跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:程彥博
研究生(外文):Yen-Po Cheng
論文名稱:探討多甲氧基類黃酮橘皮素衍生物5-Acetyloxy-6,7,8,4’ Tetra-Methoxyflavone之抗人類多形性膠質母細胞瘤效應暨其分子機制
論文名稱(外文):Study on the Anticancer Effect and Underlying Mechanisms of 5-Acetyloxy-6,7,8,4’-Tetra-Methoxyflavone, a Tangeretin Derivative, on Human Glioblastoma Multiforme Cells
指導教授:張嘉哲張嘉哲引用關係
指導教授(外文):Chia-Che Chang
口試委員:郭靜娟林季千王秉彥林屏沂
口試日期:2020-01-03
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:多形膠質母細胞瘤STAT3橘皮苷聚甲氧基黃酮BCL-2BCL-xL凋亡
外文關鍵詞:glioblastoma multiformeSTAT3tangeretin5-acetyloxy-6784’-tetramethoxyflavonepolymethoxyflavoneBCL-2BCL-xLapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多形膠質母細胞瘤(GBM)是目前最具有侵略性的原發性腦腫瘤,其預後較差,在很大程度上是由於腫瘤對目前的放射療法和替莫唑胺化學療法有較大的抵抗性。而信號轉導子和轉錄激活子3(STAT3)的大量表現被證明是GBM發病機理和治療耐藥性的關鍵驅動力,因此是有希望成為GBM藥物標靶。 5-乙酰氧基-6,7,8,4’-四甲氧基黃酮(5-Acetyloxy-6,7,8,4’–Tetramethoxyflavone;5-AcTMF)是橘皮苷的乙酰化衍生物,已被在乳癌,結腸癌,肺癌和多發性骨髓瘤被發現具有抗癌作用;但是,它對GBM的影響仍然不清楚。本研究中我們發現了5-AcTMF可以抑制了多種人類GBM細胞株中的存活和群落形成能力,並誘導了其凋亡。進一步的作用機制分析,顯示5-AcTMF可以抑制STAT3(p-STAT3)酪氨酸705磷酸化的(STAT3激活的典型標誌物),並且也抑制了白介素6引起的p-STAT3上調。值得注意的是,顯性活性STAT3的異位表達阻礙了5-AcTMF誘導的GBM細胞活力和群落形成性抑制以及凋亡誘導,這證實了阻斷STAT3 是5-AcTMF對GBM細胞存活和生長的抑製作用的必要條件。此外,5-AcTMF也阻斷了STAT3上游JAK2激酶的活化,但也以STAT3依賴性方式下調了抗凋亡BCL-2和BCL-xL。此外,BCL-2或BCL-xL的過表達會弱化了GBM細胞中5-AcTMF介導的生存力降低和凋亡誘導。總體而言,我們首次發現了5-AcTMF對GBM細胞的抗癌作用,這是通過阻止JAK2-STAT3-BCL-2/BCL-xL信號傳遞路徑來實現的。本研究顯示5-AcTMF對GBM具有治療的潛力。
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-Acetyloxy-6,7,8,4’-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment.
目次
中文摘要………………………………………………………………………………i
Abstract………………………………………………………………………………ii
前言(Introduction)………………………………………………………………..1
一、多形性膠質母細胞瘤……………………………………………………………1
二、5-Acetyloxy-6,7,8,4’–Tetramethoxyflavone (5-AcTMF)……….…………….….3
三、STAT3 (Signaling transducer and activator of transcription 3)……………4
四、STAT3與多形性膠質母細胞瘤……………………………………………...6
五、JAK(Janus kinase)……………………………………………………………7
六、細胞凋亡(Apoptosis)……………………………………………………….9
七、Bcl-2家族……………………………………………………………………11
研究目的(Aim)…………………………………………………………………..13
實驗材料及試劑配方 (Materials)………………………………………………….14
一、藥物……………………………………………………………………………14
二、試劑 (Buffer) …………………………………………………………14
三、質體建構(Plasmid construction)…………………………………………..16
四、抗體配製………………………………………………………………………18
實驗方法(Methods)……………………………………………….……………….19
一、細胞培養 (Cell lines and cell culture)……………………..……………….19
二、細胞冷凍保存與解凍……………………………………..……………………19
三、細胞存活率測試(Cell viability assay)………...………………………….…20
四、細胞群落形成能力檢測(Colony formation assay)…………….…..……….20
五、細胞凋亡試驗 (Apoptosis assay)………………………………..…………20
六、細胞總量蛋白萃取(Whole protein extraction)……………….….…………21
七、蛋白濃度定量分析(Protein quantification)………………...………………21
八、西方墨點法(Western blotting)……………………..……………….………22
九、大腸桿菌質體轉型作用(Transformation)………..…………………….......24
十、病毒製備與病毒感染(Retrovirus and Lentivirus production and infection) ………………………………………..…………………………………….…...…24
結果 (Results)…………………………………………………………………….. 26
一、5-AcTMF有效抑制多形膠質母細胞瘤細胞株之存活率.......................26
二、5-AcTMF能有效抑制人類多形膠質母細胞瘤細胞株群落生成能
力……………………………………………………….………………26
三、5-AcTMF誘發多形膠質母細胞瘤細胞株細胞凋亡以毒殺細
胞…………………………………………………..………………………...26
四、5-AcTMF抑制多形膠質母細胞瘤細胞株內持續性之STAT3活
化…………………………………..…………………………………………27
五、5-AcTMF可抑制IL-6誘導之STAT3活化………..…………27
六、抑制STAT3活化為5-AcTMF誘發人類多形膠質母細胞瘤細胞凋亡之必要機
制………………………………………………………….…………………27
七、5-AcTMF透過抑制JAK2以抑制STAT3活化……………………28
八、5-AcTMF抑制STAT3轉錄其下游基因BCL-2及BCL-xL………………28
九、5-AcTMF抑制STAT3以調降BCL-2及BCL-xL以誘發人類多形膠質母細胞
瘤之凋亡…………………………………………………………29
討論(Discussion)…………………………………………………………….…..30
一、本論文首度發現之結果………………………………………………………..30
二、探討STAT3對人類多形膠質母細胞瘤的影響……………………………30
三、探討5-AcTMF對血腦屏障(BBB)的作用…………………………………….31
四、探討5-AcTMF抑制STAT3是否引發其他保護機制……….……..31
五、其餘可能機制之探討………………………………………………….31
結論 (Conclusion) ………………………………………………………………33
實驗結果圖表 (Results and Figures) ……………………………………………..34
圖一、5-AcTMF有效抑制多形膠質母細胞瘤細胞株之存活率…………………34
圖二、5-AcTMF有效抑制人類多形膠質母細胞瘤細胞群落生成能力…………35
圖三、5-AcTMF促使PARP截切活化影響細胞生存…….………………….36
圖四、5-AcTMF抑制多株人類多形膠質母細胞瘤細胞STAT3持續性活化….….37
圖五、5-AcTMF有效抑制誘導性STAT3活化…………….………………..39
圖六、抑制STAT3之持續性活化為5-AcTMF誘導人類多形膠質母細胞瘤
細胞凋亡之必要機制……………………………………………………….40
圖七、抑制STAT3之持續性活化為 5-AcTMF誘導多形膠質母細
胞瘤細胞凋亡之必要機制………………………………………….41
圖八、抑制STAT3之持續性活化為5-AcTMF抑制多形膠質母細胞瘤細胞株
細胞存活率之必要機制…………………………………………………42
圖九、5-AcTMF抑制STAT3上游蛋白JAK2磷酸化使人類多形膠質母細胞瘤細胞
株STAT3活性下降…………………...…………………………………43
圖十、5-AcTMF抑制STAT3下游人類多形膠質母細胞瘤細胞株之抗凋亡蛋白
BCL-2、BCL-xL蛋白表現量…………….……….………………………..44
圖十一、在STAT3持續性活化之人類多形膠質母細胞瘤細胞株T98G中5-AcTMF
抗凋亡蛋白BCL-2、 BCL-xL蛋白表現量……………………….45
圖十二、在大量表現constitutively active BCL-2之人類多形膠質母細胞瘤細
胞中,5-AcTMF所誘導之細胞凋亡受到抑制……………………46
圖十三 、在大量表現constitutively active BCL-2之人類多形膠質母細胞瘤細
胞中,BCL-2之持續性活化為5-AcTMF抑制人類多形膠質母細胞瘤細胞
存活率之必要機制……………………………………………………….47
圖十四、在大量表現constitutively active BCL-2之人類多形膠質母細胞瘤細
胞中,5-AcTMF所誘導之細胞凋亡受到抑制…………………………48
圖十五、在大量表現constitutively active BCL-xL之人類多形膠質母細胞瘤細
胞中,5-AcTMF所誘導之細胞凋亡受到抑制…………………………49
圖十六、在大量表現constitutively active BCL-xL之人類多形膠質母細胞瘤細
胞中,BCL-xL之持續性活化為抑制人類多形膠質母細胞瘤細胞存活率之
必要機制……………………………………………………………….50
圖十七、在大量表現constitutively active BCL-xL之人類多形膠質母細胞瘤細
胞中,5-AcTMF所誘導之細胞凋亡受到抑制……………………………51
附錄…………………………………………………………………………………52
參考文獻………………………………………………………………. ………………55
參考文獻
1.Kim JE, et al. STAT3 Activation in Glioblastoma: Biochemical and Therapeutic Implications. Cancers (Basel) 2014; 6:376-95.
2.White AC, et al. Refining the role for adult stem cells as cancer cells of origin. Trends cell biol 2015; 25:11-20.
3.Jovčevska I, et al. Glioma and glioblastoma - how much do we (not) know? Mol Clin Oncol 2013; 1:935-41.
4.Linos E, et al. Atopy and risk of brain tumors: a meta-analysis. Journal of the National Cancer Institute 2007; 99:1544-50.
5.Kleihues P, et al. Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology 1999; 1:44-51.
6.Hartmann C, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta neuropathological 2010; 120:707-18.
7.Ohgaki H, et al. Epidemiology and etiology of gliomas. Acta neuropathological 2005; 109:93-108.
8.Thakkar JP, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014; 23:1985-96.
9.Bondy ML, et al. Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 2008; 113:1953-68.
10.Wrensch M, et al. Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro-oncology 2002; 4:278-99.
11.Adamson C, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 2009; 18(8):1061-83.

12.Golla H, et al. lioblastoma multiforme from diagnosis to death: a prospective, hospital-based, cohort, pilot feasibility study of patient reported symptoms and needs. Support care cancer 2014; 22:3341-52.
13.Sizoo EM, et al. Symptoms and problems in the end-of-life phase of high-grade glioma patients. Neuro-oncology 2010; 12:1162-6.
14.Davis ME. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs 2016; 20:S2-S8.
15.Ostrom QT, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncology 2014; 16:iv1-63.
16.Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 2002; 359(9311):1011-8.
17. Li S, et al. Polymethoxyflavones: Chemistry, biological activity, and occurrence in orange peel. ACS Symposium Series 2008; 987:191-210.
18.Wang X, et al. Anti-inflammatory effects of polymethoxyflavones from citrus peels: A review. J. Food Bioact 2018; 3:76–86.
19.Tung Y.C, et al. Polymethoxyflavones: Chemistry and molecular mechanisms for cancer prevention and treatment. Curr Pharmacol Rep 2019; 5:98–113.
20.Lai CS, et al. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct 2013; 4:944-9.
21.Wang L, et al. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. Biomed Res Int 2014; 2014:453972.
22.Li S, et al. Efficient and scalable method in isolation of polymethoxyflavones from orange peel extract by supercritical fluid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 846:291-7.
23.Chiu SP, et al. Neurotrophic action of 5-hydroxylated polymethoxyflavones: 5-demethylnobiletin and gardenin A stimulate neuritogenesis in PC12 cells. J Agric Food Chem 2013; 61:9453-63.
24.Li S, et al. Isolation and syntheses of polymethoxyflavones and hydroxylatedpolymethoxyflavones as inhibitors of HL-60 cell lines. Bioorg Med Chem 2007; 15:3381-9.
25.Ram M. Uckoo, et al. Rapid separation method of polymethoxyflavones from citrus using flash chromatography. Sep Purif Technol 2011; 81:151-158.
26.Sundaram R, et al. Tangeretin, a polymethoxylated flavone, modulates lipid homeostasis and decreases oxidative stress by inhibiting NF-κB activation and proinflammatory cytokines in cardiac tissue of streptozotocin-induced diabetic rats. J Funct Foods 2015; 16:315-333.
27.Shu Z, et al. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. Int Immunopharmacol 2014; 19:275-282.
28.Periyasamy K, et al. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother Pharmacol 2015; 75:263-272.
29.Ma N, et al. 5-Demethyltangeretin is more potent than tangeretin in inhibiting dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. J Funct Foods 2014; 11:528-537.
30.Wang J, et al. Pro-apoptotic effects of the novel tangeretin derivate 5-acetyl-6,7,8,4′-tetramethylnortangeretin on MCF-7 breast cancer cells. Cell Biochem Biophys 2014; 70:1255-1263.
31.Lai C.S., et al. Inhibitory effects of 5-demethyltangeretin and 5-acetyloxy-6,7,8,4′-tetramethoxyflavone on human colon cancer cells. Nutri Funct Prop Food 2013; 281-290.
32. Li Y.R, et al. Tangeretin derivative, 5-acetyloxy-6,7,8,4′-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo. Cancer Biol Ther 2015; 17:48-64.
33.Zhi D, et al. 5-Acetyl-6,7,8,4′-tetramethylnortangeretin induces apoptosis in multiple myeloma U266 cells. Food Sci Hum Wellness 2014; 3:197-203.
34.Zhi D, et al. 5-Acetyl-6,7,8,4′-tetramethylnortangeretin induces apoptosis in multiplemyeloma U266 cells. Food Sci Hum Wellness 2014; 3:197-203
35.Wang J, et al. Pro-apoptotic effects of the novel tangeretin derivate 5-acetyl-6,7,8,4′-tetramethylnortangeretin on MCF-7 breast cancer cells. Cell Biochem Biophys 2014; 70:1255-63.
36.Darnell JE, et al. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular proteins. Science 1994; 264:1415–1421.
37.Zhuang, S. Regulation of STAT signaling by acetylation Cell. Signalling 2013; 25: 1924-1931.
38.Furtek SL, et al. Strategies and Approaches of Targeting STAT3 for Cancer Treatment. ACS Chem Biol 2016; 11:308-18.
39.Maritano D, et al. The STAT3 isoforms alpha and beta have unique and specific functions. Nat Immunol 2014; 5:401-409.
40.Claudinon J, et al. Palmitoylation of interferon‐alpha (IFN‐alpha) receptor subunit IFNAR1 is required for the activation of Stat1 and Stat2 by IFN‐alpha. J Biol Chem 2009; 284:24328-24340.
41.Berclaz G, et al. EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 2001; 19:1155-1160.
42.Cao X, et al. Activation and association of Stat3 with Src in v–Src‐transformed cell lines. Mol Cell Biol 1996; 16:1595-1603.
43.Hemmann U, et al. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J Biol Chem 1996; 271:12999-13007.
44.Schust, J, et al. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 2006; 13:1235-1242.
45.Debnath, B, et al. Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 2012; 55:6645-6668.
46.Luwor, R, et al. The role of Stat3 in glioblastoma multiforme. J Clin Neurosci 2013; 20:907- 911
47.Zhang, X, et al. A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol 2010; 79:1398-1409
48.Bromberg J. Stat proteins and oncogenesis. J Clin Invest 2002; 109:1139–1142.
49.Corvinus, F.M., et al., Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth. Neoplasia 2005; 7:545-555.
50.Mohamed, A, et al. The Incidence, Correlation with Tumor Infiltrating Inflammation, and Prognosis of p-STAT3 Expression in Human Gliomas. Clin Cancer Res 2008; 14:8228-8235.
51.Xie, TX, et al. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res 2006; 66:3188-96.
52.Bao JJ, et al. Inhibition of constitutively active STAT3 by WP1066 suppresses proliferation and induces apoptosis in pancreatic cancer cells. Clin Cancer Res 2005; 11:9026S-7S.
53.Chan KS, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Invest 2004; 114:720-8.
54.Iwamaru A, et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 2006; 26:2435-44.
55.Leong PL, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A 2003; 100:4138-43.
56.Tang GS, et al. Effects of STAT3 antisense oligodeoxynucleotides on apoptosis and proliferation of mouse melanoma cell line B16. Ai Zheng 2006; 25:269-74.
57.Li GH, et al. Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int J Oncol 2010; 37:103-10.
58.Carro MS, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010; 463:318-25.
59.Wang H, et al. Targeting Interleukin 6 Signaling Suppresses Glioma Stem Cell Survival and Tumor Growth. Stem Cells 2009; 27:2393-404.
60.Lin GS, et al. STAT3 Tyr705 phosphorylation affects clinical outcome in patients with newly diagnosed supratentorial glioblastoma. Med Oncol 2014; 31:924.
61.Rodney B.L, et al. The role of Stat3 in glioblastoma multiforme. J Clin Neurosci 2013; 20:907-911.
62.Sushil G R, et al. Janus kinases: components of multiple signaling pathways. Oncogene 2000; 19:5662-5679.
63.Haan C, et al. Jaks and cytokine receptors — an intimate relationship. Biochem Pharmacol 2006; 72:1538-1546.
64.Buchert M, et al. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 2016; 35:939-951.
65.Ernst M, et al. Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 2004; 20:23-32.
66.Daniel E, et al. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 2018; 15: 234-248.
67.Colamonici O, et al. Jak-Stat Signaling: From Basics to Disease. Mol Cell 1994; 14:8133-8142.
68.Sakai I, Nabell L and Kraft AS. Signal transduction by a CD16/CD7/Jak2 fusion protein. J Biol Chem 1995; 270: 18420-18427.
69.Nakamura N, Chin H, Miyasaka N and Miura O. An Epidermal Growth Factor Receptor/Jak2 Tyrosine Kinase Domain Chimera Induces Tyrosine Phosphorylation of Stat5 and Transduces a Growth Signal in Hematopoietic Cells. J Biol Chem 1996; 271: 19483-19488.
70.Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352:1779-1790.
71. Jones AV, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005; 106:2162-2168.
72.Walters DK, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10:65-75.
73.Bose P, Verstovsek S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood 2017; 130:115-125.
74.Kerr JF, et al. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239-57.
75.Formigli L, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. Cell Physiol 2000; 182:41-9.
76.Sperandio S, et al. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000; 97:14376-81.

77.Debnath J, et al. Does autophagy contribute to cell death. Autophagy 2005; 1:66-74.
78.Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 2001; 41:367-401.
79.Hirsch T, et al. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 1997; 15:1573-81.
80.Zeiss CJ. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 2003; 40:481-95.
81.Susan Elmore. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. Author manuscript. Toxicol Pathol 2007; 35:495-516.
82.Desagher, S. and J.C. Martinou, Mitochondria as the central control point of apoptosis. Trends Cell Biol 2000; 10:369-77.
83.Elmore, S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35:495-516.
84.Thomas, et al. Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3'' Uridylated Intermediates Degraded by DIS3L2. Cell Reports 2015; 11: 1079-89.
85.Böhm I. Disruption of the cytoskeleton after apoptosis induction by autoantibodies. Autoimmunity 2003; 36:183-189.
86. Susin, S, et al. Two Distinct Pathways Leading to Nuclear Apoptosis. J Exp Med 2000; 192: 571-80.
87.Madeleine Kihlmark, et al. Sequential degradation of proteins from the nuclear envelope during apoptosis. J Cell Sci 2001; 114:3643-53.
88.Nagata S. Apoptotic DNA fragmentation. Exp Cell Res 2000; 256:12-8.

89.Gong JP, et al. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 1994; 218: 314-319.
90.Muchmore SW, et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996; 381:335-41.
91.Youle, Richard J. The BCL-2 protein family: opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology 2008; 9:47-59.
92.Coultas, L. and A. Strasser, The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 2003; 13:115-23.
93.Reed JC, et al. Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Med Biol 1996; 406:99-112.
94.Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Target Ther 2017; 2;17040.
95.Linder, B, et al. Therapeutic targeting of Stat3 using lipopolyplex nanoparticle-formulated siRNA in a syngeneic orthotopic mouse glioma model. Cancers 2019; 11:333.
96.Jensen, K.V, et al. The JAK2/STAT3 inhibitor pacritinib e ectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model. PLoS ONE 2017; 12:e0189670.
97.Lee, B, et al. The polymethoxylated flavone, Tangeretin improves cognitive memory in rats experiencing a single episode of prolonged post-traumatic stress. Anim. Cells Syst 2018; 22:54-62.
98.Wu, C, et al. Tangeretin protects human brain microvascularendothelial cells against oxygen-glucose deprivation-induced injury. J Cell Biochem 2019; 120:4883-4891.
99.Braidy, N, et al. Neuroprotective Effects of Citrus Fruit-Derived Flavonoids, Nobiletin and Tangeretin in Alzheimer''s and Parkinson''s Disease. CNS Neurol Disord Drug Targets 2017; 16:387-397.
100.Datla, K.P, et al. Tissue distribution and neuroprotective ects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 2001; 12:3871-3875.
101.Okuyama, S, et al. Permeation of polymethoxyflavones into the mouse brain and their ect on MK-801-induced locomotive hyperactivity. Int J Mol Sci 2017; 18:489.
102.Yuan, G, et al. CucurbitacinI induces protective autophagy in glioblastoma in vitro and in vivo. J Biol Chem 2014; 289:10607-10619.
103.Ouédraogo, Z.G, et al. Role of STAT3 in genesis and progression of human malignant gliomas. Mol Neurobiol 2017; 54:5780-5797.
104.Masliantsev, K, et al. Impact of STAT3 phosphorylation in glioblastoma stem cells radiosensitization and patient outcome. Oncotarget 2018; 9:3968-3979.
105.Ganguly, D, et al. The critical role that STAT3 plays in glioma-initiating cells: STAT3 addiction in glioma. Oncotarget 2018; 9:22095-22112.
106.Luwor, R.B, et al. The role of Stat3 in glioblastoma multiforme. J Clin Neurosci 2013; 20:907-911
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊