|
參考文獻
李承勳(2018)無菌冰花小苗最適生長條件與外源性肌醇對小苗鹽耐受性 之影響。中興大學生命科學系碩士論文。
Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen R.G., Bohnert, H.J. and Griffiths, H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138: 170-190.
Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A. and Cushman, J.C. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 58: 1957-1967.
Auble, D.L. and Meyers. (1992). An open path, fast response infrared absorption gas analyzer for H2O and CO2. Bound.-Lay. Meteorol. 59: 243-256.
Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59: 89-113.
Bao, A., Wang, S., Wu, G., Xi, J., Zhang, J. and Wang, C. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 176: 232-240.
Barber, J. and Archer, M.D. (2001). P680, the primary electron donor of photosystem II. J. Photochem. Photobiol. A 142: 97-106.
Barber, J. (2002). P680: what is it and where is it? Bioelectrochemistry 55: 135- 138.
Barkla, B.J., Rhode, Tran, K.T., Wijesinghege, C., Larkin, J.C. and Dassanayake, M. (2018). Making epidermal bladder cells bigger: developmental and salinity-induced endopolyploidy in a model halophyte. Plant Physiol. 177: 615-632.
Barkla, B.J., Zingarelli, L., Blumwald, E. and Smith, J.A.C. (1995). Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol. 109: 549-556.
Barker, D.H., Marszalek, J., Zimpfer, J.F. and Adams III, W.W. (2004). Changes in photosynthetic pigment composition and absorbed energy allocation during salt stress and CAM induction in Mesembryanthemum crystallinum. Funct. Plant Biol. 31: 781-787.
Barros, T. and Kühlbrandt, W. (2009). Crystallisation, structure and function of plant light-harvesting Complex II. Biochim. Biophys. Acta 1787: 753-772.
Benson, S.L., Maheswaran, P., Ware, M.A., Hunter, C.N., Horton, P., Jansson, S., Ruban, A.V. and Johnson, M.P. (2015). An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nat. Plants 1: 15176.
Bilger, W. and Schreiber, U. (1986). Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosyn. Res. 10: 303-308.
Bohnert, H.J. and Cushman, J.C. (2000). The ice plant cometh: lessons in abiotic stress. J. Plant Growth Regul. 19: 334-346.
Broetto, F., Duarte, H.M. and Lüttge, U. (2007). Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3-CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress. J. Plant Physiol. 164: 904-912.
Caemmerer, S.V. and Griffiths, H. (2009). Stomatal responses to CO2 during a diel Crassulaceanacid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant Cell Environ. 32: 567-576.
Camejo, D., Rodríguez, P., Morales, M.A., Amico, J.M.D. Torrecillas, A. and Alarcon, J.J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162: 281-289.
Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D.E. and Bohnert, H.J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J. 24: 511-522.
Chaves, M.M., Flexas, J. and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103: 551-560.
Chiera, J.M., Streeter, J.G. and Finer, J. (2006). Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Sci. 171: 647-654.
Chu, C., Dai, Z., Ku, M.S.B. and Edwards, G.E. (1990). Induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol. 93: 1253-1260.
Correa-Galvis, V., Poschmann, G., Melzer, M., Stühler, K. and Jahns, P. (2016). PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat. Plants 2: 15225.
Croce, R., Morosinotto T., Castelletti, S., Breton, J. and Bassi, R. (2002). The Lhca antenna complexes of higher plants photosystem I. Biochim. Biophys. Acta 1556: 29-40.
Cushman, J.C., Meyer, G., Michalowski, C.B., Schmitt, J.M. and Bohnert, H.J. (1989). Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715-725.
Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C., Chardonnens, A.N. and Golldack, D. (2001). Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J. Exp. Bot. 52: 1969-1980.
Djanaguiraman, M., Sheeba, J.A., Shanker, A.K., Devi, D.D. and Bangarusamy, U. (2006). Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284: 363-373.
Dorsch, J.A., Cook, A., Young, K.A., Anderson, J.M., Bauman, A.T., Volkmann, C,J, Murthy, P.P.N. and Raboy, V. (2003). Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62: 691-706.
Farooq, M., Hussain, M., Wakeel, A. and Siddique, K.H.M. (2015). Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 35: 461-481.
Gadallah, M.A.A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol. Plant. 42: 249-257.
Ghannoum, O. (2009). C4 photosynthesis and water stress. Ann. Bot. 103: 635-644.
Gilman, I.S. and Edwards, E.J. (2020). Crassulacean acid metabolism. Current Biol. 30: R51-R63.
González, L. and González-Vilar, M. (2001). Determination of relative water content. In: Reigosa, M.J. eds., Handbook of plant ecophysiology techniques, pp. 207-212.
Gorkom, H.J. and Schelvis, J.P.M. (1993). Kok''s oxygen clock: What makes it tick? The structure of P680 and consequences of its oxidizing power. Photosyn. Res. 38: 297-301.
Guan, Q., Tan, B., Kelley, T.M., Tian, J. and Chen, S. (2020). Physiological changes in Mesembryanthemum crystallinum during the C3 to CAM transition induced by salt stress. Front. Plant Sci. 11: 283.
Höller, S., Hajirezaei, M., Wirén, N.V. and Frei, M. (2014). Ascorbate metabolism in rice genotypes differing in zinc efficiency. Planta 239: 367-379.
Hu, L., Zhou, K., Li, Y., Chen, X., Liu, B., Li, C., Gong, X. and Ma, F. (2018). Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiol. Biochem. 133: 116-126.
Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T. and Shinozaki, K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 24: 655-665.
Imlay, J.A., Chin, S.M. and Linn, S. (1988). Toxic DNA damage by hydrogen peroxide through the fenton reaction in vivo and in vitro. Science 240: 640-642.
Jahns, P. and Holzwarth, A.R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta 1817: 182-193.
Jamil, M., Lee, D.B., Jung, K.Y., Ashraf, M., Lee, S.C. and Rha, E.S. (2006). Effect of salt (NaCl) Stress on germination and early seedling growth of four vegetables species. J. Cent. Eur. Agric. 7: 273-282.
Jones, H.G. (1998). Stomatal control of photosynthesis and transpiration. J. Exp. Bot. 49: 387-398.
Kanter, U., Usadel, B., Guerineau, F., Li, Y., Pauly, M. and Tenhaken, R. (2005). The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursors for cell-wall matrix polysaccharides. Planta 221: 243-254.
Khatun, S. and Flowers, T.J. (1995). Effects of salinity on seed set in rice. Plant Cell Environ. 18: 61-67.
Krause, G.H., and Weis, E. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. 42: 49-313.
Krishnamoorthy, P., Sanchez-Rodriguez, C.S., Heilmann, I. and Persson, S. (2014). Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling. Ann. Bot. 114: 1049-1057.
Loewus, F.A. and Loewus, M.W. (1983). Myo-inositol: its biosynthesis and metabolism. Annu. Rev. Plant Physiol. 34: 137-161.
Loewus, F.A. and Murthy, P.P.N. (2000). Myo-inositol metabolism in plants. Plant Sci. 150: 1-19.
Lorence, A., Chevone, B.I., Mendes, P. and Nessler, C.L. (2004). Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol. 134: 1200-1205.
Luan, S., Lan, W. and Lee, S.C. (2009). Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network. Curr. Opin. Plant Biol. 12: 339-346.
Maas, E.V. and Poss, J.A. (1989). Salt sensitivity of wheat at various growth stages. Irrig Sci. 10: 29-40.
Mane, A.V., Karadge, B.A. and Samant, J.S. (2010). Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon Nardus (L.) Rendle. J. Chem. Pharm. Res. 2: 338-347.
Martiskainen, J., Kananavicius, R., Linnanto, J., Lehtivuori, H., Keranen, M., Aumanen, V., Tkachenko, N. and Korppi-Tommola, J. (2011). Excitation energy transfer in the LHC-II trimer: from carotenoids to chlorophylls in space and time. Photosyn. Res. 107: 195-207.
Melkozernov, A.N. and Blankenship, R.E. (2003). Structural modeling of the Lhca4 subunit of LHCI-730 peripheral antenna in photosystem I based on similarity with LHCII. J. Biol. Chem. 45: 44542-44551.
Michelet, L., Zaffagnini, M., Morisse, S., Sparla, F., Pérez-Pérez, M.E., Francia, F., Danon, A., Marchand, C.H., Fermani, S., Trost, P. and Lemaire, S.D. (2013). Redox regulation of the Calvin-Benson cycle: something old, something new. Front. Plant Sci. 4: 470.
Müller P., Li, X.P. and Niyogi K.K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125: 1558-1566.
Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167: 645-663.
Murchie, E.H., and Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64: 3983-3998.
Nelson, N., and Yocum, C.F. (2006). Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57: 521-565.
Nelson, D.E., Koukoumanos, M. and Bohnert, H.J. (1999). Myo-inositol dependent sodium uptake in ice plant. Plant Physiol. 119: 165-172.
Nowacki, J. and Bandurski, R.S. (1980). Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol. 65: 422-427.
Oh, D., Lee, S.Y., Bressan, R.A., Yun, D. and Bohnert, H.J. (2010). Intracellular consequences of SOS1 deficiency during salt stress. J. Exp. Bot. 61: 1205-1213.
Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60: 324-349.
Parihar, P., Singh, S., Singh, R., Singh, V.P. and Prasad, S.M. (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environ. Sci. Pollut. Res. 22: 3739.
Paul, M.J. and Cockburn, W. (1989). Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J. Exp. Bot. 40: 1093-1098.
Pillitteri, L.J. and Torii, K.U. (2012). Mechanisms of stomatal development. Annu. Rev. Plant Biol. 63: 591-614
Raboy, V. and Gerbasi, P. (1996). Genetics of myo-inositol phosphate synthesis and accumulation. In: Biswas, B.B. and Biswas, S. eds., Subcellular Biochemistry, Vol. 26, pp. 257-285.
Richard, E.S. and Gail, E.B. (1974). Rapid estimates of relative water content. Plant Physiol. 53: 258-260.
Santos, C.V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci. Hortic. 103: 93-99.
Schmid, V.H.R., Cammarata, K.V., Bruns, B.U. and Schmidt, G.W. (1997). In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proc. Natl. Acad. Sci. U.S.A. 94: 7667-7672.
Seo, M. and Koshiba, T. (2002). Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7: 41-48.
Shi, H. and Zhu, J. (2002). Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 50: 543-550.
Shi, J., Wang, H., Hazebroek, J., Ertl, D.S. and Harp, T. (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J. 42: 708-719.
Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y. and Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53: 1305-1319.
Stepien, P. and Klobus, G. (2006). Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol. Plant. 50: 610-616.
Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A. (2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, G.C., and Govindjee eds., Chlorophyll fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht, Vol. 19, pp. 321-362.
Taïbi K., Taïbi F., Abderrahim L.A., Ennajah A., Belkhodja M., Mulet J.M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. S. Afr. J. Bot. 105: 306-312.
Taji, T., Takahashi, S. and Shinozaki. (2006). Inositols and their metabolites in abiotic and biotic stress responses. Biology of inositols and phosphoinositides, pp. 239-264.
Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-426.
Tanaka, R. and Tanaka, A. (2011). Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim. Biophys. Acta 1807: 968-976.
Turner, N.C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil 58: 339-366.
Vivrette, N. J. and Muller, C. H. (1977). Mechanism of invasionand dominance of coastal grassland by Mesembryanthemum crystallinum. Ecol. Monogr. 47: 301-318.
Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline sodic conditions. J. Plant Nutr. Soil Sci. 176: 344-354.
Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J. and Jiang, M. (2010). A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J. Integr. Plant Biol. 52: 442-452.
Webber, A. and Lubitz, N.W. (2001). P700: the primary electron donor of photosystem I. Biochim. Biophys. Acta 1507: 61-79.
Weeplian, T. and Yen, T. (2018). Growth, development, and chemical constituents of edible ice plant (Mesembryanthemum crystallinum L.) produced under combinations of light-emitting diode lights. HortScience 53: 865-874.
Williamson, J.D., Jennings, D.B., Guo, W. and Pharr, M. (2002). Sugar alcohols, salt stress, and fungal resistance: polyols-multifunctional plant protection? J. Amer. Soc. Hort. Sci. 127: 467-473.
Winter, K. (1973). CO2-fixation metabolism in the halophytic species Mesembryanthemum crystallinum grown under different environmental conditions. Planta 114: 75-85.
Wintermans, J.F.G.M. and Mots, A.D. (1965). Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109: 448-453.
Yang, J. and Yen, H.E. (2002). Early salt Stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A fourier transform infrared spectroscopy study. Plant Physiol. 130: 1032-1042.
Zhu, J. (2007). Plant salt stress. In: Encyclopedia of life sciences, pp. 1-3.
Zhu, X., Chen, J., Qiu, K., and Kuai, B. (2017). Phytohormone and light regulation of chlorophyll degradation. Front. Plant Sci. 8: 1911.
|