一、中文文獻
許明晏。2018,以高粱酒糟為培養基質使用靜置培養系統提高細菌纖維素之產率。國立中興大學食品季應用生物科技學系。碩士論文。黃子軒。2016,高粱酒糟萃取液之製備極其有機酸成分與胞外生物活性之評估。國立中興大學食品暨應用生物科技學系。碩士論文。蔡亦寯。2019,以高粱酒糟水萃液為主要基質靜置培養醋酸菌 Komagataeibacter rhaeticus NCHU R-1 之細菌纖維素增長模式及其在固定化益生菌之應用。國立中興大學食品暨應用生物科技學系。碩士論文。蕭景卿。2017,以高粱酒糟為基質生產細菌纖維素及改良靜置培養系統之應用。國立中興大學食品季應用生物科技學系。碩士論文。二、英文文獻
Bae S., Shoda M. (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress, 20(5), 1366-1371
Bandaiphet C., Prasertsan P. (2006) Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, k(L)a in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydrate Polymers, 66(2), 216-228
Brandes R., Carminatti C., Mikowski A. (2017) A mini-review on the progress of spherical bacterial cellulose production. Journal of Nano Research, 45, 142-154
Borzani W., de Souza S. J. (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid media. Biotechnology Letter, 17(11), 1271–1272
Brown R. M. (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? Journal of Polymer Science, 42(3), 487-495
Cacicedo M. L., Castro M. C., Servetas I ., Bosnea L., Boura K., Tsafrakidou P., Dima A., Terpou A., Koutinas A., Castro G. R. (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 231, 172-180
Campano C., Balea A., Blanco A., Negro C. (2015) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 23(1), 57-91
Carreira P., Mendes J.A., Trovatti E., Serafim L.S., Freire C.S., Silvestre A.J., Neto C.P. (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102, 7354-7360
Cakar F., Özer I., Aytekin A., S¸ ahin F. (2014a) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7-13
Cakar F., Katı A., Özer I., Demirba˘g D. D., S¸ ahin F., Aytekin A. Ö. (2014b) Newly developed medium and strategy for bacterial cellulose production. Biochemical Engineering Journal, 92, 35-40
Chen S. Q., Lopez-Sanchez P., Wang D., Mikkelsen D., Gidley M.J. (2018) Mechanical properties of bacterial cellulose synthesised by diverse strain of the genus Komagataeibacter. Food Hydrocolloids, 81, 87-95
Chen Y. M., Xi T. F., Zheng Y. D., Guo T. T., Hou J.Q., Wan Y.Z., Gao C. (2009) In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. Journal of Bioactive and Compatible Polymers, 24, 137-145
Cheng K. C., Catchmark J. M., Demirci A. (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 12(3), 730-736
Cho S., Almeida N. (2012) Dietary fiber and health. CRC Press.
Church W .R., Walker L. E., Houghten R.A. (1983) Anti-HLA antibodies of predetermined specificity – A chemically synthesized peptide induces antibodies specific for HLA-A, B heavy-chain. Proceedings of the National Academy of Science of the United States of America-Biological Sciences, 80(1), 255-258
Costa A. F. S., Almeida F. C. G., Vinhas G. M. (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using steep liquor as nutrient sources. Frontiers in Microbiology, 8(2027)
Czaja1 W., Romanovicz1 D., Brown R. M. (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403-411
dos Santos R. A. C., Berretta A. A., Barud H. S., Ribeiro S. J. L., García L. N. G.,Zucchi T. D., et al. (2014) Draft genome sequence of Komagataeibacter rhaeticus strain AF-1 a high producer of cellulose, isolated from Kombucha tea. Genome Announcements, 2(4), 731-732
Dubois M., Gilles K. A., Hamilton J. K. (1956) Colorimetric method determination of sugar and related substances. Analytical chemistry, 28(3), 350-356
Gromovykh T.I., Pigaleva M.A., Gallyamov M.O., Ivanenko I.P., Ozerova K.E., Kharitonova E.P., Bahman M., Feldman N.B., Lutsenko S.V., Kiselyova O.I. (2020) Structural organization of bacterial cellulose: the origin of anisotropy and layered structures, Carbohydrate Polymers, 237, 116140
Ha J. H., Shah N., Ul-Islam M., Khan T., Park J. K. (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochemistry, 46(9), 1717-1723
Hornung M., Ludwig M., Gerrard A. M., Schmauder H. P. (2006a) Optimizing the production of bacterial cellulose in surface culture: Evaluation of product movement influences on the bioreaction (Part 1). Engineering in Life Sciences, 6(6), 537-545
Hornung M., Ludwig M., Gerrard A. M., Schmauder H. P. (2006b) Optimizing the production of bacterial cellulose in surface culture: Evaluation of product movement influences on the bioreaction (Part 2). Engineering in Life Sciences, 6(6), 546-551
Hsieh J.T., Wang M.J., Lai J.T., Liu H.S. (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers, 63, 46-51
Hu C., Kitts D. D. (2005) Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine, 12(8), 588-597
Huang Y., Zhu C., Yang J., Nie Y., Chen C., Sun D. (2014) Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30
Hussain Z., Sajjad W., Khan T., Wahid F. (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26(5), 2895-2911
Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K. (2017) Strategies for cost-effective and enhanced production of bacterial cellulose. International Journal of Biological Macromolecules, 102, 1166-1173
Jagannath A., Manjunatha S. S., Ravi N. (2011) The effect of different
substrates and processing conditions on the textural characteristics of bacterial cellulose (Nata) produced by Acetobacter xylinum. Journal of food process engineering, 34(3), 593-608
Jonas R., Farah L. F. (1998) Production and application of microbial cellulose. Polymer Degradation Stability, 59(1-3), 101-106
Klemm D., Heublein B., Fink H. P., Bohn A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-3393
Lazarini S. C., Aquino R., Amaral A. Corbi F. C. A., Corbi P. P., Barud H. S., Lustri W.R. (2016) Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 23, 737-748
Li H. X., Kim S. J., Lee Y. W. (2011) Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korean Journal of Chemical Engineering, 28(12), 2306-2311
Li Y., Tian C., Tian H., Zhang J., He X., Ping W., Lei H. (2012). Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Applied Microbilogy and Biotechnolgy, 96, 1479-1487
Liu M., Zhong C., Wu X. Y., Wei Y. Q., Bo T., Han P. P., Jia S. R. (2015) Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. Biochem Eng J, 101, 85-98
Liu M., Li S. Q., Xie Y. Z., Jia S. R., Hou Y., Zou Y., Zhong C. (2018) Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 102(3), 1155-1165
Lin S. P., Calvar I. L., Catchmark J. M., Liu J. R., Demirci A., Cheng K. C. (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219
Lu H., Jiang X., (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Applied Biochemistry and Biothchnology, 172(8), 3384-386
Lustri W. R., Barud H. G. O., Barud H. S., Peres M. F. S., Gutierrez J., Tercjak A. (2015) Microbial Cellulose — Biosynthesis mechanisms and medical applications. Cellulose – fundamental aspects and current trends, 132-157
Machado R.T.A., Gutierrezb J., Tercjakb A., Trovattia E., Uahibc F.G.M., Morenoc G.P., Nascimentoc A.P., Berretac A.A., Ribeirod S.J.L., Baruda H.S. (2016) Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, 152, 841-849
Morgan J. L.W., Strumilloa J., Zimmer J. (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 493, 181-U192
Okiyama A., Shirae H., Kano H. (1992) Bacterial cellulose Ⅰ: two stage fermentation process for cellulose production by Acetobacer acetic. Food Hydrocolloids, 6(5), 471-477
Ougiya H., Watanabe K., Matsumura T., & Yoshinaga F. (1998) Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Bioscience, Biotechnology, and Biochemistry, 62, 1714-1719
Parte F.G.B., Santoso S.P., Chou C-C, Verma V., Wang H-T., Ismadji S. & Cheng K-C. (2020) Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397-414
Pichetha G.F., Pirich C.L., Sierakowskia M.R., Woehla M.A., SakakibaraaC.N., Souzab C.F., MartinaA.A., Silva R., Freitas R.A. (2017) Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97-106
Portela R., Leal C. R., Almeida P. L., Sobral R. G. (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biothchnology, 12(4), 586-610
Quero, F., Nogi, M., Yano. H., Abdulsalami, K., Holmes, S. M., Sakakini, B. H., et al. (2010). Optimization of the mechanical performance of bacterial cellulose/poly (L-lactic) acid composites. ACS Applied Materials & Interfaces, 2, 321- 330
Quintana-Quirinoa M., Morales-Osorioa C., Ramírezb G., Vázquez-Torresc H., Shiraia K. (2019) Bacterial cellulose grows with a honeycomb geometry in a solid-state culture of Gluconacetobacter xylinus using polyurethane foam support. Process Biochemistry, 82, 1-9
Rani M. U., Appaiah A. (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 61, 781-787
Rajwade J. M., Paknikar K. M., Kumbhar J. V. (2015) Application of bacterial cellulose and its composites in biomedicine. Applied Microbiology Biotechnology, 99, 2491-2511
Reiniati I., Hrymak A.N., Margaritis A. (2017) Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524
Rozenberga L., Skute M., Belkova L., Sable I., Vikele L., Semjonovs P., Saka M., Ruklisha M., Paegle L. (2016) Characterisation of films and nanopaper obtained from cellulose synthesized by acetic acid bacteria. Carbohydrate Polymers, 144, 33-40
Shezad O., Khan S., Khan T., Park J. K. (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal of Chemical Engineering, 26(6), 1689-1692
Shezad O., Khana S., Khanb T., Parka J. K. (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers, 82, 173-180
Shi Z., Zhang Y., Phillips G.O., Yang G. (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids, 35,539-545
Shoda M., Sugano Y. (2005) Recent advance in bacterial cellulose production. Biothnology and Bioprocess Engineering, 10, 1-8
Singhsa P., Narain R., Manuspiya H. (2018) Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571–1581
Stanisławskaa A., Staroszczyk H., Szkodoa M. (2020) The effect of dehydration/rehydration of bacterial nano-cellulose on its tensile strength and physicochemical properties. Carbohydrate Polymers, 236, 116023
Sun D. P., Zhou L. L., Wu Q. H., Yang S.L. (2007) Preliminary research on structure and properties of nano-cellulose. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(4), 677-680
Ul-Islam M., Khan T., Parka J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88, 596–603
Wan Z. L., Wang L. Y., Yang X. Q., Guo J., Yin S.W. (2016) Enhanced water resistance properties of bacterial cellulose multilayer films by incorporating interlayers of electrospun zein fibers. Food Hydrocolloids, 61, 269-276
Wang J., Tavakoli J., Tang Y. (2019) Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 219, 63-76
Yamada Y., Yukphan P., Huong T. L. V., Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y. (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology, 58(5) 397-404
Zywicka A., Peitler D., Rakoczy R., Junka A. F., Fijalkowski K. (2016) Wet and dry forms of bacterial cellulose synthetized by different strains of Gluconacetobacter xylinus as carriers for yeast immobilization. Applied Biochemistry and Biotechnology, 180, 805-816