzangy, H. (2017). The Gut Microbiota and Inflammation in Rheumatoid Arthritis. New Developments in the Pathogenesis of Rheumatoid Arthritis, 83.
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27-31.
Negi, V. S., Mariaselvam, C. M., Misra, D. P., Muralidharan, N., Fortier, C., Charron, D., Krishnamoorthy, R., & Tamouza, R. (2017). Polymorphisms in the promoter region of iNOS predispose to rheumatoid arthritis in south Indian Tamils. International Journal of Immunogenetics, 44(3), 114–121.
Nielsen, B., Gürakan, G. C., & Ünlü, G. (2014). Kefir: a multifaceted fermented dairy product. Probiotics and Antimicrobial Proteins, 6(3-4), 123-135.
Ntziachristos, V. (2006). Fluorescence molecular imaging. Biomedical Engineering Online, 8, 1-33.
Pelletier, X., Laure-Boussuge, S., & Donazzolo, Y. (2001). Hydrogen excretion upon ingestion of dairy products in lactose-intolerant male subjects: importance of the live flora. European Journal of Clinical Nutrition, 55(6), 509-512.
Pine, P. R., Chang, B., Schoettler, N., Banquerigo, M. L., Wang, S., Lau, A., Zhao, F., Grossbard, E. B., Payan, D. G., & Brahn, E. (2007). Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clinical Immunology, 124(3), 244-257.
Ponist, S., Zloh, M., & Bauerova, K. (2019). Impact of Oxidative Stress on Inflammation in Rheumatoid and Adjuvant Arthritis: Damage to Lipids, Proteins, and Enzymatic Antioxidant Defense in Plasma and Different Tissues. Animal Models in Medicine and Biology. DOI: 10.5772/intechopen.89480.
Prekasan, D., & Saju, K. K. (2016). Review of the tribological characteristics of synovial fluid. Procedia Technology, 25, 1170-1174.
Rahman, M., Beg, S., Sharma, G., Saini, S., Rub, R. A., Aneja, P., Anwar, F., Alam, M. A., & Kumar, V. (2016). Lipid-based Vesicular Nanocargoes as Nanotherapeutic Targets for the Effective Management of Rheumatoid Arthritis. Recent Patents on Anti-Infective Drug Discovery, 11(1), 3–15.
Roman-Blas, J. A., & Jimenez, S. A. (2006). NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis & Cartilage, 14, 839-848.
Romão, V. C., Talarico, R., Scirè, C. A., Vieira, A., Alexander, T., Baldini, C., Gottenberg, J. E., Gruner, H., Hachulla, E., Mouthon, L., Orlandi, M., Pamfil, C., Pineton de Chambrun, M., Taglietti, M., Toplak, N., van Daele, P., van Laar, J. M., Bombardieri, S., Schneider, M., Smith, V., Cutolo, M., Mosca, M., & Mariette, X. (2018). Sjögren''s syndrome: state of the art on clinical practice guidelines. RMD Open, 4(Suppl 1), e000789.
Rosa, D. D., Grześkowiak, Ł. M., Ferreira, C. L., Fonseca, A. C., Reis, S. A., Dias, M. M., Siqueira, N. P., Silva, L. L., Neves, C. A., Oliveira, L. L., Machado, A. B., & Peluzio, M. (2016). Kefir reduces insulin resistance and inflammatory cytokine expression in an animal model of metabolic syndrome. Food & Function, 7(8), 3390–340
Scher, J. U., Sczesnak, A., Longman, R. S., Segata, N., Ubeda, C., Bielski, C., Rostron, T., Cerundolo, V., Pamer, E. G., Abramson, S. B., Huttenhower, C., & Littman, D. R. (2013). Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife, 2, e01202.
Seo, M. K., Park, E. J., Ko, S. Y., Choi, E. W., & Kim, S. (2018). Therapeutic effects of kefir grain Lactobacillus-derived extracellular vesicles in mice with 2, 4, 6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease. Journal of Dairy Science, 101(10), 8662-8671.
Shukla, A. K., & Kumar, U. (2006). Positron emission tomography: An overview. Association of Medical Physicists of India, 31(1), 13-21.
Smith, D. A., & Germolec, D. R. (1999). Introduction to immunology and autoimmunity. Journal Environmental Health Perspectives, 107 (Suppl 5), 661-665.
Smith, T. J., & Hegedüs, L. (2016). Graves’ disease. New England Journal of Medicine, 375, 1552-1565.
Smolen, J. S., Aletaha, D., Barton, A., Burmester, G. R., Emery, P., Firestein, G. S., Kavanaugh, A., McInnes, I. B., Solomon, D. H., Strand, V., & Yamamoto, K. (2018). Rheumatoid arthritis. Nature Reviews Disease Primers, 4, 18001.
Somers, E. C., Thomas, S. L., Smeeth, L., & Hall, A. J. (2006). Autoimmune diseases co-occurring within individuals and within families: a systematic review. Epidemiology, 17(2), 202–217.
Souza, P., & Lerner, U. H. (2019). Finding a toll on the route: the fate of osteoclast progenitors after toll-like receptor activation. Frontiers in Immunology, 10, 1663.
Tamer, T. M. (2013). Hyaluronan and synovial joint: function, distribution and healing. Interdisciplinary Toxicology, 6, 111-125.
Tamirou, F., Arnaud, L., Talarico, R., Scirè, C. A., Alexander, T., Amoura, Z., Avcin, T., Bortoluzzi, A., Cervera, R., & Conti, F. (2019). Systemic lupus erythematosus: state of the art on clinical practice guidelines. Rheumatic & Musculoskeletal Diseases Open, 4, e000793.
Terslev, L., Naredo, E., Aegerter, P., Wakefield, R. J., Backhaus, M., Balint, P., Bruyn, G., Iagnocco, A., Jousse-Joulin, S., Schmidt, W. A., Szkudlarek, M., Conaghan, P. G., Filippucci, E., & D''Agostino, M. A. (2017). Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-Part 2: reliability and application to multiple joints of a standardised consensus-based scoring system. Rheumatic & Musculoskeletal Diseases Open, 3(1), e000427.
Thoreux, K., & Schmucker, D. L. (2001). Kefir milk enhances intestinal immunity in young but not old rats. The Journal of Nutrition, 131(3), 807-812.
Toivanen, P. (2003). Normal intestinal microbiota in the aetiopathogenesis of rheumatoid arthritis. Annals of the Rheumatic Diseases, 62(9), 807-811.
Tu, M. Y., Chen, H. L., Tung, Y. T., Kao, C. C., Hu, F. C., & Chen, C. M. (2015). Short-Term Effects of Kefir-Fermented Milk Consumption on Bone Mineral Density and Bone Metabolism in a Randomized Clinical Trial of Osteoporotic Patients. PloS One, 10(12), e0144231.
Urdaneta, E., Barrenetxe, J., Aranguren, P., Irigoyen, A., Marzo, F., & Ibáñez, F. C. (2007). Intestinal beneficial effects of kefir-supplemented diet in rats. Nutrition Research, 27, 653-658.
Van den Broek, M.F., Van den Berg, W.B., Van de Putte, L.B., & Severijnen, A.J. (1988). Streptococcal cell wall-induced arthritis and flare-up reaction in mice induced by homologous or heterologous cell walls. The American Journal of Pathology, 133(1), 139-149.
Wang, L., Wang, F. S., & Gershwin, M. E. (2015). Human autoimmune diseases: a comprehensive update. Journal of Internal Medicine, 278(4), 369–395.
Wang, Y., Xu, N., Xi, A., Ahmed, Z., Zhang, B., & Bai, X. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 84(2), 341-347.
Wei, S. C., Chang, T. A., Chao, T. H., Chen, J. S., Chou, J. W., Chou, Y. H., Chuang, C. H., Hsu, W. H., Huang, T. Y., Hsu, T. C., Lin, C. C., Lin, H. H., Lin, J. K., Lin, W. C., Ni, Y. H., Shieh, M. J., Shih, I. L., Shun, C. T., Tsang, Y. M., Wang, C. Y., Wang, H. Y., Weng, M. T., Wu, D. C., Wu, W. C., Yen, H. H., & Wong, J. M. (2017). Management of ulcerative colitis in Taiwan: consensus guideline of the Taiwan Society of Inflammatory Bowel Disease. Intestinal Research, 15(3), 266–284.
Wells, P. N. (2006). Ultrasound imaging. Physics in Medicine & Biology, 51(13), R83-R98.
Wells, P. N., & Liang, H. D. (2011). Medical ultrasound: imaging of soft tissue strain and elasticity. Journal of The Royal Society Interface, 8(64), 1521-1549.
Weyand, C. M., Bryl, E., & Goronzy, J. J. (2000). The role of T cells in rheumatoid arthritis. Archivum Immunologiae et Therapiae Experimentalis, 48(5), 429-35.
Wilder, R. L. (1998). Streptococcal cell wall arthritis. Current Protocols in immunology, 26, 15.10. 1-15.10. 12.
Williams, C. S., Mann, M., & DuBois, R. N. (1999). The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18(55), 7908-7916.
Williams, R. O. (2005). Models of rheumatoid arthritis. Animal Models of T Cell-Mediated Skin Diseases, 50, 89-117.
Willmann, J. K, Van Bruggen, N., Dinkelborg, L. M., & Gambhir, S. S. (2008). Molecular imaging in drug development. Nature Reviews Drug Discovery, 7, 591-607.
Woods, J. M., Mogollon, A., Amin, M. A., Martinez, R. J., & Koch, A. E . (2003). The role of COX-2 in angiogenesis and rheumatoid arthritis. Experimental and Molecular Pathology, 74(3), 282-290.
Wooley, P. H., Grimm, M. J., & Radin, E. L. (2005). The structure and function of joints. Arthritis and Allied Conditions: A Textbook of Rheumatology. Philadelphia, PE,USA: Lippincott Williams & Wilkins. pp. 149-173.
Yeh, K. W., Yu, C. H., Chan, P. C., Horng, J. T., & Huang, J. L. (2013). Burden of systemic lupus erythematosus in Taiwan: a population-based survey. Rheumatology International, 33(7), 1805–1811.
Young, A., & Koduri, G. (2007). Extra-articular manifestations and complications of rheumatoid arthritis. Best Practice & Research: Clinical Rheumatology, 21, 907-927.
Zhang, J., Lazarenko, O.P., Kang, J., Blackburn, M. L., Ronis, M. J., Badger, T. M., & Chen, J. R. (2013). Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells. PloS One, 8(8), e70438.
Zhang, L., Ma, S., Su, H., & Cheng, J. (2018). Isoliquiritigenin inhibits IL-1β-induced production of matrix metalloproteinase in articular chondrocytes. Molecular Therapy: Methods & Clinical Development, 9, 153-159.
Zheng, X., Zhang, Y., Guo, S., Zhang, W., Wang, J., & Lin, Y. (2018). Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy‑induced osteoporosis rats. Experimental and Therapeutic Medicine, 16(3), 1807-1813.
電子全文 電子全文(全文開放日期20230828,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊