|
Abdel-Banat, B.M.A., Nonklang, S., Hoshida, H., and Akada, R. (2010). Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 27(1), 29-39. doi: doi:10.1002/yea.1729. Arantes, V., and Saddler, J.N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnology for Biofuels 3(1), 4. doi: 10.1186/1754-6834-3-4. Arfi, Y., Shamshoum, M., Rogachev, I., Peleg, Y., and Bayer, E.A. (2014). Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111(25), 9109-9114. doi: 10.1073/pnas.1404148111. Bayer, E.A., Morag, E., and Lamed, R. (1994). The cellulosome--a treasure-trove for biotechnology. Trends Biotechnol 12(9), 379-386. doi: 10.1016/0167-7799(94)90039-6. Bayer, E.A., Setter, E., and Lamed, R. (1985). Organization and distribution of the cellulosome in Clostridium thermocellum. Journal of Bacteriology 163(2), 552-559. Boder, E.T., and Wittrup, K.D. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15(6), 553-557. doi: 10.1038/nbt0697-553. Boraston, A.B., Bolam, D.N., Gilbert, H.J., and Davies, G.J. (2004). Carbohydrate-binding modules: fine tuning polysaccharide recognition. Biochem J 382. doi: 10.1042/bj20040892. Caspi, J., Barak, Y., Haimovitz, R., Irwin, D., Lamed, R., Wilson, D.B., et al. (2009). Effect of Linker Length and Dockerin Position on Conversion of a Thermobifida fusca Endoglucanase to the Cellulosomal Mode. Applied and Environmental Microbiology 75(23), 7335-7342. doi: 10.1128/aem.01241-09. Chang, J.-J., Ho, C.-Y., Ho, F.-J., Tsai, T.-Y., Ke, H.-M., Wang, C.H.-T., et al. (2012). PGASO: A synthetic biology tool for engineering a cellulolytic yeast. Biotechnology for Biofuels 5(1), 53. doi: 10.1186/1754-6834-5-53. Chang, J.-J., Ho, F.-J., Ho, C.-Y., Wu, Y.-C., Hou, Y.-H., Huang, C.-C., et al. (2013). Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnology for Biofuels 6(1), 19. doi: 10.1186/1754-6834-6-19. Chang, J.-J., Lin, Y.-J., Lay, C.-H., Thia, C., Wu, Y.-C., Hou, Y.-H., et al. (2018a). Constructing a cellulosic yeast host with an efficient cellulase cocktail. Biotechnology and Bioengineering 115(3), 751-761. doi: doi:10.1002/bit.26507. Chang, J.J., Anandharaj, M., Ho, C.Y., Tsuge, K., Tsai, T.Y., Ke, H.M., et al. (2018b). Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis. Biotechnol Biofuels 11, 157. doi: 10.1186/s13068-018-1151-7. Chang, J.J., Thia, C., Lin, H.Y., Liu, H.L., Ho, F.J., Wu, J.T., et al. (2015). Integrating an algal beta-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184, 2-8. doi: 10.1016/j.biortech.2014.11.097. Chen, H.-L., Chen, Y.-C., Lu, M.-Y.J., Chang, J.-J., Wang, H.-T.C., Ke, H.-M., et al. (2012). A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnology for Biofuels 5(1), 24. doi: 10.1186/1754-6834-5-24. Christopher, L.P., Yao, B., and Ji, Y. (2014). Lignin Biodegradation with Laccase-Mediator Systems. Frontiers in Energy Research 2(12). doi: 10.3389/fenrg.2014.00012. Colussi, P.A., and Taron, C.H. (2005). Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol 71(11), 7092-7098. doi: 10.1128/AEM.71.11.7092-7098.2005. Currie, D.H., Herring, C.D., Guss, A.M., Olson, D.G., Hogsett, D.A., and Lynd, L.R. (2013). Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. Biotechnology for Biofuels 6(1), 32. doi: 10.1186/1754-6834-6-32. Demain, A.L., Newcomb, M., and Wu, J.H. (2005). Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69(1), 124-154. doi: 10.1128/MMBR.69.1.124-154.2005. Dien, B.S., Cotta, M.A., and Jeffries, T.W. (2003). Bacteria engineered for fuel ethanol production: current status. Applied Microbiology and Biotechnology 63(3), 258-266. doi: 10.1007/s00253-003-1444-y. Dimarogona, M., Topakas, E., and Christakopoulos, P. (2012). Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J 2, e201209015. doi: 10.5936/csbj.201209015. Fan, L.-H., Zhang, Z.-J., Mei, S., Lu, Y.-Y., Li, M., Wang, Z.-Y., et al. (2016a). Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnology for Biofuels 9(1), 137. doi: 10.1186/s13068-016-0554-6. Fan, L.H., Zhang, Z.J., Mei, S., Lu, Y.Y., Li, M., Wang, Z.Y., et al. (2016b). Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. Biotechnol Biofuels 9, 137. doi: 10.1186/s13068-016-0554-6. Fan, L.H., Zhang, Z.J., Yu, X.Y., Xue, Y.X., and Tan, T.W. (2012). Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci U S A 109(33), 13260-13265. doi: 10.1073/pnas.1209856109. Fonseca, G.G., Heinzle, E., Wittmann, C., and Gombert, A.K. (2008). The yeast Kluyveromyces marxianus and its biotechnological potential. Applied Microbiology and Biotechnology 79(3), 339-354. doi: 10.1007/s00253-008-1458-6. Gai, S.A., and Wittrup, K.D. (2007). Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17(4), 467-473. doi: 10.1016/j.sbi.2007.08.012. Ghose, T.K. (1987). "Measurement of cellulase activities", in: Pure and Applied Chemistry.). Gilmore, S.P., Henske, J.K., and O''Malley, M.A. (2015). Driving biomass breakdown through engineered cellulosomes. Bioengineered 6(4), 204-208. doi: 10.1080/21655979.2015.1060379. Gold, N.D., and Martin, V.J.J. (2007). Global View of the Clostridium thermocellum Cellulosome Revealed by Quantitative Proteomic Analysis. Journal of Bacteriology 189(19), 6787-6795. doi: 10.1128/jb.00882-07. Goldstein, M.A., Takagi, M., Hashida, S., Shoseyov, O., Doi, R.H., and Segel, I.H. (1993). Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J Bacteriol 175(18), 5762-5768. Goyal, G., Tsai, S.L., Madan, B., DaSilva, N.A., and Chen, W. (2011). Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 10, 89. doi: 10.1186/1475-2859-10-89. Harris, P.V., Welner, D., McFarland, K.C., Re, E., Navarro Poulsen, J.-C., Brown, K., et al. (2010). Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family. Biochemistry 49(15), 3305-3316. doi: 10.1021/bi100009p. Ho, C.-Y., Chang, J.-J., Lee, S.-C., Chin, T.-Y., Shih, M.-C., Li, W.-H., et al. (2012). Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast. Applied Energy 100, 27-32. doi: https://doi.org/10.1016/j.apenergy.2012.03.016. Horn, S.J., Vaaje-Kolstad, G., Westereng, B., and Eijsink, V. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels 5(1), 45. doi: 10.1186/1754-6834-5-45. Huang, G.L., Anderson, T.D., and Clubb, R.T. (2014). Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered 5(2), 96-106. doi: 10.4161/bioe.27461. Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., et al. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols 7, 1511. doi: 10.1038/nprot.2012.085. Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10, 845. doi: 10.1038/nprot.2015.053. Kondo, A., and Ueda, M. (2004). Yeast cell-surface display--applications of molecular display. Applied Microbiology and Biotechnology 64(1), 28-40. doi: 10.1007/s00253-003-1492-3. Kricka, W., Fitzpatrick, J., and Bond, U. (2014). Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Frontiers in Microbiology 5(174). doi: 10.3389/fmicb.2014.00174. Kruus, K., Lua, A.C., Demain, A.L., and Wu, J.H. (1995). The anchorage function of CipA (CelL), a scaffolding protein of the Clostridium thermocellum cellulosome. Proceedings of the National Academy of Sciences 92(20), 9254-9258. doi: 10.1073/pnas.92.20.9254. Kumar, P., Barrett, D.M., Delwiche, M.J., and Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 48(8), 3713-3729. doi: 10.1021/ie801542g. Lambertz, C., Garvey, M., Klinger, J., Heesel, D., Klose, H., Fischer, R., et al. (2014). Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7(1), 135. doi: 10.1186/s13068-014-0135-5. Lamed, R., Setter, E., and Bayer, E.A. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2), 828-836. Lee, M.H., Lin, J.J., Lin, Y.J., Chang, J.J., Ke, H.M., Fan, W.L., et al. (2018). Genome-wide prediction of CRISPR/Cas9 targets in Kluyveromyces marxianus and its application to obtain a stable haploid strain. Sci Rep 8(1), 7305. doi: 10.1038/s41598-018-25366-z. Lemaire, M., Ohayon, H., Gounon, P., Fujino, T., and Béguin, P. (1995). OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. Journal of Bacteriology 177(9), 2451-2459. doi: 10.1128/jb.177.9.2451-2459.1995. Lertwattanasakul, N., Kosaka, T., Hosoyama, A., Suzuki, Y., Rodrussamee, N., Matsutani, M., et al. (2015). Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnology for Biofuels 8(1), 47. doi: 10.1186/s13068-015-0227-x. Lertwattanasakul, N., Sootsuwan, K., Limtong, S., Thanonkeo, P., and Yamada, M. (2007). Comparison of the gene expression patterns of alcohol dehydrogenase isozymes in the thermotolerant yeast Kluyveromyces marxianus and their physiological functions. Biosci Biotechnol Biochem 71(5), 1170-1182. doi: 10.1271/bbb.60622. Liang, Y., Si, T., Ang, E.L., and Zhao, H. (2014). Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 80(21), 6677-6684. doi: 10.1128/AEM.02070-14. Liu, Z., Ho, S.H., Sasaki, K., den Haan, R., Inokuma, K., Ogino, C., et al. (2016). Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production. Sci Rep 6, 24550. doi: 10.1038/srep24550. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25(4), 402-408. doi: https://doi.org/10.1006/meth.2001.1262. Masran, R., Zanirun, Z., Bahrin, E.K., Ibrahim, M.F., Lai Yee, P., and Abd-Aziz, S. (2016). Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Appl Microbiol Biotechnol 100(12), 5231-5246. doi: 10.1007/s00253-016-7545-1. Morais, S., Morag, E., Barak, Y., Goldman, D., Hadar, Y., Lamed, R., et al. (2012). Deconstruction of Lignocellulose into Soluble Sugars by Native and Designer Cellulosomes. mBio 3(6), e00508-00512-e00508-00512. doi: 10.1128/mBio.00508-12. Morais, S., Shterzer, N., Grinberg, I.R., Mathiesen, G., Eijsink, V.G., Axelsson, L., et al. (2013). Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Appl Environ Microbiol 79(17), 5242-5249. doi: 10.1128/AEM.01211-13. Morais, S., Shterzer, N., Lamed, R., Bayer, E.A., and Mizrahi, I. (2014). A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells. Biotechnol Biofuels 7, 112. doi: 10.1186/1754-6834-7-112. Oberortner, E., Cheng, J.-F., Hillson, N.J., and Deutsch, S. (2017). Streamlining the Design-to-Build Transition with Build-Optimization Software Tools. ACS Synthetic Biology 6(3), 485-496. doi: 10.1021/acssynbio.6b00200. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., et al. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13), 1605-1612. doi: 10.1002/jcc.20084. Phillips, C.M., Beeson, W.T., Cate, J.H., and Marletta, M.A. (2011). Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora crassa. ACS Chemical Biology 6(12), 1399-1406. doi: 10.1021/cb200351y. Read, J.D., Colussi, P.A., Ganatra, M.B., and Taron, C.H. (2007). Acetamide selection of Kluyveromyces lactis cells transformed with an integrative vector leads to high-frequency formation of multicopy strains. Appl Environ Microbiol 73(16), 5088-5096. doi: 10.1128/AEM.02253-06. Schwarz, W. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology 56(5), 634-649. doi: 10.1007/s002530100710. Sørensen, A., Lübeck, M., Lübeck, P., and Ahring, B. (2013). Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules 3(3), 612. Spencer, J.F., Ragout de Spencer, A.L., and Laluce, C. (2002). Non-conventional yeasts. Appl Microbiol Biotechnol 58(2), 147-156. Stern, J., Morais, S., Ben-David, Y., Salama, R., Shamshoum, M., Lamed, R., et al. (2018). Assembly of Synthetic Functional Cellulosomal Structures onto the Cell Surface of Lactobacillus plantarum, a Potent Member of the Gut Microbiome. Appl Environ Microbiol 84(8). doi: 10.1128/AEM.00282-18. Tang, H., Wang, J., Wang, S., Shen, Y., Petranovic, D., Hou, J., et al. (2018). Efficient yeast surface-display of novel complex synthetic cellulosomes. Microb Cell Fact 17(1), 122. doi: 10.1186/s12934-018-0971-2. Tsai, S.L., DaSilva, N.A., and Chen, W. (2013). Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2(1), 14-21. doi: 10.1021/sb300047u. Tsai, S.L., Oh, J., Singh, S., Chen, R., and Chen, W. (2009). Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production. Applied and Environmental Microbiology 75(19), 6087-6093. doi: 10.1128/aem.01538-09. Vazana, Y., Barak, Y., Unger, T., Peleg, Y., Shamshoum, M., Ben-Yehezkel, T., et al. (2013). A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. Biotechnology for Biofuels 6(1), 182. doi: 10.1186/1754-6834-6-182. Wen, F., Sun, J., and Zhao, H. (2010). Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4), 1251-1260. doi: 10.1128/AEM.01687-09. Wieczorek, A.S., and Martin, V.J. (2010). Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Fact 9, 69. doi: 10.1186/1475-2859-9-69. Wieczorek, A.S., and Martin, V.J. (2012). Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis. Microb Cell Fact 11, 160. doi: 10.1186/1475-2859-11-160. Yoshida, E., Hidaka, M., Fushinobu, S., Koyanagi, T., Minami, H., Tamaki, H., et al. (2010). Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus. Biochemical Journal 431(1), 39-49. doi: 10.1042/bj20100351. Zheng, J., and Rehmann, L. (2014). Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15(10), 18967-18984. doi: 10.3390/ijms151018967.
|