跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡慈萱
研究生(外文):Tsyr-Shiuan Chien
論文名稱:高粱酒糟基質預處理暨通氣對靜置培養 Komagataeibacter rhaeticus 生產細菌纖維素之影響
論文名稱(外文):Effect of pretreatment of Sorghum liquor water and aeration on bacterial cellulose production by Komagataeibacter rhaeticus in a static culture system
指導教授:陳錦樹陳錦樹引用關係
口試委員:謝寶全鄭光成陳炎鍊
口試日期:2020-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:86
中文關鍵詞:細菌纖維素Komagataeibacter rhaeticus高粱酒糟萃取液高速均質改良靜置發酵體系通氣
外文關鍵詞:Bacterial celluloseKomagataeibacter rhaeticusAqueous extract of sorghum liquor wasteHigh-speed homogenizationImproved static culture systemAeration
相關次數:
  • 被引用被引用:1
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細菌纖維素(Bacterial cellulose, BC)為一種由微生物所生產之聚合物,在結構及特性方面遠優於植物纖維素,目前廣泛應用於食品及醫療工業上。本研究以蒸餾酒副產物高粱酒糟為培養基質,與水混合並分別施以高速均質、超音波及酵素輔助萃取等預處理,經過濾即為萃取液。接種Komagataeibacter rhaeticus NCHU R-1於萃取液中,靜置培養生產BC,培養8天後測量其濕重及乾重。首先探討預處理能否使高粱酒糟之營養成分有效釋出以利BC生長。接續以靜置培養為基礎,改良培養容器,於容器內上部加以通氣,探討在密閉、被動通氣及主動通氣等不同通氣條件對於BC之產量及特性影響。結果顯示,以僅經高速均質後之高粱酒糟萃取液為培養基組有最佳之BC產率,濕重及乾重分別為7.83 ± 0.27 g/20 mL及0.13 ± 0.00 g/20 mL,萃取過程短且無須添加酵素及進行加熱。在改良靜置發酵體系(容器容積5.70 L)中,培養8天之主動通氣組(通氣量:2.40 L/min)有最高之BC乾重(3.92 ± 0.30 g/500 mL)、膜內生菌數(8.21 ± 0.21 log CFU/g wet weight),結果顯示於靜置培養時通氣有利醋酸菌生長並能產出較多BC。而在BC膜之微細構造(SEM)結果顯示主動通氣組之BC膜表面有較多的醋酸菌,且該膜纖維結構緻密且孔隙小,並且於物理特性包含保水率(71.88 ± 2.76%)、復水率(202.06 ± 5.32%)、溶脹比(106.32 ± 4.40%)、纖維密度(0.01012 ± 0.0008 g/cm3)及拉伸強度(196.66 ± 31.92 MPa)等皆有優異的表現。綜合上述,於靜置培養下通氣有利BC生長,並對BC結構特性造成影響,使BC具更多應用性。
Bacterial cellulose (BC) is a kind of polymer produced by bacteria, and is composed of almost pure cellulose. BC is therefore far superior to plant cellulose in structure and characteristics, and is currently widely used in food and medical industry. In this study, sorghum liquor waste (SLW), a by-product of distilled liquor, was used as the culture medium. First, SLW was mixed with water and pretreated with high-speed homogenization, ultrasonic or enzymes, respectively. The pretreated mixtures after filteration was called aqueous extract of SLW. Subsequently, the aqueous extract was inoculated with Komagataeibacter rhaeticus NCHU R-1 to produce cellulose in a static culture. After 8 days of cultivation, the wet and dry weight of the BC were measured. Effect of the pretreatment on enhancing release of the nutrients of SLW for BC growth was investigated. Finally, based on the static culture, the culture container (capacity: 5.70 L) was designed in order to regulate aeration. The upper part of culture container was aerated to evaluate the effects of different aeration conditions, including closed, passive aeration and active aeration on the production and characteristics of bacterial cellulose. The results showed that SLW pretreated by high-speed homogenization led to the higest bacterial cellulose production with wet weight (7.83 g/20 mL) and dry weight (0.13 g/20 mL); moreover, the extraction process was short and no enzymes and heating were required. In the improved static fermentation system, the 8-day active aeration group (aeration rate: 2.40 L/min) had the highest BC dry weight (3.92 g/500 mL) and the number of entrapped cells within BC (8.21 log CFU/g). It was found that the aerated static culture could benefit the growth of acetic acid bacteria and yield of BC. Based on the results of SEM, more acetic acid bacteria on the surface of the BC membrane could be observed in the active aeration group, and the cellulosic fiber structure was compact and the pores were small; besides, there were good performance in physical properties including water-holding rate (71.88%), rehydration rate (202.06%), swelling rate (106.32%), fiber density (0.01012 g/cm3) and tensile strength (196.66 MPa), etc. Based on the above results, aeration under static culture facilitates the growth of BC in turn and affects the structural characteristics of BC, making BC more applicable.
摘要i
Abstract ii
目次 iv
圖目次 vi
表目次 viii
第一章、前言 1
第二章、文獻整理 2
一、細菌纖維素介紹 2
(一) 細菌纖維素結構及特性 2
(二) 細菌纖維素之生合成路徑 6
(三) 細菌纖維素之增長模式 9
(四) 生產細菌纖維素菌株 9
(五) 影響細菌纖維素之生產因子 11
(六) 細菌纖維素之應用 13
二、細菌纖維素生產之培養模式 15
(一) 靜置培養(static culture) 15
(二) 攪拌培養(agitated culture) 17
三、基質介紹 20
第三章、材料與方法 22
一、 實驗材料 22
(一) 實驗原料 22
(二) 實驗菌株 22
(三) 酵素 22
(四) 培養基 22
(五) 化學藥劑 23
(六) 發酵容器 24
二、 儀器設備 24
三、 套裝軟體 25
四、實驗方法 26
(一) 實驗架構 26
(二) 菌株活化 27
(三) 基本成分分析 27
(四) 高粱酒糟之較適萃取條件探討 30
(五) 較適培養條件探討 31
(六) 改良式靜置發酵系統 32
(七) 發酵過程分析項目 34
(八) 細菌纖維素膜之物性測定項目 36
第四章、結果與討論 40
一、 高粱酒糟基本成分分析 40
二、 培養基較適萃取條件探討 40
(一) 不同物理性預處理對細菌纖維素產量之影響 40
(二) 不同酵素預處理對細菌纖維素產量之影響 43
(三) 加熱萃取時間對細菌纖維素產量之影響 43
三、 較適培養條件探討 47
(一) 碳源種類對細菌纖維素產量之影響 47
(二) 碳源濃度對細菌纖維素產量之影響 47
(三) 培養液初始pH對細菌纖維素產量之影響 49
四、 改良式靜置發酵系統 52
(一) 氣體條件對發酵期間細菌纖維素產量之影響 52
(二) 不同氣體條件對細菌纖維素膜物理特性之影響 59
第五章、結論 77
一、 高粱酒糟之較適萃取及培養條件 77
二、 改良式靜置發酵系統 77
(一) 氣體條件對細菌纖維素產量之影響 77
(二) 氣體條件對細菌纖維素產量之物性影響 77
第六章、未來展望 78
一、 通氣條件對細菌纖維素之影響 78
二、 改良式靜置發酵體系 78
三、 通氣之細菌纖維素應用 78
第七章、參考文獻 79
一、 中文文獻 79
二、 英文文獻 79
一、中文文獻
許明晏。2018,以高粱酒糟為培養基質使用靜置培養系統提高細菌纖維素之產率。國立中興大學食品季應用生物科技學系。碩士論文。
黃子軒。2016,高粱酒糟萃取液之製備極其有機酸成分與胞外生物活性之評估。國立中興大學食品暨應用生物科技學系。碩士論文。
蔡亦寯。2019,以高粱酒糟水萃液為主要基質靜置培養醋酸菌 Komagataeibacter rhaeticus NCHU R-1 之細菌纖維素增長模式及其在固定化益生菌之應用。國立中興大學食品暨應用生物科技學系。碩士論文。
蕭景卿。2017,以高粱酒糟為基質生產細菌纖維素及改良靜置培養系統之應用。國立中興大學食品季應用生物科技學系。碩士論文。

二、英文文獻
Bae S., Shoda M. (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress, 20(5), 1366-1371
Bandaiphet C., Prasertsan P. (2006) Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, k(L)a in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydrate Polymers, 66(2), 216-228
Brandes R., Carminatti C., Mikowski A. (2017) A mini-review on the progress of spherical bacterial cellulose production. Journal of Nano Research, 45, 142-154
Borzani W., de Souza S. J. (1995) Mechanism of the film thickness increasing during the bacterial production of cellulose on non-agitated liquid media. Biotechnology Letter, 17(11), 1271–1272
Brown R. M. (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? Journal of Polymer Science, 42(3), 487-495
Cacicedo M. L., Castro M. C., Servetas I ., Bosnea L., Boura K., Tsafrakidou P., Dima A., Terpou A., Koutinas A., Castro G. R. (2016) Progress in bacterial cellulose matrices for biotechnological applications. Bioresource Technology, 231, 172-180
Campano C., Balea A., Blanco A., Negro C. (2015) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 23(1), 57-91
Carreira P., Mendes J.A., Trovatti E., Serafim L.S., Freire C.S., Silvestre A.J., Neto C.P. (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102, 7354-7360
Cakar F., Özer I., Aytekin A., S¸ ahin F. (2014a) Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers, 106, 7-13
Cakar F., Katı A., Özer I., Demirba˘g D. D., S¸ ahin F., Aytekin A. Ö. (2014b) Newly developed medium and strategy for bacterial cellulose production. Biochemical Engineering Journal, 92, 35-40
Chen S. Q., Lopez-Sanchez P., Wang D., Mikkelsen D., Gidley M.J. (2018) Mechanical properties of bacterial cellulose synthesised by diverse strain of the genus Komagataeibacter. Food Hydrocolloids, 81, 87-95
Chen Y. M., Xi T. F., Zheng Y. D., Guo T. T., Hou J.Q., Wan Y.Z., Gao C. (2009) In vitro cytotoxicity of bacterial cellulose scaffolds used for tissue-engineered bone. Journal of Bioactive and Compatible Polymers, 24, 137-145
Cheng K. C., Catchmark J. M., Demirci A. (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 12(3), 730-736
Cho S., Almeida N. (2012) Dietary fiber and health. CRC Press.
Church W .R., Walker L. E., Houghten R.A. (1983) Anti-HLA antibodies of predetermined specificity – A chemically synthesized peptide induces antibodies specific for HLA-A, B heavy-chain. Proceedings of the National Academy of Science of the United States of America-Biological Sciences, 80(1), 255-258
Costa A. F. S., Almeida F. C. G., Vinhas G. M. (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using steep liquor as nutrient sources. Frontiers in Microbiology, 8(2027)
Czaja1 W., Romanovicz1 D., Brown R. M. (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose, 11, 403-411
dos Santos R. A. C., Berretta A. A., Barud H. S., Ribeiro S. J. L., García L. N. G.,Zucchi T. D., et al. (2014) Draft genome sequence of Komagataeibacter rhaeticus strain AF-1 a high producer of cellulose, isolated from Kombucha tea. Genome Announcements, 2(4), 731-732
Dubois M., Gilles K. A., Hamilton J. K. (1956) Colorimetric method determination of sugar and related substances. Analytical chemistry, 28(3), 350-356
Gromovykh T.I., Pigaleva M.A., Gallyamov M.O., Ivanenko I.P., Ozerova K.E., Kharitonova E.P., Bahman M., Feldman N.B., Lutsenko S.V., Kiselyova O.I. (2020) Structural organization of bacterial cellulose: the origin of anisotropy and layered structures, Carbohydrate Polymers, 237, 116140
Ha J. H., Shah N., Ul-Islam M., Khan T., Park J. K. (2011) Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochemistry, 46(9), 1717-1723
Hornung M., Ludwig M., Gerrard A. M., Schmauder H. P. (2006a) Optimizing the production of bacterial cellulose in surface culture: Evaluation of product movement influences on the bioreaction (Part 1). Engineering in Life Sciences, 6(6), 537-545
Hornung M., Ludwig M., Gerrard A. M., Schmauder H. P. (2006b) Optimizing the production of bacterial cellulose in surface culture: Evaluation of product movement influences on the bioreaction (Part 2). Engineering in Life Sciences, 6(6), 546-551
Hsieh J.T., Wang M.J., Lai J.T., Liu H.S. (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. Journal of the Taiwan Institute of Chemical Engineers, 63, 46-51
Hu C., Kitts D. D. (2005) Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine, 12(8), 588-597
Huang Y., Zhu C., Yang J., Nie Y., Chen C., Sun D. (2014) Recent advances in bacterial cellulose. Cellulose, 21(1), 1-30
Hussain Z., Sajjad W., Khan T., Wahid F. (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26(5), 2895-2911
Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K. (2017) Strategies for cost-effective and enhanced production of bacterial cellulose. International Journal of Biological Macromolecules, 102, 1166-1173
Jagannath A., Manjunatha S. S., Ravi N. (2011) The effect of different
substrates and processing conditions on the textural characteristics of bacterial cellulose (Nata) produced by Acetobacter xylinum. Journal of food process engineering, 34(3), 593-608
Jonas R., Farah L. F. (1998) Production and application of microbial cellulose. Polymer Degradation Stability, 59(1-3), 101-106
Klemm D., Heublein B., Fink H. P., Bohn A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-3393
Lazarini S. C., Aquino R., Amaral A. Corbi F. C. A., Corbi P. P., Barud H. S., Lustri W.R. (2016) Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 23, 737-748
Li H. X., Kim S. J., Lee Y. W. (2011) Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes. Korean Journal of Chemical Engineering, 28(12), 2306-2311

Li Y., Tian C., Tian H., Zhang J., He X., Ping W., Lei H. (2012). Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Applied Microbilogy and Biotechnolgy, 96, 1479-1487
Liu M., Zhong C., Wu X. Y., Wei Y. Q., Bo T., Han P. P., Jia S. R. (2015) Metabolomic profiling coupled with metabolic network reveals differences in Gluconacetobacter xylinus from static and agitated cultures. Biochem Eng J, 101, 85-98
Liu M., Li S. Q., Xie Y. Z., Jia S. R., Hou Y., Zou Y., Zhong C. (2018) Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 102(3), 1155-1165
Lin S. P., Calvar I. L., Catchmark J. M., Liu J. R., Demirci A., Cheng K. C. (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191-2219
Lu H., Jiang X., (2014) Structure and properties of bacterial cellulose produced using a trickling bed reactor. Applied Biochemistry and Biothchnology, 172(8), 3384-386
Lustri W. R., Barud H. G. O., Barud H. S., Peres M. F. S., Gutierrez J., Tercjak A. (2015) Microbial Cellulose — Biosynthesis mechanisms and medical applications. Cellulose – fundamental aspects and current trends, 132-157
Machado R.T.A., Gutierrezb J., Tercjakb A., Trovattia E., Uahibc F.G.M., Morenoc G.P., Nascimentoc A.P., Berretac A.A., Ribeirod S.J.L., Baruda H.S. (2016) Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, 152, 841-849
Morgan J. L.W., Strumilloa J., Zimmer J. (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature, 493, 181-U192
Okiyama A., Shirae H., Kano H. (1992) Bacterial cellulose Ⅰ: two stage fermentation process for cellulose production by Acetobacer acetic. Food Hydrocolloids, 6(5), 471-477
Ougiya H., Watanabe K., Matsumura T., & Yoshinaga F. (1998) Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Bioscience, Biotechnology, and Biochemistry, 62, 1714-1719
Parte F.G.B., Santoso S.P., Chou C-C, Verma V., Wang H-T., Ismadji S. & Cheng K-C. (2020) Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397-414
Pichetha G.F., Pirich C.L., Sierakowskia M.R., Woehla M.A., SakakibaraaC.N., Souzab C.F., MartinaA.A., Silva R., Freitas R.A. (2017) Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97-106
Portela R., Leal C. R., Almeida P. L., Sobral R. G. (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biothchnology, 12(4), 586-610
Quero, F., Nogi, M., Yano. H., Abdulsalami, K., Holmes, S. M., Sakakini, B. H., et al. (2010). Optimization of the mechanical performance of bacterial cellulose/poly (L-lactic) acid composites. ACS Applied Materials & Interfaces, 2, 321- 330
Quintana-Quirinoa M., Morales-Osorioa C., Ramírezb G., Vázquez-Torresc H., Shiraia K. (2019) Bacterial cellulose grows with a honeycomb geometry in a solid-state culture of Gluconacetobacter xylinus using polyurethane foam support. Process Biochemistry, 82, 1-9
Rani M. U., Appaiah A. (2011) Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology, 61, 781-787
Rajwade J. M., Paknikar K. M., Kumbhar J. V. (2015) Application of bacterial cellulose and its composites in biomedicine. Applied Microbiology Biotechnology, 99, 2491-2511
Reiniati I., Hrymak A.N., Margaritis A. (2017) Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Critical Reviews in Biotechnology, 37(4), 510-524
Rozenberga L., Skute M., Belkova L., Sable I., Vikele L., Semjonovs P., Saka M., Ruklisha M., Paegle L. (2016) Characterisation of films and nanopaper obtained from cellulose synthesized by acetic acid bacteria. Carbohydrate Polymers, 144, 33-40
Shezad O., Khan S., Khan T., Park J. K. (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean Journal of Chemical Engineering, 26(6), 1689-1692
Shezad O., Khana S., Khanb T., Parka J. K. (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydrate Polymers, 82, 173-180
Shi Z., Zhang Y., Phillips G.O., Yang G. (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids, 35,539-545
Shoda M., Sugano Y. (2005) Recent advance in bacterial cellulose production. Biothnology and Bioprocess Engineering, 10, 1-8
Singhsa P., Narain R., Manuspiya H. (2018) Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571–1581
Stanisławskaa A., Staroszczyk H., Szkodoa M. (2020) The effect of dehydration/rehydration of bacterial nano-cellulose on its tensile strength and physicochemical properties. Carbohydrate Polymers, 236, 116023
Sun D. P., Zhou L. L., Wu Q. H., Yang S.L. (2007) Preliminary research on structure and properties of nano-cellulose. Journal of Wuhan University of Technology-Mater. Sci. Ed., 22(4), 677-680
Ul-Islam M., Khan T., Parka J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88, 596–603
Wan Z. L., Wang L. Y., Yang X. Q., Guo J., Yin S.W. (2016) Enhanced water resistance properties of bacterial cellulose multilayer films by incorporating interlayers of electrospun zein fibers. Food Hydrocolloids, 61, 269-276
Wang J., Tavakoli J., Tang Y. (2019) Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 219, 63-76
Yamada Y., Yukphan P., Huong T. L. V., Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y. (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). Journal of General and Applied Microbiology, 58(5) 397-404
Zywicka A., Peitler D., Rakoczy R., Junka A. F., Fijalkowski K. (2016) Wet and dry forms of bacterial cellulose synthetized by different strains of Gluconacetobacter xylinus as carriers for yeast immobilization. Applied Biochemistry and Biotechnology, 180, 805-816
電子全文 電子全文(全文開放日期20230819,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊