跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:涂耘誠
研究生(外文):Yun-Cheng Tu
論文名稱:高鹽與肌醇對不同發育階段的水耕冰花生長與光合作用之影響
論文名稱(外文):Effects of salt and myo-inositol on growth and photosynthesis of hydroponically-grown ice plant at different developmental stages
指導教授:顏宏真顏宏真引用關係
口試委員:林振祥林淑怡
口試日期:2020-07-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:61
中文關鍵詞:高鹽肌醇水耕冰花光系統II光合作用
外文關鍵詞:hydroponic cultureMesembryanthemum crystallinummyo-inositolphotosystem IIphotosynthesissalinity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鹽逆境會影響植物的生長發育,其中光合作用為植物生長的必要代謝,也是測量鹽逆境程度的主要指標。冰花(Mesembryanthemum crystallinum)為耐鹽植物,已知根部存在肌醇運輸蛋白,可協助將鈉離子運輸到地上部儲存。為了瞭解添加肌醇如何影響鹽處理冰花的生長與光合作用,將幼年早期或幼年晚期的水耕冰花以400 mM NaCl與1或10 mM肌醇處理7天,觀察和測量生長相關參數,並進行光合作用相關的生理測定。添加10 mM肌醇的水耕冰花根部有微生物附著,所以降低肌醇濃度為1 mM、每隔三天更換一次水耕液、移植冰花前用滅菌水沖洗根部、在通氣管裝設過濾膜與使用鋁箔紙包覆水耕桶避光,藉由添加肌醇處理的水耕冰花進行測試,冰花根部與水耕液的微生物孳生情況減少。高鹽造成幼年早期冰花生長減緩與葉部脫水,地上部、地下部鮮重與根部長度下降,葉部相對含水量上升與含水量下降,葉部與根部的鈉含量上升,而添加肌醇並未造成鹽處理冰花鮮重、根部長度、相對含水量、含水量與鈉含量顯著變化。葉部的光系統II實際效能與電子傳遞速率隨鹽處理天數下降,添加肌醇可以減緩其下降的幅度,高鹽造成葉部的Non-photochemical quenching (NPQ)上升,提高能量散失,添加肌醇可以減少鹽處理葉部的能量散失。高鹽造成葉部的CO2固定速率與葉綠素含量下降,添加肌醇可以減緩高鹽對光合作用速率與葉綠素含量的影響,而添加肌醇並未造成鹽處理葉部氣孔導度顯著變化,本論文發現添加肌醇減緩鹽逆境的主要因素為促進光合作用光反應的電子傳遞鏈。此外,添加肌醇降低幼年期冰花的氣孔導度,推測肌醇可能參與冰花幼年期到成熟期的CAM (crassulacean acid metabolism)代謝轉變。
Salt stress affects the growth and development of plants. Photosynthesis is an essential metabolism in plants which is an important index of measuring degrees of salt stress. Ice plant (Mesembryanthemum crystallinum) is an inducible halophyte. Roots exist myo-inositol transporters that can facilitate the transport of excessive sodium ions to leaves for storage. To study how adding myo-inositol affects the growth and photosynthesis of salt-treated ice plants, hydroponically-grown ice plants at early or late stage of juvenile were treated with 400 mM NaCl and 1 or 10 mM myo-inositol for seven days. Growth-related parameters were observed and measured, and physiological measurements related to photosynthesis were conducted. Hydroponically-grown ice plants treated with 10 mM myo-inositol had microorganisms attached to the roots, therefore, the concentration of myo-inositol was reduced to 1 mM. Further precautions to avoid contaminations include changing hydroponic solutions every three days, washing roots with sterilized water before transplant, aerating hydroponic solutions with filtered air, and wrapping hydroponic containers with aluminum foil to avoid light. As the result, the growth of microorganisms attached to the roots was greatly reduced. Addition of 400 mM NaCl caused growth retardation of early stage of juvenile plants, including wilted leaves, reduced fresh weights of shoots and roots, reduced root lengths, decreased relative water contents and water contents of leaves, increased sodium contents of leaves and roots. Adding myo-inositol to salt-treated ice plants have no significant changes in fresh weights, lengths of roots, relative water contents, water contents and sodium contents. Practical PSII efficiencies and electron transport rates of leaves decreased with days of salt treatment, and adding myo-inositol alleviated the adverse effects. Non-photochemical quenching increased in salt-treated leaves indicating increasing energy loss in leaves, and adding myo-inositol reduced energy loss in salt-treated leaves. Salinity decreased CO2 assimilation rates and chlorophyll contents in leaves, and adding myo-inositol alleviated the adverse effects. Stomatal conductance did not affect by adding myo-inositol in salt-treated leaves. The primary effect of myo-inositol on salt stress was to promote the electron transport chain of light reaction of photosynthesis. I also observed adding myo-inositol alone to the juvenile plant decreased stomatal conductance at midday suggesting myo-inositol participates in the process of CAM (crassulacean acid metabolism) induction during juvenile to adult transition.
摘要 i
Abstract ii
目次 iii
表目次 v
圖目次 vi
壹、前言 1
一、鹽逆境與植物 1
(一) 鹽逆境 1
(二) 鹽逆境對植物的影響 1
1. 生長發育 1
2. 光系統的組成與葉綠素的代謝 1
3. 光系統吸收光能的機制 2
4. 光合作用 4
5. 鈉鉀平衡 5
6. 氧化逆境 5
(三)植物的耐鹽機制 6
1. 離子通道蛋白 6
2. 相容質 6
3. 抗氧化酵素 6
4. Abscisic acid (ABA) 6
二、耐鹽植物冰花 7
(一)冰花發育階段 7
(二)冰花CAM的誘導 7
(三)冰花的耐鹽機制 8
(四)水耕冰花 8
三、肌醇生合成與肌醇參與的耐鹽機制 8
(一)肌醇生合成 9
(二)肌醇在鹽逆境下的功能 9
1. 肌醇促進鈉離子的運輸 9
2. 甲基化肌醇 9
四、研究目的 10
貳、材料與方法 11
一、實驗材料 11
(一)冰花(Mesembryanthemum crystallinum)小苗土耕栽培 11
(二)幼年期冰花水耕栽培 11
(三)幼年期冰花鹽與肌醇處理 11
(四)測試水耕液的微生物滋生情況 11
二、實驗方法 12
(一)葉部相對含水量與含水量的測定 12
(二)葉部與根部Na與K含量 12
1. 葉部的Na與K含量 12
2. 根部的Na與K含量 13
(三)葉部的葉綠素螢光參數 13
1. 光系統Ⅱ實際效能與電子傳遞速率 13
2. 光系統Ⅱ最大效能與NPQ 13
(四)葉部的光合作用速率 14
1. 光反應曲線 14
2. 光合作用速率、氣孔導度、細胞間二氧化碳濃度與蒸散作用速白 率的測定 14
(五)葉部的葉綠素與類胡蘿蔔素含量 14
參、結果 16
一、水耕冰花系統的改良與防止微生物滋生的測試 16
二、高鹽與1 mM肌醇對幼年初期冰花的影響 17
三、高鹽與1 mM肌醇對幼年晚期冰花的影響 20
四、高鹽與10 mM肌醇對幼年晚期冰花的影響 21
肆、討論 23
一、冰花生長 23
二、光系統II效能與葉綠素 24
三、NPQ與類胡蘿蔔素 24
四、二氧化碳固定與氣孔導度 25
五、總結與未來展望 25
伍、參考文獻 26
陸、附錄 61
參考文獻

李承勳(2018)無菌冰花小苗最適生長條件與外源性肌醇對小苗鹽耐受性
之影響。中興大學生命科學系碩士論文。

Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen R.G., Bohnert, H.J.
and Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138: 170-190.

Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A.,
Ueno, O., Nakahara, T., Nose, A. and Cushman, J.C. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58: 1957-1967.

Auble, D.L. and Meyers. (1992). An open path, fast response infrared absorption
gas analyzer for H2O and CO2. Bound.-Lay. Meteorol. 59: 243-256.

Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo.
Annu. Rev. Plant Biol. 59: 89-113.

Bao, A., Wang, S., Wu, G., Xi, J., Zhang, J. and Wang, C. (2009).
Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 176: 232-240.

Barber, J. and Archer, M.D. (2001). P680, the primary electron donor of
photosystem II. J. Photochem. Photobiol. A 142: 97-106.

Barber, J. (2002). P680: what is it and where is it? Bioelectrochemistry 55: 135-
138.

Barkla, B.J., Rhode, Tran, K.T., Wijesinghege, C., Larkin, J.C. and
Dassanayake, M. (2018). Making epidermal bladder cells bigger: developmental and salinity-induced endopolyploidy in a model halophyte. Plant Physiol. 177: 615-632.

Barkla, B.J., Zingarelli, L., Blumwald, E. and Smith, J.A.C. (1995). Tonoplast
Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol. 109: 549-556.

Barker, D.H., Marszalek, J., Zimpfer, J.F. and Adams III, W.W. (2004).
Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum. Funct. Plant Biol. 31: 781-787.

Barros, T. and Kühlbrandt, W. (2009). Crystallisation, structure and function of
plant light-harvesting Complex II. Biochim. Biophys. Acta 1787: 753-772.

Benson, S.L., Maheswaran, P., Ware, M.A., Hunter, C.N., Horton, P., Jansson,
S., Ruban, A.V. and Johnson, M.P. (2015). An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat. Plants 1: 15176.

Bilger, W. and Schreiber, U. (1986). Energy-dependent quenching of dark-level
chlorophyll fluorescence in intact leaves. Photosyn. Res. 10: 303-308.

Bohnert, H.J. and Cushman, J.C. (2000). The ice plant cometh: lessons in
abiotic stress. J. Plant Growth Regul. 19: 334-346.

Broetto, F., Duarte, H.M. and Lüttge, U. (2007). Responses of chlorophyll
fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. J. Plant Physiol. 164: 904-912.

Caemmerer, S.V. and Griffiths, H. (2009). Stomatal responses to CO2 during a
diel Crassulaceanacid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant Cell Environ. 32: 567-576.

Camejo, D., Rodríguez, P., Morales, M.A., Amico, J.M.D. Torrecillas, A. and
Alarcon, J.J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162: 281-289.

Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D.E. and Bohnert,
H.J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J. 24: 511-522.

Chaves, M.M., Flexas, J. and Pinheiro, C. (2009). Photosynthesis under drought
and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551-560.

Chiera, J.M., Streeter, J.G. and Finer, J. (2006). Ononitol and pinitol
production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Sci. 171: 647-654.

Chu, C., Dai, Z., Ku, M.S.B. and Edwards, G.E. (1990). Induction of
crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol. 93: 1253-1260.

Correa-Galvis, V., Poschmann, G., Melzer, M., Stühler, K. and Jahns, P.
(2016). PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2: 15225.

Croce, R., Morosinotto T., Castelletti, S., Breton, J. and Bassi, R. (2002). The
Lhca antenna complexes of higher plants photosystem I. Biochim. Biophys. Acta 1556: 29-40.

Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M. and Bohnert,
H.J. (1989). Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715-725.

Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C.,
Chardonnens, A.N. and Golldack, D. (2001). Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Bot. 52: 1969-1980.

Djanaguiraman, M., Sheeba, J.A., Shanker, A.K., Devi, D.D. and
Bangarusamy, U. (2006). Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284: 363-373.

Dorsch, J.A., Cook, A., Young, K.A., Anderson, J.M., Bauman, A.T.,
Volkmann, C,J, Murthy, P.P.N. and Raboy, V. (2003). Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62: 691-706.

Farooq, M., Hussain, M., Wakeel, A. and Siddique, K.H.M. (2015). Salt stress
in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35: 461-481.

Gadallah, M.A.A. (1999). Effects of proline and glycinebetaine on Vicia faba
responses to salt stress. Biol. Plant. 42: 249-257.

Ghannoum, O. (2009). C4 photosynthesis and water stress. Ann. Bot. 103: 635-644.

Gilman, I.S. and Edwards, E.J. (2020). Crassulacean acid metabolism. Current
Biol. 30: R51-R63.

González, L. and González-Vilar, M. (2001). Determination of relative water
content. In: Reigosa, M.J. eds., Handbook of plant ecophysiology techniques, pp. 207-212.

Gorkom, H.J. and Schelvis, J.P.M. (1993). Kok''s oxygen clock: What makes it
tick? The structure of P680 and consequences of its oxidizing power. Photosyn. Res. 38: 297-301.

Guan, Q., Tan, B., Kelley, T.M., Tian, J. and Chen, S. (2020). Physiological
changes in Mesembryanthemum crystallinum during the C3 to CAM transition induced by salt stress. Front. Plant Sci. 11: 283.

Höller, S., Hajirezaei, M., Wirén, N.V. and Frei, M. (2014). Ascorbate
metabolism in rice genotypes differing in zinc efficiency. Planta 239: 367-379.

Hu, L., Zhou, K., Li, Y., Chen, X., Liu, B., Li, C., Gong, X. and Ma, F. (2018).
Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiol. Biochem. 133: 116-126.

Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T. and Shinozaki, K. (2000).
Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24: 655-665.

Imlay, J.A., Chin, S.M. and Linn, S. (1988). Toxic DNA damage by hydrogen
peroxide through the fenton reaction in vivo and in vitro. Science 240: 640-642.

Jahns, P. and Holzwarth, A.R. (2012). The role of the xanthophyll cycle and of
lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817: 182-193.

Jamil, M., Lee, D.B., Jung, K.Y., Ashraf, M., Lee, S.C. and Rha, E.S. (2006).
Effect of salt (NaCl) Stress on germination and early seedling growth of four vegetables species. J. Cent. Eur. Agric. 7: 273-282.

Jones, H.G. (1998). Stomatal control of photosynthesis and transpiration. J. Exp.
Bot. 49: 387-398.

Kanter, U., Usadel, B., Guerineau, F., Li, Y., Pauly, M. and Tenhaken, R.
(2005). The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221: 243-254.

Khatun, S. and Flowers, T.J. (1995). Effects of salinity on seed set in rice. Plant
Cell Environ. 18: 61-67.

Krause, G.H., and Weis, E. (1991). Chlorophyll fluorescence and
photosynthesis: the basics. Annu. Rev. Plant Physiol. 42: 49-313.

Krishnamoorthy, P., Sanchez-Rodriguez, C.S., Heilmann, I. and Persson, S.
(2014). Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Ann. Bot. 114: 1049-1057.

Loewus, F.A. and Loewus, M.W. (1983). Myo-inositol: its biosynthesis and
metabolism. Annu. Rev. Plant Physiol. 34: 137-161.

Loewus, F.A. and Murthy, P.P.N. (2000). Myo-inositol metabolism in plants.
Plant Sci. 150: 1-19.

Lorence, A., Chevone, B.I., Mendes, P. and Nessler, C.L. (2004). Myo-inositol
oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134: 1200-1205.

Luan, S., Lan, W. and Lee, S.C. (2009). Potassium nutrition, sodium toxicity,
and calcium signaling: connections through the CBL-CIPK network. Curr. Opin. Plant Biol. 12: 339-346.

Maas, E.V. and Poss, J.A. (1989). Salt sensitivity of wheat at various growth
stages. Irrig Sci. 10: 29-40.

Mane, A.V., Karadge, B.A. and Samant, J.S. (2010). Salinity induced changes
in photosynthetic pigments and polyphenols of Cymbopogon Nardus (L.) Rendle. J. Chem. Pharm. Res. 2: 338-347.

Martiskainen, J., Kananavicius, R., Linnanto, J., Lehtivuori, H., Keranen,
M., Aumanen, V., Tkachenko, N. and Korppi-Tommola, J. (2011). Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. Photosyn. Res. 107: 195-207.

Melkozernov, A.N. and Blankenship, R.E. (2003). Structural modeling of the
Lhca4 subunit of LHCI-730 peripheral antenna in photosystem I based on similarity with LHCII. J. Biol. Chem. 45: 44542-44551.

Michelet, L., Zaffagnini, M., Morisse, S., Sparla, F., Pérez-Pérez, M.E.,
Francia, F., Danon, A., Marchand, C.H., Fermani, S., Trost, P. and Lemaire, S.D. (2013). Redox regulation of the Calvin-Benson cycle: something old, something new. Front. Plant Sci. 4: 470.

Müller P., Li, X.P. and Niyogi K.K. (2001). Non-photochemical quenching. A
response to excess light energy. Plant Physiol. 125: 1558-1566.

Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol.
167: 645-663.

Murchie, E.H., and Lawson, T. (2013). Chlorophyll fluorescence analysis: a
guide to good practice and understanding some new applications. J. Exp. Bot. 64: 3983-3998.

Nelson, N., and Yocum, C.F. (2006). Structure and function of photosystems I
and II. Annu. Rev. Plant Biol. 57: 521-565.

Nelson, D.E., Koukoumanos, M. and Bohnert, H.J. (1999). Myo-inositol
dependent sodium uptake in ice plant. Plant Physiol. 119: 165-172.

Nowacki, J. and Bandurski, R.S. (1980). Myo-inositol esters of indole-3-acetic
acid as seed auxin precursors of Zea mays L. Plant Physiol. 65: 422-427.

Oh, D., Lee, S.Y., Bressan, R.A., Yun, D. and Bohnert, H.J. (2010).
Intracellular consequences of SOS1 deficiency during salt stress. J. Exp. Bot. 61: 1205-1213.

Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a
review. Ecotoxicol. Environ. Saf. 60: 324-349.

Parihar, P., Singh, S., Singh, R., Singh, V.P. and Prasad, S.M. (2014). Effect of
salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22: 3739.

Paul, M.J. and Cockburn, W. (1989). Pinitol, a compatible solute in
Mesembryanthemum crystallinum L.? J. Exp. Bot. 40: 1093-1098.

Pillitteri, L.J. and Torii, K.U. (2012). Mechanisms of stomatal development.
Annu. Rev. Plant Biol. 63: 591-614

Raboy, V. and Gerbasi, P. (1996). Genetics of myo-inositol phosphate synthesis
and accumulation. In: Biswas, B.B. and Biswas, S. eds., Subcellular Biochemistry, Vol. 26, pp. 257-285.

Richard, E.S. and Gail, E.B. (1974). Rapid estimates of relative water content.
Plant Physiol. 53: 258-260.

Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and degradation by
salt stress in sunflower leaves. Sci. Hortic. 103: 93-99.

Schmid, V.H.R., Cammarata, K.V., Bruns, B.U. and Schmidt, G.W. (1997). In
vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proc. Natl. Acad. Sci. U.S.A. 94: 7667-7672.

Seo, M. and Koshiba, T. (2002). Complex regulation of ABA biosynthesis in
plants. Trends Plant Sci. 7: 41-48.

Shi, H. and Zhu, J. (2002). Regulation of expression of the vacuolar Na+/H+
antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 50: 543-550.

Shi, J., Wang, H., Hazebroek, J., Ertl, D.S. and Harp, T. (2005) The maize
low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J. 42: 708-719.

Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y.
and Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.

Stepien, P. and Klobus, G. (2006). Water relations and photosynthesis in
Cucumis sativus L. leaves under salt stress. Biol. Plant. 50: 610-616.

Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A. (2004). Analysis of the
chlorophyll a fluorescence transient. In: Papageorgiou, G.C., and Govindjee eds., Chlorophyll fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht, Vol. 19, pp. 321-362.

Taïbi K., Taïbi F., Abderrahim L.A., Ennajah A., Belkhodja M., Mulet J.M.
(2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. S. Afr. J. Bot. 105: 306-312.

Taji, T., Takahashi, S. and Shinozaki. (2006). Inositols and their metabolites in
abiotic and biotic stress responses. Biology of inositols and phosphoinositides, pp. 239-264.

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M.,
Yamaguchi-Shinozaki, K. and Shinozaki, K. (2002). Important roles of
drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-426.

Tanaka, R. and Tanaka, A. (2011). Chlorophyll cycle regulates the construction
and destruction of the light-harvesting complexes. Biochim. Biophys. Acta 1807: 968-976.

Turner, N.C. (1981). Techniques and experimental approaches for the
measurement of plant water status. Plant and Soil 58: 339-366.

Vivrette, N. J. and Muller, C. H. (1977). Mechanism of invasionand dominance
of coastal grassland by Mesembryanthemum crystallinum. Ecol. Monogr. 47: 301-318.

Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline
sodic conditions. J. Plant Nutr. Soil Sci. 176: 344-354.

Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J. and Jiang, M. (2010). A novel
mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J. Integr. Plant Biol. 52: 442-452.

Webber, A. and Lubitz, N.W. (2001). P700: the primary electron donor of
photosystem I. Biochim. Biophys. Acta 1507: 61-79.

Weeplian, T. and Yen, T. (2018). Growth, development, and chemical
constituents of edible ice plant (Mesembryanthemum crystallinum L.) produced under combinations of light-emitting diode lights. HortScience 53: 865-874.

Williamson, J.D., Jennings, D.B., Guo, W. and Pharr, M. (2002). Sugar
alcohols, salt stress, and fungal resistance: polyols-multifunctional plant protection? J. Amer. Soc. Hort. Sci. 127: 467-473.

Winter, K. (1973). CO2-fixation metabolism in the halophytic species
Mesembryanthemum crystallinum grown under different environmental conditions. Planta 114: 75-85.

Wintermans, J.F.G.M. and Mots, A.D. (1965). Spectrophotometric
characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109: 448-453.

Yang, J. and Yen, H.E. (2002). Early salt Stress effects on the changes in
chemical composition in leaves of ice plant and Arabidopsis. A fourier transform infrared spectroscopy study. Plant Physiol. 130: 1032-1042.

Zhu, J. (2007). Plant salt stress. In: Encyclopedia of life sciences, pp. 1-3.

Zhu, X., Chen, J., Qiu, K., and Kuai, B. (2017). Phytohormone and light
regulation of chlorophyll degradation. Front. Plant Sci. 8: 1911.
電子全文 電子全文(網際網路公開日期:20230829)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊