跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/24 17:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈柏臻
研究生(外文):Po-Chen Shen
論文名稱:藍光微型發光二極體陣列晶片之製程與特性改善研究
論文名稱(外文):Improved fabrication process and performance of blue micro-LED chip arrays
指導教授:武東星
指導教授(外文):Dong-Sing Wuu
口試委員:洪瑞華吳宛玉
口試委員(外文):Ray-Hua HorngWan-Yu Wu
口試日期:2020-01-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:71
中文關鍵詞:藍光微型發光二極體顯示器光阻熱回流蝕刻斜度鈍化層
外文關鍵詞:Blue micro-LED displayPhotoresist thermal reflowsloped sidewallDBR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究運用了光阻熱回流法搭配乾蝕刻技術在P型氮化鎵 (GaN) 與N型氮化鎵上定義出光阻圖形及蝕刻出適合的傾斜角度,成功使鈍化層與金屬能夠順著斜坡包覆像素而無產生斷線。另外使用負光阻 (SU-8)、二氧化矽與布拉格反射鏡三種鈍化層製作單顆藍光微型發光二極體,依據側壁上的缺陷態比較三種鈍化層之優劣。從結果發現布拉格反射鏡為鈍化層最優異,在1 mA電流驅動下,啟動電壓落在2.76 ± 0.02 V具有1.07 mW的光輸出功率,其中在0.2 mA時,其外部量子效率達到最高點為42 %,給予逆向偏壓-5 V時,僅有0.7 ± 0.3 nA之漏電流。並進一步使用TracePro模擬軟體來分析斜角與不同鈍化層之光學特性變化,其結果顯示無論是有無斜角,在模擬分析上具有布拉格反射鏡鈍化層之微型發光二極體皆較優異,並與實驗結果之趨勢符合。
在製作顯示器方面,利用光阻熱回流技術成功地蝕刻出適合的形貌,並以布拉格反射鏡為鈍化層,優化製程參數並且提升了藍光微型發光二極體顯示器之特性,其解析度為96 × 48,單顆像素尺寸為50 μm × 50 μm,像素與像素間距為50 μm,對角線解析度為256 PPI。以氧化銦錫透明導電膜作為P型氮化鎵的歐姆接觸層同時幫助電流擴散,在製程設計上採用覆晶式發光二極體製程方法達到無電極遮蔽的效果,正電極使用厚金Cr/Pt/Au作為電極金屬;負電極及環狀金屬使用Cr/Pt/Au/Ti/Pt/Cr多層金屬作為電極金屬,因此在電性方面上,不論是列方向或行方向單點像素之順向電壓在直流1 mA的電流驅動下僅有小於4 %的變化,而在光學方面上,透過光束輪廓儀分析像素發光強度的分佈。
最後將藍光微型發光二極體顯示器模組使用異方性導電膠與IC對位貼合,利用被動式的IC電路作為驅動,以定址的方式控制矩陣的單點像素,完成96 × 48顆像素之藍光微型發光二極體顯示器的研製。
In this study, the photoresist thermal reflow and ICP etching technology were used for defining the photoresist pattern on the p-GaN, n-GaN and sloped sidewall. Through this method, the passivation layer and connection metal can be aligned along the sloped sidewall without the broke metal connection. In addition, SU-8, SiO2 and DBR are used as the passivation layer to passivate the surface defect states on the sloped sidewall. As a result, the DBR passivation layer shows the highest performance. The output power of micro-LED display with the DBR passivation layer has 1.07 mW under 1mA (forward voltage, Vf =2.76 ± 0.02 V). Under the injection current of 0.2 mA, the external quantum efficiency reaches the highest value of 42%. As supporting a reverse bias of -5 V, the leakage current of the micro-LED with the DBR passivation layer is around 0.7 ± 0.3 nA. Furthermore, the TracePro had been used for simulating the explored optical characteristics. The simulated results showed similar to experiment results.
In the fabrication of displays, the photoresist thermal reflow technology was used for etching a slop profile, which combined with the DBR passivation layer for improving the performance of blue light micro-LED display. The resolution of the display area is 96 × 48, a single pixel size of 50 μm× 50 μm, and the space between pixels is 50 μm and the diagonal resolution is 256 PPI. ITO layer is used as both the ohmic contact layer on the p-GaN and the transparent conducting film to improve the current spreading. In order to solve the light-shading problem from the metal electrodes, the electrodeless shielding of flip-chip LEDs was prepared. However, the thick metal Cr/Pt/Au used as the positive electrode; the Cr/Pt/Au/Ti/Pt/Cr multilayer metal used as the negative electrode and ring metal electrode. In electrical properties, the experimental results show that the blue micro-LED displays with DBR passivation layers improved the forward voltage of a single pixel less than 4 % under 1 mA.
Finally, the micro-LEDs were bonded with an integrated circuit by using the anisotropic conductive film. The display is driven via the passive integrated circuit. Single pixel on matrix display is controlled through the mix multi-electrodes addressable method, and the image can be shown on the display successfully.
誌謝 i
摘要 ii
ABSTRACT iii
目次 v
圖目次 viii
表目次 xi
第一章 緒論 1
1-1前言 1
1-2平面顯示器發展歷程 2
1-2-1電漿顯示器 (Plasma display panel;PDP) 3
1-2-2 OLED (Organic light-emitting diode;OLED) 顯示器 4
1-2-3薄膜電晶體液晶顯示器 (Thin film transistor liquid crystal display;TFT-LCD) 5
1-3研究動機 6
1-4論文架構 8
第二章 基礎理論與文獻回顧 9
2-1發光二極體 (Light-Emitting Diode;LED) 原理 9
2-2發光二極體光電特性 9
2-3發光二極體光取出原理 11
2-3-1內部量子效率 (Internal quantum efficiency;IQE) 11
2-3-2外部量子效率 (External quantum efficiency;EQE) 12
2-3-3光萃取效率 (Light Extraction Efficiency;LEE) 12
2-4矩陣式微型發光二極體 13
2-5 ICP蝕刻技術 15
2-6透明導電膜 (Indium Tin Oxide;ITO) 15
2-7金屬與半導體接面原理 17
2-7-1金屬/半導體接觸之原理 17
2-7-2歐姆接觸之原理 18
2-8布拉格反射鏡之結構與特性 21
2-9鈍化層介紹 22
2-10光度計量與單位 23
2-10-1國際通用照明單位 23
2-10-2像素密度 23
第三章 設備介紹與實驗方法 25
3-1設備介紹 25
3-1-1黃光微影設備 (Photolithography) 25
3-1-2電子束蒸鍍機 (Electron-beam Gun Coater;E-Gun) 27
3-1-3電感應耦合電漿 (Inductively Coupled Plasma;ICP) 28
3-1-4掃描電子顯微鏡 (Scanning Electron Microscope;SEM) 29
3-2實驗材料與技術應用 30
3-3 GaN藍光顯示器製作流程簡介 31
3-3-1 GaN藍光磊晶片結構 32
3-3-2藍光磊晶片清洗 33
3-3-3 ITO薄膜沉積 33
3-3-4定義藍光顯示器發光平台 34
3-3-5 ITO熱退火 (Anneal) 35
3-3-6定義藍光顯示器導線電路 35
3-3-7藍光顯示器環狀金屬沉積 36
3-3-8藍光顯示器陰、陽極金屬沉積 37
3-3-9藍光顯示器鈍化層沉積 38
3-3-10藍光顯示器陽極金屬沉積 39
第四章 結果與討論 41
4-1蝕刻後的形貌研究 41
4-1-1傾斜角度之重要性 41
4-1-2光阻熱回流 42
4-1-3 ICP乾蝕刻 45
4-2鈍化層材料選擇 47
4-2-1單顆微型發光二極體光電特性分析 47
4-2-2 負光阻 (SU-8) 製程上面的困難 52
4-2-3反射率量測 53
4-2-4 TracePro模擬軟體分析 54
4-3藍光微型發光二極體顯示器 58
4-3-1行、列方向像素電性量測 60
4-3-2光學特性量測 62
4-3-3藍光顯示器影像顯示 64
第五章 結論及未來展望 66
參考文獻 68
1.K. Ghaffarzadeh et al, "Metal oxide TFT backplanes for displays 2013-2018: Analysis, trends, forecasts." IdTechEx Report. 2013.
2.A. Krishnan, "In depth: A peek inside your display, " Jun. 2016.
3.M. Pope et al, "Electroluminescence in organic crystals." J. Chem. Phys. Vol 38 pp. 2042-2043. 1963.
4.C. W. Tang et al, "Organic electroluminescent diodes." Appl. Phys. Lett. Vol 51 pp. 913-915. 1987.
5.H. Kaur et al, "Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays." Coord. Chem. Rev. Vol 401 Dec., 2019.
6.K. Nishiyama et al, "9.3: 32 ″WXGA LCD TV using OCB Mode, Low Temperature p‐Si TFT and Blinking Backlight Technology." SID Symposium Digest of Technical Papers. Vol 36. Jul., 2005.
7.R. Mertens, "N-Tech research: Micro-LED lighting revenues to reach $1.4 billion by 2028," n-tech research. Mar., 2019
8.T. Jung et al, "32‐1: Invited paper: Review of micro‐light‐emitting‐diode technology for micro‐display applications." SID Symposium Digest of Technical Papers. Vol 50. May., 2019.
9.Y. C. Lin et al, "Packaging of phosphor based high power white LEDs: effects of phosphor concentration and packaging configuration." J. Electron. Packag. Mar., 2011.
10.S. M. Sze, "Semiconductor devices: physics and technology." John wiley & sons. 2008.
11.施敏, 伍國. 半導體元件物理與製作技術. pp. 391-393. 2013.
12.D. A. Zakheim et al, "High-power flip-chip blue light-emitting diodes based on AlGaInN." Semiconductors 39. pp. 851-855. Jul., 2005.
13.E. Letts et al, "Development of GaN wafers for solid-state lighting via the ammonothermal method." J. Cryst. Growth. Vol 350. pp. 66-68. Jul., 2012.
14.施敏原著, 張俊彥譯著. 半導體元件物理與製程技術. 高立出版, pp. 192-206. 2000.
15.郭浩中, 賴芳儀, 郭守義. LED 原理與應用: Principles and applications of light-emitting diode. 五南圖書, pp. 192-206, 2012.
16.L. Zilan et al, "Preparation of GaN-based cross-sectional TEM specimens by laser lift-off." Micron. Vol 36. pp. 281-284 Apr., 2005.
17.光國. 半導體發光二極體及固體照明. 全華科技圖書股份有限公司, 2005.
18.Z. J. Liu et al, "Monolithic LED microdisplay on active matrix substrate using flip-chip technology." IEEE Journal of Selected Topics in Quantum Electronics. Vol 15. pp. 1298-1302. Jul., 2009.
19.W. C. Chong et al, "1700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC." IEEE C. S. I. C. S. Dec., 2014.
20.Z. J. Liu et al, "360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays." J. Disp. Technol. Vol 9. pp. 678-682. 2013.
21.M. Akhter et al, "A LED Micro-Display with 90× 90 pixels on a 80 μm pitch." 2015 E. M. P. C. Jan., 2015.
22.C. W. Jeon et al, "A novel fabrication method for a 64× 64 matrix‐addressable GaN‐based micro‐LED array." Phys. Status. Solidi. A. Vol 200. pp. 79-82. Oct., 2003.
23.H. Kim et al, "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices." J. Appl. Phys. Vol 86. pp. 6451-6461. Aug., 1999.
24.M. D. Benoy et al, "Thickness dependence of the properties of indium tin oxide (ITO) FILMS prepared by activated reactive evaporation." Brazilian J. Phys. Vol 39 pp. 629-632. Dec., 2009.
25.莊達人, 電子工程. VLSI 製造技術. 高立出版, pp. 12-18. 2002.
26.V. M. Bermudez, "Study of oxygen chemisorption on the GaN (0001)‐(1×1) surface." J. Appl. Phys. Vol 80. pp. 1190-1200. Jun., 1996.
27.施敏原著, 張俊彥譯著. 半導體元件物理與製程技術. 高立出版, pp. 192-206. 2000.
28.G. Greco et al, "Ohmic contacts to gallium nitride materials." Appl. Surf. Sci. Vol 383. pp. 324-345. Oct., 2016.
29.郭浩中, 賴芳儀, 郭守義. LED 原理與應用: Principles and applications of light-emitting diode. 五南圖書, 2012.
30.蕭宏. 半導體製程技術導論(第三版). 全華圖書股份有限公司, pp. 366, 2012.
31.M. Kenall, "Launches new bacteria-killing LED light for hospitals." LEDinside. Oct., 2017.
32.楊子明, 鐘昌貴, 沈志彥, 李美儀, 吳鴻佑, 詹家瑋. 半導體製程設備技術(第二版). 五南圖書, pp. 258-287. 2017.
33.陳力俊. 材料電子顯微鏡學. 行政院國家科學委員會精密儀器發展中心發行, 1994.
34.G. J. Lee et al, "Design of ITO/SiO2/TiO2 distributed bragg reflectors as a p-type electrode in GaN-based flip-chip light emitting diodes." Appl. Sur. Sci. Vol 477 pp. 220-225. May., 2019.
35.H. Guo et al, "High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector." Opt. Express. Vol 21. pp. 21456-21465. 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top