(18.210.12.229) 您好!臺灣時間:2021/03/03 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳科佑
研究生(外文):Ke-Yu Chen
論文名稱:以真空熱壓法製備Sb2Se3合金之熱電特性分析
論文名稱(外文):Analysis of thermoelectric properties of Sb2Se3 alloy prepared by vacuum hot-pressing
指導教授:張立信
指導教授(外文):Li-Shin Chang
口試委員:曾文甲林昆明
口試委員(外文):Wenjea J. TsengKun-Ming Lin
口試日期:2020-01-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:熱電材料Sb2Se3球磨功率因子粉末燒結熱壓法
外文關鍵詞:thermoelectric materialsSb2Se3ball millingpower factorpowder sinteringhot pressing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
本實驗以垂直式布里居曼法搭配粉末冶金方式(球磨、過篩、真空熱壓燒結)製備出 Sb2Se3熱電材料,並探討不同燒結溫度對顯微結構以及熱電特性的影響。藉由 OM 及 SEM 金相觀察並配合密度量測發現,隨著燒結溫度提升,能促使晶粒成長與提高燒結密度。由X光繞射分析結果顯示,粉末經熱壓燒結後可獲得單一相之Sb2Se3晶體。利用EDS分析確認所有樣本成分均接近Sb:Se=2:3。
對熱壓Sb2Se3試片進行熱電特性分析,分別量測電導率、Seebeck
係數,兩者皆隨著溫度上升而下降,最後計算功率因子隨溫度變化之
關係。在室溫時,燒結溫度 400°C 之試片有最佳熱電表現,電導率為
0.536 S/cm,Seebeck 係數值為 458.3 μV/K,最後計算功率因子值為0.113×10-3 W/mk2
In this study, Sb2Se3 thermoelectric matierials were prepared by verical Bridgman method combined with powder metallurgy(ball milling, sieving, vacuum hot pressing),and the effects of different sintering temperatures on microstructure and thermoselectric properties were investigated.
It was found by OM and SEM metallographic observation and density measurement that the grain growth and grain density increase with the increase of sintering temperature. The X-ray diffraction results showed that the powder was subjected to hot press sintering to obtain a single phase Sb2Se3 crystal. EDS results confirm that all sample components were close to Sb:Se=2:3.
The thermoelectric characteristics of the hot-pressed Sb2Se3 test piece were analyzed, and the electrical conductivity and Seebeck coefficient were measured respectively. Both of them decreased with the increase of temperature, and finally the relationship between the power factor and temperature was calculated. At room temperature, the sample with a sintering temperature of 400 ° C has the best thermoelectric performance, the electrical conductivity is 0.536 S/cm, the Seebeck coefficient is 458.3 μV/K, and the calculated power factor is 0.11 × 10-3 W/mk2.
摘要.i
Abstract.ii
目錄...iii
表目錄...viii
圖目錄...ix
第一章 緒論...1
1.1前言...1
1.2熱電材料的發展歷史...2
1.3熱電材料的應用...3
1.3.1熱電發電器(thermoelectric generator)...3
1.3.2熱電致冷器(thermoelectric cooler)...4
1.4 研究動機與目的...5
第二章 理論基礎與文獻回顧...7
2.1 熱電效應...7
2.1.1 Seebeck效應...7
2.1.2 Peltier效應...9
2.1.3 Thomson效應...10
2.2 熱電特性與功率因子...11
2.2.1 電導率...11
2.2.2 Seebeck係數...12
2.2.3 功率因子...13
2.3 熱電材料文獻回顧...14
2.3.1 熱電材料選擇...14
2.3.2 Sb2Se3簡介...15
2.3.3 Sb2Se3文獻回顧...17
2.4 行星式球磨法...17
2.5 燒結理論...18
2.5.1 燒結機構...19
2.6 垂直式布里居曼長晶法(vertical Bridgman method)...20
2.7 熱壓法(Hot pressing)...20
第三章 實驗方法與步驟...21
3.1 實驗流程...21
3.2 實驗製程介紹...23
3.2.1 材料準備...23
3.2.2 真空石英封管...23
3.2.3 垂直式布里居曼法...25
3.2.4 研缽研磨與行星式球磨...26
3.2.5 粉末過篩...28
3.2.6 粒徑分析...28
3.2.7 真空熱壓...29
3.3 試片性質分析...31
3.3.1 金相觀察...31
3.3.2 X-ray繞射分析...32
3.3.3 熱游離掃描式電子顯微鏡...33
3.3.4 密度量測...34
3.4 熱電性質量測...35
3.4.1電導率量測...36
3.4.2 Seebeck係數量測...38
3.4.3 霍爾量測...39
第四章 結果與討論...43
4.1 Sb2Se3塊體...43
4.2 粉末處理...44
4.2.1 製粉過篩...44
4.2.2 粉末粒徑分析...44
4.3 真空熱壓燒結...46
4.3.1 試片金相觀察...46
4.3.2 密度量測...48
4.3.3 EDS成分分析...48
4.3.4 XRD結晶結構分析...49
4.4 熱電性質...52
4.4.1 載子性質...52
4.4.2 電導率...53
4.4.3 Seebeck係數...55
4.4.4 功率因子...56
第五章 結論...58
參考文獻...60
[1] S.Jacobsson and A.Johnson,“The diffusion of renewable energy technology: an analytical framework and key issues for research”, Energy Policy 28 (2000) 625-640.
[2] T.J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz”, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin (1823) 265-373.
[3] J.C. Peltier, “Nouvelles expériences sur la caloricité des courans électrique”, Annales de Chimie et de Physique 56 (1834) 371-372.
[4] A.F. Iofee, “Semiconductor thermoelements and thermoelectric cooling”, Infosearch Limited, London, 1957, p.42.
[5] H.J. Goldsmid and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, British Journal of Applied Physics 5 (1954) 386-390.
[6] C.B. Vining and G.L. Bennett, “Power for Science and Exploration: Upgrading the General-Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG)”, 8th Annual International Energy Conversion Engineering Conference, Nashvile, 2010, p.p. 6598-6599.
[7] 吳重邑, "添加鍺與鎵元素對BaGaSn晶籠材料金相及熱電特性之影響",國立中興大學碩士論文,台中, 2015, p.13.
[8] 宋柏毅, "固態熱電發電技術開發與應用計畫",工業技術研究院 綠能與環境研究所,新竹,Available from: https://km.twenergy. org.tw/KnowledgeFree /knowledge_ more?id=980.
[9] N.W. Tideswell, F.H. Kruse and J.D. McCullough, “The crystal structure of antimony selenide, Sb2Se3”, Acta Crystallographica 10 (2) (1957) 99-102.
[10] 胡孔刚, 段兴凯, 满达虎, 金海霞, "Sb2Se3热电材料的真空熔炼合成及微结构研究", 鑄造技術11 (2012) 1251-1253.
[11] D.M. Rowe, Chapter1-2 in “CRC Handbook of Thermoelectrics”, CRC, Boca Raton, 1995, p.257.
[12] G.S. Nolas, G.A. Slack, J.L. Cohn and S.B. Schujman, “The Next Generation of Thermoelectric Materials”, Proceeding of the 17th International Conference in Thermoelectrics, 1998, pp.294-297.
[13] 朱旭山,"熱電材料與元件之原理與應用",電子與材料雜誌,第22期 (2004) 78-80.
[14] "熱電材料 Thermoelectric material" Available from: http://web.nchu.edu.tw/~lschang/Thermoelectric.htm.
[15] W. Thomson, “On the electro-dynamic qualities of metals:Effects of magnetization on the electric conductivity of nickel and of iron”, Proceedings of the Royal Society of London,1857, pp. 546-550.
[16] W. Thomson, “Account of researches in thermo-electricity”, Philosophical Magazine 8 (1854) 62.
[17] L.D. Hicks and M.S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B 47 (1993) 16631.
[18] G.J. Snyder and E.S. Toberer, “Complex thermoelectric materials”, Nature Materials 7 (2008) 107.
[19] D.M. Rowe and C.M. Bhandari, “Modern Thermoelectrics”, Holt Saunders, London ,1983, p.103 .
[20] 楊松暉, "P型BaGaSn熱電材料之製程開發與特性分析", 國立中興大學碩士論文,台中, 2012, p.13.
[21] O.Madelung, “Semiconductors: data handbook”, 3rd ed., Springer,Berlin, 2004, p. 624.
[22] V.L. Deringer, R.P. Stoffel, M. Wuttig, R. Dronskowski, “Vibrational properties andbonding nature of Sb2Se3 and their implications for chalcogenide materials”, Chem. Sci. 6 (2015) 5255-5262.
[23] G. Ghosh, “The Sb-Se (antimony-selenium) system. Journal of Phase Equilibria”, Springer, 14(6) (1993) 753-763.
[24] H.A. Rahnamaye Aliabad, F. Asadi Rad, “Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches.”, Physica B 545(2018) 275-284
[25] 百度百科, "行星式球磨" Available from: https://baike.baidu.com/item/%E8%A1%8C%E6%98%9F%E7%A3%A8/9200765?fromtitle=%E8%A1%8C%E6%98%9F%E5%BC%8F%E7%90%83%E7%A3%A8%E6%9C%BA&fromid=8786286.
[26] 維基百科, "燒結" Available from: https://zh.wikipedia.org/wiki/%E7%87%92%E7%B5%90.
[27] 駱榮富, "燒結爐講義",逢甲大學材料科學與工程學系,台中,2017, pp. 2-5.
[28] 徐仁輝, "粉末冶金概論", 新文京開發,台北,2002,pp.30-34.
[29] 伍祖璁, 黃錦鐘, "粉末冶金", 高立圖書有限公司,台中, 1996,pp.171-184.
[30] 黃伯雲, "材料大辞典:燒結", 化学工盘出版杜,北京,1994, pp.908-909.
[31] M.B. Bever, ”Encyclopedia of Materials Science and Engineering” , Pergamon Press; Elmsford, NY,1985, pp.2202-2209.
[32] 潘子齊, "不同錫含量之N型鋇鎵錫第八型晶籠之製備與熱電性質研究",國立中興大學碩士論文,台中,2019, p. 43.
[33] J.Hermannsdörfer and N.de Jonge, “Studying Dynamic Processes of Nano-sized Objects in Liquid using Scanning Transmission Electron Microscopy”, JoVE54943(2017)120.
[34] 維基百科, "阿基米德浮體原理", Available from: https://zh.wikipedia.org/wiki/%E9%98%BF%E5%9F%BA%E7%B1%B3%E5%BE%B7%E6%B5%AE%E9%AB%94%E5%8E%9F%E7%90%86.
[35] 陳俊豪, "不同銀含量之N型鋇鎵錫第八型晶籠之製備與熱電性質研究",國立中興大學碩士論文, 台中, 2019 , p.36.
[36] 黄志锋, 周涛, 陳亮, "WC 晶粒定量测量研究", 粉末冶金材料科學與工程,3(2001)251-254.
[37] 譚中雄, "以真空燒結與熱壓及熱均壓製備 Cr-Si 靶材及其特性之研究",國立成功大學碩士論文,台南,2009, p. 63.
[38] E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A. M.F. Goncalves, A.J.S. Marques, R.F.P. Martins and L.M.N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature”, Appl. Phys. Lett. 85(2004) 2541-2543.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔