跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅曼莉
研究生(外文):Rommanee Thammasena
論文名稱:除鹽鹹鴨蛋白粉水解液之分離胜肽片段其抗氧化性及抗菌活性之評估與在肉品上的應用
論文名稱(外文):Evaluation of antioxidative and antibacterial activity of peptide fractions derived from hydrolysate of desalted duck egg white powder and its application in meat system
指導教授:劉登城
指導教授(外文):Deng-Cheng Liu
口試委員:陳文賢吳勇初程仁華譚發瑞
口試委員(外文):Wen-Shyan ChenYun-Chu WuJen-Hua ChengFa-Jui Tan
口試日期:2019-01-15
學位類別:博士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:173
中文關鍵詞:抗氧化抗菌胜肽片段除鹽鹹鴨蛋白生鮮豬排
外文關鍵詞:desalted duck egg whitepeptide fractionantioxidativeantibacterialfresh pork chop system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本篇之研究目的為 : 一、評估除鹽鹹鴨卵白(DDEW)及除鹽鹹鴨卵白粉(DDEWP)之功能性,二、評估由DDEWP分解之胜肽片段之抗氧化及抗菌活性,三、挑選具有成為天然保存劑潛力之胜肽片段,四、將此片段應用於生鮮豬排中並於10℃環境下保存3天對豬排品質之影響。
試驗一為鹹鴨卵白及鹹鴨卵白粉之除鹽效率及其功能性之評估。試驗結果顯示,超過濾除鹽處理(ultrafiltration treatment) 能夠去除鹹鴨卵白中92.93%之鹽分,使除鹽完畢之鹹鴨卵白之鹽度降至0.65%。鹹鴨卵白之營養成分(nutrient content)及胺基酸(amino acid) 皆顯著的低於新鮮鴨卵白。鹹鴨卵白及除鹽鹹鴨卵白於試驗中顯示出良好之起泡力 (foaming ability),然而其乳化力 (emulsifying capacity) 顯著的低於新鮮鴨卵白;且鹹鴨卵白及除鹽鹹鴨卵白之膠體強度 (gel strength)、硬度(hardness) 及彈性 (elasticity) 也較新鮮鴨卵白為低。
試驗二將除鹽鹹鴨卵白粉利用胃蛋白酶 (pepsin, PEP)、枯草桿菌酶 (Bacillus spp., BA) 納豆激酶(natokinase, NAT) 等三種蛋白酶以三種不同濃度 (0.1、0.3及0.5%) 分別進行水解。試驗結果顯示,於所有處理組中,除鹽鹹鴨卵白粉之水解程度(degree of hydrolysis, DH) 隨水解時間及蛋白酶濃度之增加而上升;且水解產物之抗氧化活性及抗菌活性受到蛋白酶濃度及水解時間之影響。於三種蛋白酶水解產物中,利用PEP進行水解之處理組具有最高的水解物產率,而利用BA及NAT進行水解之處理組之水解程度則低於5%;利用PEP進行水解之水解產物於清除DPPH自由基能力(DPPH radical scavenging activity)顯著的高於BA及NAT處理組,而其亞鐵離子清除能力(<37%)則顯著的低於BA(>37-92%)及NAT處理組(30-79%);此外,使用PEP進行水解之水解產物之還原力(reducing power) 顯著的高於BA及NAT處理組。於抗菌活性之結果顯示,透過PEP進行水解之水解產物無法有效的抑制大腸桿菌(Escherichia coli)、沙門氏菌(Salmonella typhimurium)及綠膿桿菌(Pseudomonas aeruginosa)。其中,僅濃度0.1%之PEP進行降解之處理組對於金黃色葡萄球菌具有良好之抗菌活性。試驗一之結果顯示由蛋白酶對除鹽鹹鴨卵白進行水解之水解產物具有較高的水解程度、水解物產率、清除DPPH自由基能力及還原力,且對於金黃色葡萄球菌具有良好的抑制作用。
試驗三將DDEWP以0.3% 之PEP水解9小時,並將水解產物以超過濾方式根據不同分子量(MWCO)分為四個片段。本篇試驗旨在探討F-I (Mw >100 kDa), F-II (Mw 30-100 kDa), F-III (Mw 10-30 kDa) 及 F-IV (Mw <10 kDa) 之抗氧化及抗菌活性及其作為天然保存劑並應用於肉品之潛力。於四個片段中,F-IV顯示出最高的清除DPPH自由基能力、超氧陰離子自由基清除能力(superoxide radical scavenging activities)及亞鐵離子清除能力(Fe2+- chelating activity)。四個處理組之還原能力依序為F-IV > F-III > F-II > F-I。其中,F-IV對於四種選定之微生物(金黃色葡萄球菌、沙門氏菌、大腸桿菌及綠膿桿菌)具有較大的抑制圈;四個牲肽對金黃色葡萄球菌、沙門氏菌、大腸桿菌之最小抑菌濃度為150 mg/mL,但對綠膿桿菌的抑菌作用最為敏感,其最小抑菌濃度為75 mg/mL。
由於F-IV於試驗四中顯示出最佳之抗氧化及抗菌能力,因此,試驗四旨於探討F-IV片段應用於新鮮豬排中於10℃中保存3天對其品質之影響。新鮮豬排隨機分配為6組,分別為control (無添加)、water (添加RO水)、DDEWP (添加150 ml/mL之DDEWP)、PEP150 (添加150 ml/mL之DDEWP水解產物)、F-IV100 (添加100 mg/mL之F-IV 胜肽片段)及F-IV150 (添加100 mg/mL之F-IV 胜肽片段)。本試驗將含有胜肽片段之水溶液噴灑於豬排表面,維持豬排表面之水溶液最終濃度於150 mg/cm2,而F-IV100組之表面最終濃度則維持於100 mg/cm2。本試驗之測定項目包括pH值, TBARS (2-thiobarbituric acid reactive substances), VBN (volatile basic nitrogen), 總生菌數(total plate counts, TPC), 乳酸菌數(lactic acid bacteria counts, LAB), 色澤 (L*, a*, b*) 及感官品評(sensory evaluation)。結果顯示,TBARS及VBN具有濃度依賴性,F-IV100及F-IV150組較control組於保存過程中具有較低之總生菌數及乳酸菌數。於色澤方面,各處理組間於保存過程中均無顯著差異(P > 0.05)。感官品評的結果顯示,F-IV100及F-IV150組於保存試驗末期具有較強之酸性風味;此外,F-IV150處理組於2日保存期間內相較於control組具有較高的風味(flavor)、質地(texture)及總接受度(overall acceptability) 。試驗三之結果顯示F-IV胜肽片段之水解產物於冷藏條件下能夠顯著的維持豬排之品質。
試驗五旨在探討DDEWP透過PEP水解產生之F-IV胜肽片段對於四種選定食源性致病微生物(金黃色葡萄球菌、沙門氏菌、大腸桿菌及綠膿桿菌)於冷藏保存豬排之抗菌活性。新鮮豬排分別與四種選定之微生物進行培養,並分別噴灑滅菌水(sterilize water)、150 mg/mL之DDEWP (PEP150)、100 mg/mL之F-IV胜肽片段(F-IV100)及150 mg/mL之F-IV胜肽片段(F-IV150),維持豬排表面之水溶液最終濃度於150 mg/cm2、F-IV100組之表面最終濃度維持於100 mg/cm2,並將試驗結果與未噴灑之negative control組進行比較。結果顯示,F-IV100及F-IV150組能夠顯著的抑制金黃色葡萄球菌、沙門氏菌、大腸桿菌及綠膿桿菌之生長,且菌數隨噴灑之濃度提升而下降。於貯藏過程中,F-IV100 及F-IV150組之菌數低於control組、water組及DDEWP組。其中,沙門氏菌及金黃色葡萄球菌對於其抑制能力較為敏感,然而對於大腸桿菌則顯示出較低的抑制活性。試驗結果亦顯示PEP150組能夠於貯藏初期抑制食源性致病菌,然而其抑菌活性於貯藏末期則低於F-IV組。
綜合以上所述,超過濾法能夠有效率的降低鹹鴨卵白中之鹽分,且除鹽鹹鴨卵白粉水解產物中,分子量較低之多肽片段(F-IV, Mw <10 kDa)相較於control組,能夠有效的維持豬排於冷藏保存期間之品質。
The objectives of this research were 1) to evaluate the functional properties of desalted duck egg white (DDEW) and desalted duck egg white powder (DDEWP) 2) to determine the antioxidative and antibacterial activity of peptide fractions derived from hydrolysate of DDEWP and 3) to select the best peptide fractions as natural preservatives and 4) to apply in fresh pork chops stored at 10℃ for 3 days.
In experiment I, the desalinated efficiency and functional properties of desalted duck egg white (DDEW) and desalted duck egg white powder (DDEWP) were determined. The result showed that ultrafiltration treatment can be used as desalting to remove 92.93% salt from salted duck egg white and final salt% of desalted duck egg white was 0.65%. The analysis of nutrient content and amino acid of salted duck egg white and desalted sample was significantly lower than those of fresh samples. Although emulsifying capacity of salted and desalted samples exhibited significantly lower than that of fresh sample, an excellent foaming ability was found in salted and desalted samples. Moreover, the texture profiles (gel strength, hardness and elasticity) of salted and desalted samples presented lower values than fresh samples.
In experiment II, DDEWP was hydrolyzed by three proteases, including pepsin (PEP), Bacillus spp. (BA) and natokinase (NAT) with three different concentrations (0.1, 0.3 and 0.5%), individually. The results showed that the degree of hydrolysis (DH) of all treatments increased with increasing hydrolysis time and protease concentrations. The antioxidant and antimicrobial activities of the hydrolysates were affected by type and concentration of protease as well as hydrolysis time. Hydrolysis of PEP significantly (P < 0.05) obtained the highest yield of hydrolysates, however, both of BA and NAT were substantially showed lower DH values and did not exceed 5% still the end of hydrolysis. Among the different hydrolysates, PEP exhibited significantly higher DPPH radical scavenging activity than BA and NAT. All hydrolysates from PEP had lower ferrous ion chelating activity (<37%) and significantly lower than that of NAT (>37-92%) and BA (30-79%). Besides, hydrolysates of PEP presented significantly higher reducing power than BA and NAT. In antimicrobial activities, Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa were not effectively inhibited by all hydrolysates of PEP except of Staphylococcus aureus. Especially, an excellent antibacterial activity against S. aureus was only displayed in hydrolysate of PEP 0.1%. Hydrolysates from pepsin demonstrated significantly better DH, yield, DPPH radical scavenging activity and reducing power, furthermore, had excellent inhibitory on S. aureus due to large clear zone and moderated inhibitory in bactericidal inhibition.
In experiment III, DDEWP was hydrolyzed by pepsin at 0.3% for 9 h then the hydrolysate was further fractionated into four fractions by UF membrane with MWCO. The antioxidant and antibacterial activities of F-I (Mw >100 kDa), F-II (Mw 30-100 kDa), F-III (Mw 10-30 kDa) and F-IV (Mw <10 kDa) were determined to look for a good natural preservative and apply in meat. Among the four fractions, F-IV exhibited the highest DPPH, superoxide radical scavenging activities, Fe2+- chelating activity and reducing power among all fractions and was in order F-IV > F-III > F-II > F-I. Besides, the antimicrobial activity of F-IV also had larger inhibition zone against the growth of four selected bacteria (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli and Pseudomonas aeruginosa), furthermore, the minimal inhibitory concentration (MIC) value was 150 mg/mL and the same to other fractions in this study. Whereas, P. aeruginosa was the most sensitive with MIC value at 75 mg/mL.
In experiment IV, since F-IV fraction of DDEWP hydrolysate exhibited the highest antioxidative and antibacterial activity for the growth of four selected foodborne pathogens in the above results. Therefore, it was selected as natural preservative to apply in fresh pork chops stored at 10℃ for 3 days. In this experiment, fresh pork chops were randomly divided into 6 groups such as control: non treatment, water: sterilized RO water, DDEWP: DDEWP solution at 150 mg/mL, PEP150: DDEWP hydrolysate at 150 mg/mL, F-IV100: F-IV peptide fraction at 100mg/mL and F-IV150: F-IV peptide fraction at 150 mg/mL, individually. Moreover, the spraying solutions were sprayed on the surface of samples in each group with the final concentration at 150 mg/cm2 and 100 mg/cm2 for F100 sample. The pH, TBARS (2-thiobarbituric acid reactive substances), VBN (volatile basic nitrogen), total plate counts (TPC), lactic acid bacteria counts (LAB), instrumental color (L*, a*, b*) and sensory evaluation were determined. The TBARS and VBN values were lower in a dose-dependent manner (P < 0.05). The TPC and LAB counts of F-IV samples had lower than control during storage. The TPC and LAB counts of F-IV150 samples were the lowest number among all treatments. Non-significant difference in the instrumental color among treatments was observed during storage (P > 0.05). Analysis of sensory attributes, pork chops with two F-IV treatments exhibited slight acid flavor and had strong density in F-IV150 treatment at the end of storage. However, samples with F-IV150 also obtained higher flavor, texture and overall acceptance compared with control before 2-day during storage. All results confirmed that the use of F-IV fractions of hydrolysate from DDEWP could effectively maintain the quality of pork chops during refrigerated storage.
In experiment V, the objective was to investigate the antimicrobial activity of peptic hydrolysate fractions (F-IV) from DDEWP against four selected foodborne pathogens including S. aureus, S. typhimurium, E. coli and P.s aeruginosa in fresh pork chop under refrigerated conditions for 3 days. Fresh pork chop was separately inoculated with four selected foodborne pathogens and it was individually sprayed with sterilize water, DDEWP solution at 150 mg/mL (DDEWP), peptic hydrolysate at 150 mg/mL (PEP150), peptic hydrolysate fraction at 100 mg/mL (F-IV100) and peptic hydrolysate fraction at 150 mg/mL (F-IV150) to meet the final concentration at 150 mg/cm2 and 100 mg/cm2 for F-IV100 and the results were compared to fresh pork chop without sprayed any additive (negative control). Results showed that the treatments of F-IV significantly (P < 0.05) inhibited S. aureus, S. typhimurium, E. coli and P. aeruginosa growth. The counts were significantly (P < 0.05) decreased with the dose increase. The bacteria count of F-IV100 and F-IV150 samples were lower than control, water and DDEWP during storage. S. typhimurium were the most sensitive microbial followed by S. aureus of the sample sprayed with F-IV, while E. coli showed a lower activity. In addition, PEP150 was also suppressed the growth of all foodborne pathogens at the beginning of storage, but the activity was found to be lower than F-IV group at the end of storage.
In conclusion, the application of ultrafiltration for desalination was an efficient method and can be removed salt from salted duck egg white. Moreover, a small molecular weight of peptide fraction (F-IV, Mw <10 kDa) from hydrolysate of DDEWP had effectively maintain the quality of pork chops compared with control and others treatments during refrigerated storage.
TABLE OF CONTENTS
Page
ACKNOWLEDGMENT i
摘要 ii
ABSTRACT v
TABLE OF CONTENTS ix
LIST OF TABLE xii
LIST OF FIGURE xiv
CHAPTER 1:
Introduction 1
1. Relation and Background 2
2. Aim of this study 3
CHAPTER 2:
Literature review 5
1. Salted duck egg (SDE) 6
2. Desalination 6
3. The function of egg white 11
4. Proteases for hydrolysis 14
5. Pepsin 19
6. Proteases of Bacillus strains 19
7. Antioxidant 20
8. Bioactive peptides 22
9. Isolation bioactive peptides 26
CHAPTER 3:
Evaluation of nutrient content, physicochemical and functional properties of desalted duck egg white by ultrafiltration as desalination 30
1. Abstract 31
2. Introduction 31
3. Materials and methods 33
4. Results and discussion 36
CHAPTER 4:
Antioxidant and antimicrobial activities of different enzymatic hydrolysates from desalted duck egg white 51
1. Abstract 52
2. Introduction 53
3. Materials and methods 54
4. Results and discussion 58
CHAPTER 5:
Antioxidant and antimicrobial activities of peptide fractions derived from pepsin hydrolysate of desalted duck egg white powder 72
1. Abstract 73
2. Introduction 73
3. Materials and Methods 74
4. Results and discussion 80
CHAPTER 6:
Effect of hydrolysate fractions derived from desalted duck egg white as a preservative on the quality of pork chops during storage 93
1. Abstract 94
2. Introduction 94
3. Materials and methods 96
4. Results and discussion 101
CHAPTER 7:
Antimicrobial activity of hydrolysate fractions derived from desalted duck egg white against foodborne pathogens in pork chop model 117
1. Abstract 118
2. Introduction 118
3. Materials and methods 120
4. Results and discussion 123
CHAPTER 8:
Conclusion 133
REFERENCES 136
APPENDICES 172
Chapter 1
Arruda, M., S., F. O. Silva, A. S. Egito, T. M. S. Silva, J. L. Lima-Filho, A. L. F. Porto, and K. A. Moreira. 2012. New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT – Food Science and Technology 49: 73-79.
Beaulieu, L., J. Thibodeau, M. Desbiens, R. Saint-Louis, C. Zatylny-Gaudin, and S. Thibault. 2010. Evidence of antibacterial activities in peptide fractions originating from Snow crab (Chionoecetes opilio) by-products. Probiotics & Antimicrobial Proteins 2: 197-209.
Chang, H. S., and M. H. Liu. 1994. Preservative effect of egg white lysozyme on fish ball.Journal of the Chinese Society of Animal Science 23(4): 441-448.
Fu, C. W. 2016. Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. Master thesis, National Chung-Hsing University: Taichung, Taiwan.
He, R., A. T. Girgih, S. A. Malomo, X. Ju, and R. E. Aluko. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Food 5: 219-227.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affects functional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Jemil, I., O. Abdelhedi, L. Mora, R. Nasri, M. Aristoy, M. Jridi, M. Hajji, F. Toldrá, and M. Nasri. 2016. Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry 51(12): 2186-2197.
Jovanović, J., A Stefanović, S. Grbavčić, N. Šekuljica, M. Elmalimadi, B. Bugarski, and Z. Knežević-Jugović. 2015. Peptides with improved antimicrobial activity screened by membrane ultrafiltration from egg white protein hydrolysates. In: Proceedings of the 42nd International Conference of Slovak Society of Chemical Engineering. Slovakia. pp. 732-739.
Jovanović, J. R., A. B. Stefanović, M. G. Žuža, S. M. Jakovetic, N. Ž. Šekuljica, B. M. Bugarski, and Z. D. Knežević-Jugović. 2016. Improvement of antioxidant properties of egg white protein enzymatic hydrolysates by membrane ultrafiltration. Hemijiska Industrija 70(4): 419-428.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009a. Changes in chemical composition, physical properties and microstructure of duck egg as influenced by salting. Food Chemistry 112(3): 560-569.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009b. Protein hydrolysate of salted duck egg white as a substitute of phosphate and its effect on quality of pacific white shrimp (Litopenaeus vannamei). Journal of Food Science 74(8): 351-367.
Lemes, A. C., L. Sala, J. D. Ores, A. R. C. Braga, M. B. Egea, and K. F. Fernandes. 2016. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17(950): 1-24.
Lin, C. W., Y. N. Jiang, H. P. Su, and H. L. Chen. 1996. Emulsifying characteristics of salted duck egg white and its application in frankfurters. CIFST 23: 244-254.
Liu, M. H., H. S. Chang, H. S. Sheen, L. T. Hung, and S. P. Shiau. 1994. Preservative effect of egg white lysozyme on meat ball. Journal of the Chinese Society of Animal Science 23(4): 433-440.
Tang, W., H. Zhang, L. Wang and H. Qian. 2013. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. European Food Research and Technology 237:591-600.
Taniguchi, M., M. Kameda, T. Namae, A. Ochiai, and E. Saitoh. 2017. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. Journal of Functional Foods 34: 287-296.





Chapter 2
Adler-Nissen, J. 1976. Enzymatic hydrolysis of proteins for increased solubility. Journal of Agricultural and Food Chemistry 24(6): 1090-1093.
Agyei, D., and M. K. Danquah. 2012. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends in Food Science & Technology 23(2): 62-69.
Akbalik, G. 2003. Screening for industrially important extracellular enzymes from alkalophilic Bacillus genus. Master thesis, Izmir Institute of Technology: Izmir, Turkey.
Alleoni, A. C. C., and A. J. Antunes. 2004. Albumen foam stability and S-ovalbumin contents in eggs coated with whey protein concentrate. Brazilian Journal of Poultry Science 6(2):105-110.
Amado, I. R., J. A. Vázquez, M. P. González, and M. A. Murado. 2013. Production of antihypertensive and antioxidant activities by enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from cuttlefish processing wastewaters. Biochemical Engineering Journal 76: 43-54.
Arntfield, S. D., E. D. Murray, and M. A. H. Ismond. 1990. Influence of salts on the microstructural and rheological properties of heat-induced protein networks from ovalbumin and vicilin. Journal of Agricultural and Food Chemistry 38(6): 1335-1343.
Arruda, M., S., F. O. Silva, A. S. Egito, T. M. S. Silva, J. L. Lima-Filho, A. L. F. Porto, and K. A. Moreira. 2012. New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT – Food Science and Technology 49: 73-79.
Ayadi, M. A., M. Khemakhem, H. Belgith, and H. Attia. 2008. Effect of moderate spray drying conditions on functionality of dried egg white and whole egg. Journal of Food Science 73: 281-287.
Azzam, M. O. J., and R. M. Omari. 2002. Stability of egg white-stabilized edible oil emulsions using conductivity technique. Food Hydrocolloids 16: 105-110.
Bamdad, F., J. Wu., and L. Chen. 2011. Effects of enzymatic hydrolysis of molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science 54(1): 20-28.
Baron, F., S. Fauve, and M. Gautier. 2000. Egg Nutrition and Biotechnology. J. S. Sim, S. Nakai, and W. Günter, ed. CAB Int., Oxfordshire, UK. pp. 417–440.
Bartlett, G. R. 1959. Methods for the isolation of glycolytic intermediates by column chromatography with ion exchange resins. Journal of Biological Chemistry 234(3): 459-465.
Beaulieu, L., J. Thibodeau, M. Desbiens, R. Saint-Louis, C. Zatylny-Gaudin, and S.Thibault. 2010. Evidence of antibacterial activities in peptide fractions originating from Snow crab (Chionoecetes opilio) by-products. Probiotics & Antimicrobial Proteins 2: 197-209.
Beaumont, A., and J. Hughes. 1979. Biology of opioid peptides. Annual Review Pharmacology and Toxicology 19: 245-267.
Bergquist. D. H. 2000. Egg. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., pp 5.
Bovšková, H., and K. Mĭková, 2011. Factors influencing egg white foam quality. Czech Journal of Food Sciences 29(4): 322-327.
Breddam, K. 1986. Serine carbocypeptidases, a review. Carlsberg Research communications 51: 83-128.
Brewer, M. S. 2011. Natural antioxidants: sources, compounds, mechanisms of action and potential applications. Comprehensive Reviews in Food Science and Food Safety 10: 221-247.
Campbell, L., V. Raikos, and S. Euston. 2003. Modification of functional properties of egg-white proteins. Nahrung 47(6): 369-376.
Carey, E. A. 1989. Protein structure-a practical approach. (Ed. T. E. Creighton). IRL Press, Oxford, UK. pp. 117.
Cassano, A., and E. Drioli. 2016. Integrated membrane operations: in the food production. John Wiley & Sons, Ltd, pp.325.
Cassano, A., L. Donato, C. Conidi, and E. Drioli. 2008. Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innovative Food Science and Emerging Technologies 9: 556-562.
Catiau, L., J. Traisnel, V. Delval-Dubois, N. Chihib, D. Guillochon, and N. Nedjar-Arroume. 2011. Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 32: 633-638.
Chaiyasit, W., R. J. Elias, D. J. Mcclements, and E. A. Decker. 2007. Role of physical structures in bulk oils on lipid oxidation. Critical Reviews in Food Science and Nutrition 47: 299-317.
Chang, H. S., and M. H. Liu. 1994. Preservative effect of egg white lysozyme on fish ball.Journal of the Chinese Society of Animal Science 23(4): 441-448.
Chi, S. P., and K. H. Tseng. 1998. Physicochemical properties of salted pickled yolk from duck and chicken eggs. Journal of Food Science 63(1): 27-30.
Coutinho, C. M., M. C. Chiu, R. C. Basso, A. P. B. Ribeiro, L. A. G. Gonçalves, and L. A. Viotto. 2009. State of art of the application of membrane technology to vegetable oils: a review. Food Research International 42: 536-550.
Croguennec, T., F. Nau, and G. Brulé. 2002. Influence of pH and salt on egg white gelation. Food Engineering and Physical Properties 67(2): 608-614.
Danquah, M. K., and D. agyei. 2012. Pharmaceutical applications of bioactive peptides. Critical Review 1(2): 1-7.
Dávalos, A., M. Miguel, B. Bartolomé, and R. Lépez-Fandiño. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection 67(9): 1939-1944.
Doi, E., and N. Kitabatake. 1997. Structure and functionality of egg proteins. In Damodaran, S. and Paraf, A. ed. Food protein and their applications. Marcel Dekker, New York, USA. pp. 325-340.
Duong-Ly, K. C., and S. B. Gabeli. 2014. Using ion exchange chromatography to purify a recombinantly expressed protein. Methods of Enzymology 541: 95-103.
Edeloch, H. 1957. The denaturation of pepsin. I. Macromolecular changes. Journal of the American Chemical Society 79: 6100-6109.
Elias, R. J., S. S. Kellerby, and E. A. Decker. 2008. Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition 48: 430-441.
Fernández-Musoles, R., J. B. Salom, D. Martínez-Maqueda, J. J. López-Díez, I. Recio, and P. Manzanares. 2013. Antihypertensive effects of lactoferrin hydrolyzates: inhibition of angiotensin- and endothelin- converting enzymes. Food Chemistry 139: 994-1000.
Fu, C. W. 2016. Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. National Chung Hsing University, Master dissertation, Taichung, Taiwan.
Fujimura, M., Y. Minami, K. Watanabe, and K. Tadera. 2003. Purification, characterization and sequencing of novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagipyrum esculentum Moench). Bioscience, Biotechnology, and Biochemistry 67(8): 1636-1642.
Gençkal, H. 2004. Studies on alkaline protease production from Bacillus sp. Master thesis, İzmir Institute of Technology: İzmir, Turkey.
Gonbach, S. R., W. G. Heidelberg, and C. A. München. 2012. Filtration, 1. fundamentals. Ullmann’s 14: 677-709.
Greiter, M., S. Novalin, M. Wendland, K. D. Kulbe, and J. Fischer. 2002. Desalination of whey by electrodialysis and ion exchange resins: analysis of both processes with regard to sustainability by calculating their cumulative energy demand. Journal of Membrane Science 210(1): 91-102.
Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59: 15-30.
Hagen, K. 1998. Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment. Desalination 119: 85-91.
Halliwell, B., M. A. Murica, S. Chirico, and O. I. Aruoma. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science and Nutrition 35: 7-20.
Harnedy, P. A., and R. J. FitzGerald. 2012. Bioactive peptides from marine processing waste and shellfish: a review. Journal of Functional Foods 4: 6-24.
He, R., A. T. Girgih, S. A. Malomo, X. Ju, and R. E. Aluko. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Food 5: 219-227.
Hettiarachchy, N. S., K. Sato, M. R. Marshall, and A. Kannan. 2011. Bioactive food proteins and peptides applications in human health. CRC Press. Boca Raton, USA. pp. 105.
Hettiarachchy, N. S., K. Sato, M. R. Marshall, and A. Kannan. 2016. Food proteins and peptides: chemistry, functionality, interactions, and commercialization. CRC Press. Boca Raton USA. pp. 33-37.
Hermanssom, A. M. 1979. Aggregation and denaturation involved in gel formation. Food Texture and Rheology. Academic Press, New York, USA. pp. 265.
Hickson, D. W., E. S. Alford, F. A. Gerdner, K. Diehl, J. O. Sanders, and C. W. Dill. 1982. Changes in heat-induced rheological properties during cold storage of egg albumen. Journal of Food Science 47: 1908-1912.
Holt, D. 1984. Correlation of the rheological behavior of egg albumen to temperature, pH, and NaCl concentration. Journal of Food Science 49: 137-141.
Hong, Y. S., K. Y. Lee, and C. H. Lee. 2001. Molecular weight distribution of protein hydrolysate by the enzymatic hydrolysis of weakly acid-treated wheat gluten. Food Science and Technology Research 7(2): 126-130.
Hsiao, N., Y. Chen, Y. Kuan, Y. Lee, S. Lee, H. Chan, and C. Kao. 2014. Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. Electronic Journal of Biotechnology 17: 89-94.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affects functional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Iametti, S., E. Donnizzelli, P. Pittia, P. P. Rovere, N. Squarcina, and F. Bonomi. 1999. Characterization of high-pressure-treated egg albumen. Journal of Agricultural and Food Chemistry 47: 3611-3616.
Jemil, I., O. Abdelhedi, L. Mora, R. Nasri, M. Aristoy, M. Jridi, M. Hajji, F. Toldrá, and M. Nasri. 2016. Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry 51(12): 2186-2197.
Johnson, T. M., and M. E. Zabik. 1981. Egg albumen proteins interactions in an angel food cake system. Journal of Food Science 46:2071-2083.
Jovanović, J. R., A. B. Stefanović, M. G. Žuža, S. M. Jakovetic, N. Ž. Šekuljica, B. M. Bugarski, and Z. D. Knežević-Jugović. 2016. Improvement of antioxidant properties of egg white protein enzymatic hydrolysates by membrane ultrafiltration. Hemijiska Industrija 70(4): 419-428.
Jundee, J., S. Devahastin, and N. Chiewchan. 2012. Development and testing of a pilot-scale electrodialyser for desalination of fish sauce. Procedia Engineering 32: 97-103.
Jungbauer, A., and R. Hahn. 2009. Ion-exchange chromatography. Methods in Enzymology 463: 349-371.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009a. Changes in chemical composition, physical properties and microstructure of duck egg as influenced by salting. Food Chemistry 112: 560-569.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009b. Protein hydrolysate of salted duck egg white as a substitute of phosphate and its effect on quality of pacific white shrimp (Litopenaeus vannamei). Journal of Food Science 74(8): 351-361.
Kim, S. K., D. H. Ngo, and T. S. Vo. 2012. Marine fish-derived bioactive peptides as potential antihypertensive agents. Advances in Food and Nutrition Research 65: 249-260.
Kumar, C. G., and H. Takagi. 1999. Microbial alkaline proteases: From a bioindustrial view point. Biotechnology Advances 17: 561-594.
Laan, J. C., G. Gerritse, L. J. S. M. Mulleners, R. A. C. Hoek, and W. J. Quax. 1991.Cloning, characterization and multiple chromosomal integration of a Bacillus alkaline protease gene. Applied and Environmental Microbiology 57(4): 901-909.
Lechevalier, V., R. Jeantet, A. Arhaliass, J. Legrand, and F. Nau. 2007. Egg white drying: influence of industrial processing steps on protein structure and functionalities. Journal of Food Engineering 83: 404-413.
Lemes, A. C., L. Sala, J. D. Ores, A. R. C. Braga, M. B. Egea, and K. F. Fernandes. 2016. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17(950): 1-24.
Li, J. R., and Y. H. Hsieh. 2004. Traditional Chinese food technology and cuisine. Asia Pacific Journal of Clinical Nutrition 13(2): 147-155.
Lin, C. W., Y. N. Jiang, H. P. Su, and H. L. Chen. 1996. Emulsifying characteristics of salted duck egg white and its application in frankfurters. CIFST 23: 244-254.
Liu, Z., A. Brady, A. Young, B. Rasimick, K. Chen, C. Zhou, and N. R. Kallenbach. 2007. Length effects in antimicrobial peptides of the (RW)n series. Antimicrobial Agents and Chemotherapy 51(2): 597-603.
Lomakina, K., and K. Míková. 2006. A study of the factors affecting the foaming properties of egg white: a review. Czech Journal of Food Sciences 24(3): 110-118.
Mai, Z. 2014. Membrane process for water and wastewater treatment: study and modeling of interactions between membrane and organic matter. Hal Archives-Ouvertes 1: 1-220.
Majumder, K., and J. Wu. 2015. Molecular targets of antihypertensive peptides:understanding the mechanisms of action based on the pathophysiology of hypertension. International Journal of Molecular sciences 16: 256-283.
Mandal, S. M., S. Dey, M. Mandal, S. Sarkar, S. Maria-Neto, and O. L. Franco. 2009.Identification and structural insights of three novel antimicrobial peptides isolated from green coconut water. Peptides 30: 633-637.
Meira, S. M. M., D. J. Daroit, V. E. Helfer, A. P. F. Corrêa, J. Segalin, S. Carro, and A.Brandelli. 2012. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Research International 48: 322-329.
Mentlein, R. 2004. Cell-surface peptidases. International Review of Cytology 235: 165-213.
Mine, Y. 1995. Recent advances in the understanding of egg white protein functionally. Trends in Food Science and Technology 6: 225-231.
Mine, Y., F. Ma and S. Lauriau. 2004. Antimicrobial peptides released by enzymatichydrolysis of hen egg white lysozyme. Journal of Agricultural and Food Chemistry 52: 1088-1094.
Mmadi, M., T. Amza, Wang, Y., and M. Zhang. 2014. Effect of desalination onphysicochemical and functional properties of duck (Anas plotyrhyncus) egg whites. Advance Journal of Food Science and Technology 6(6): 784-791.
Mohammad, A. W., Y. N. Ching, P. L. Ying, and H. N. Gen. 2012. Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food and Bioprocess Technology 5(4): 1143-1156.
Mullally, M. M., H. Meisel, and R. J. FitzGerald. 1996. Synthetic peptides cooresponding to alpha-lactalbumin and beta-lactoglobulin sequence with angiotensin-I-converting enzyme activity. Biological Chemistry Hoppe-Seyler 377(4): 259-260.
Noh, D. O., and H. J. Suh. 2015. Preparation of egg white liquid hydrolysate (ELH) and its radical-scavenging activity. Preventive Nutrition and Food Science 20(3): 183-189.
Pellegrini, A., A. J. Hülsmeier, P. Hunziker, and U. Thomas. 2004. Proteolytic fragments of ovalbumin display antimicrobial activity. Biochimica et Biophysica Acta 1672: 76-85.
Pernell, C. W., E. A. Foegeding, P. J. Luck, and J. P. Davis. 2002. Properties of whey and egg white foams. Colloids and Surfaces 204: 9-21.
Ranamukhaarachchi, S. 2012. Production and fractionation of antioxidant peptides from soy protein isolate using sequential membrane ultrafiltration and nanofiltration. Master Thesis, Waterloo, Ontario, Canada.
Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and MolecularBiology Reviews 62(3): 597-635.
Rauha, J. P., S. Remes, M. Heinonen, A. Hopia, M. Kähkönen, T. Kujala, K. Pihlaja, H. Vuolera, and P. Vuolera. 2000. Antimicrobial effects of finish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology 56: 3-12.
Salampessy, J., M. Phillips, S. Seneweera, and K. Kailasapathy 2010. Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food chemistry 120: 556-560
Salehi, F. 2014. Current and future applications for nanofiltration technology in the food processing. Food and Bioproducts Processing 92: 161-177.
Sbroggio, M. F., M. S. Montilha, V. R. G. Figueiredo, S. R. Georgetti, and L. E. Kurozawa. 2016. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology 36(2): 1-7.
Scott, G. 1997. Antioxidants in science, technology, medicine and nutrition. Coll hourse, Aibion Publishing.
Shahidi, F. 2000. Antioxidants in food and food antioxidants. Nahrung 44(3): 158-163.
Shimada, K., and S. Matsushita. 1980. Thermal coagulation of egg albumin. Journal of Agricultural and Food Chemistry 28(2): 409-412.
Shebis, Y., D. Iluz, Y. Kinel-Tahan, Z. Dubinsky, and Y. Yehoshua. 2013. Natural antioxidants: function and sources. Food and Nutrition Science 4: 643-649.
Silva, L. C. A., T. L. Honorato, R. S. Cavalcante, T. T. Franco, and S. Rodigues. 2012. Effect of pH and temperature on enzyme activity of chitosanase produced under solid stated fermentation by Trichoderma spp. Indian Journal of Microbiology 52(1): 60-65.
Siow, H., and C. Gan. 2013. Extraction of antioxidative and antihypertensive bioactivepeptides from Parkia speciose seeds. Food Chemistry 141: 3435-3442.
Sookkheo, B. S. Sinchaikul, S. Phutrakul, and S. Chen. 2000. Purification and characterization of the highly thermostable proteases from Bacillus stearothermophilus TLS33. Protein Expression and Purification 20(2): 142-151.
Strathmann, H. 2000. Membrane separations/ electrodialysis. Encyclopedia of Separation Science 2000: 1707-1717.
Suarez-Jimenez, G., A. Burgos-Hernandez, and J. Ezquerra-Brauer. 2012.Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Marine Drugs 10: 963-986.
Sun, L., S. Wu, L. Zhou, F. Wang, X. Lan, J. Sun, Z. Tong, and D. Liao. 2017. Separation and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Saurida elongate proteins hydrolysates by IMAC-Ni2+. Marine Drugs 15(29): 1-10.
Tang, W., H. Zhang, L. Wang, and H. Qian. 2013. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. European Food Research and Technology 237:591-600.
Taniguchi, M., M. Kameda, T. Namae, A. Ochiai, and E. Saitoh. 2017. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. Journal of Functional Foods 34: 287-296.
Taylor, S. 1993. Aminopeptidases: structure and function. The FASEB Journal 7(2): 290-298.
Thammasirilak, S., Y. Pukcothanung, S. Preecharram, S. Daduang, R. Patramanon, T. Fukamizo, and T. Araki. 2010. Comparative Biochemistry and Physiology, Part C 151: 84-91.
Turgeon, S. L., and S. F. Gauthier. 1990. Whey peptide fractions obtained with a two-step ultrafiltration process; production and characterization. Journal of Food Science 55(1): 106-110.
Vandanjon, L., R. Johannsson, M. Derouiniot, P. Bourseau, and P. Jaouen. 2007.Concentration and purification of blue whiting peptide hydrolysates by membrane processes. Journal of Food Engineering 83(4): 581-589.
Verma, S., R. Dixit, and K. C. Pandey. 2016. Cysteine proteases: modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2016.00107.
Walsh, D. M., I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S. Wolfe, M. J. Rowan, and D. J. Selkoe. 2002. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416: 535-539.
Wang, X., H. Yu, R. Xing, and P. Li. 2017. Characterization, preparation, and purification of marine bioactive peptides. Hindawi 2017:1-16.
Wang, Y., M. Zhang, B. Adhikari, A. S. Mujumdar, and B. Zhou. 2013. The application of ultrasound pretreatments and pulse-spouted bed microwave freeze drying to produce desalted duck egg white powders. Drying Technology 31(15): 1826-1836.
Wąsowicz, E., A. Gramza, M. Héś, H. H. Jeleń, J. Korczak, M. Matecka, S. Mildner-Szkudlarz, M. Rudzińska, U. Samotyja, and R. Zawirska-Wojtasiak. 2004. Oxidation of lipid in food. Polish Journal of Food and Nutrition Science 13(54) 87-100.
Wilson-Sanchez, G., C. Moreno-Fdix, C. Velazquez, M. Plascencia-Jatomea, A. Acosta, L. Machi-Lara, A. L. Aldana-Madrid, J. M. Ezquerra-Brauer, R. Robles-Zepeda, and A. Burgos-Hernandez. 2010. Antimutagenicity and antiproliferative studies of lipidic extracts from white shrimp (Litopenaeus vanamei). Marine Drugs 8: 2795-2809.
Xing, Z., L. Yu, X. Li, and X. Su. 2016. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell & Bioscience 6(53): 1-12.
Xu, R., Y. Ye, and W. Zhao. 2010. Introduction to natural products chemistry. CRC Press. New York, USA. pp.161.
Xu, T., and C. Huang. 2008. Electrodialysis-based separation technologies: a critical review. AIChE Journal 54: 3147-3159.
Yan, L., Y. S. Li, and C. B. Xiang. 2005. Preparation of poly (vinylidene fluoride) (pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer 46: 7701-7706.
Zioudrou, C., R. A. Streaty, and W. A. Klee. 1978. Opioid peptides derived from food proteins. The Journal of Biological Chemistry 254(7): 2446-2449.
Zhou, B., M. Zhang, Z. Fang, and Y. Liu. 2015. Effects of ultrasound and microwave pretreatments on the ultrafiltration desalination of salted duck egg white protein. Food and Bioproducts Processing 96: 306-313.









Chapter 3
Abeyrathne, E. D. N., H. Y. Lee, and D. U. Ahn. 2014. Separation of ovotransferrin and ovomucoid from chicken egg white. Poultry Science 93(4): 1010-1017.
Ahmed, J., H. S. Ramaswamy, and I. Alli. 2007. Protein denaturation, rheology, and gelation characteristics of radio-frequency heated egg white dispersions. International Journal of Food Properties 10: 145-161.
Albarracín, W., I. C. Sánchez, R. Grau, and J. M. Barat. 2011. Salt in food processing; usage and reduction: a review. International Journal of Food Science & Technology 46: 1329-1336.
AOAC.1990. Official methods for the analysis (15th ed.). Association of Official Analytical Chemist. Washington, DC, USA.
AOAC. 1995. AOAC Official Method Analysis 988.15 Tryptophan in foods and food and feed ingredients, ion exchange chromatography method. Association of Official Analytical Chemist. Washington, DC, USA.
Ayadi, M. A., M. Khemakhem, H. Belgith, and H. Attia. 2008. Effect of moderate spray drying conditions on functionality of dried egg white and whole egg. Journal of Food Science 73: 281-287.
Chen, Y., W. Wang, W. Chen, and J. Tan. 2019. Influences of fermentation and ripening temperatures on the enzymatic activity and physicochemical and sensory properties of salted egg white sufu. Animal Science Journal 90: 1070-1077.
Chi, S. P., and K. H. Tseng. 1998. Physicochemical properties of salted pickled yolk from duck and chicken eggs. Journal of Food Science 63(1): 27-30.
Chindapan, N., S. Devahastin, and N. Chiewchan. 2009. Electrodialysis desalination of fish sauce: electrodialysis performance and product quality. Journal of Food Science 74(7): 363-371.
Croguennec, T., F. Nau, and G. Brulé .2002. Influence of pH and salts on egg white gelation. Journal of Food Science 67(2): 608-614.
Damodaran, S., K. Anand, and L. Razumovsky. 1998. Competitive adsorption of egg white proteins at the air –water interface: direct evidence for electrostatic complex formation between lysozyme and other egg proteins at the interface. Journal of Agricultural and Food Chemistry 46(3): 872-876.
Davis, J. P., E. A. Foegeding, and F. K. Hansen. 2004. Electrostatic effects on the yieldstress of whey protein isolate foams. Colloids and Surfaces B: Biointerfaces 34: 13-23.
FAO. 1986. Manual of food quality control. 8. Food analysis: quality, adulteration and tests of identity. FAO Food and Nutrition Paper 14(8): 1-326.
Fu, C. W. 2016. Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. Master dissertation, National Chung Hsing University, Taichung, Taiwan.
Gulluzzo, S. J., and J. M. Regenstein. 1978. Role of chicken breast muscle proteins in meat emulsion formation: myosin, actin and synthetic actomysin. Journal of Food Science 43: 1761-1765.
Handa, A., K. Hayashi, H. Shidara, and N. Kuroda. 2001. Correlation of the proteinstructure and gelling properties in dried egg white products. Journal of Agricultural and Food Chemistry 21: 3957-3964.
Handa, A., K. Takahashi, N. Kuroda, and G. W. Froning. 1998. Heat-induced egg white gels as affects by pH. Journal of Food Science 63: 403-407.
Huang, J. J., J. S. Tsai, and R. L. Cheng. 1996. The effect of drying methods on powder characteristics of salted duck egg white powder. Journal of Chinese Institute of Food Science and Technology 23: 819-829.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affects functional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009a. Changes in chemical composition, physical properties and microstructure of duck egg as influenced by salting. Food Chemistry 112: 560-569.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009b. Protein hydrolysate of salted duck egg white as a substitute of phosphate and its effect on quality of pacific white shrimp (Litopenaeus vannamei). Journal of Food Science 74(8): 351-361.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009c. Effect of salting processes onchemical composition, textural properties and microstructure of duck egg. Journal of the Science of Food and Agriculture 89: 625-633.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2011. Effect of NaCl on thermalaggregation of egg white proteins from duck egg. Food Chemistry 125: 706-712.
Kato, A., H. R. Ibrahim, H. Watanabe, K. Honna, and K. Kobayashi. 1989. New approach to improve the gelling and surface functional properties of dried egg white byheating in dry state. Journal of Agricultural and Food Chemistry 37: 433-437.
Kato, A., H. R. Ibrahim, H. Watanabe, K. Honma, and K. Kobayashi. 1990a. Enthalpy of denaturation and surface functional properties of heated egg white proteins in thedry state. Journal of Food Science 55(5): 1280-1283.
Kato, A., H. R. Ibrahim, H. Watanabe, K. Honma, and K. Kobayashi. 1990b. Structural and gelling properties of dry-heating egg white proteins. Journal of Agricultural and Food Chemistry 38: 32-37.
Liao, S. Y., and M. E. Mangino. 1987. Characterization of the composition,physicochemical and functional properties of acid whey protein concentrations. Journal of Food Science 52: 1033-1037.
Lin, C. Y., and B. H. Chiang. 1993. Desalting and recovery of flavour compounds fromsalted shrimp processing waste water by membrane process. International Journal of Food Science and Technology 28: 453-460.
Mandal, S., and B. D. Kulkarni. 2011. Separation strategies for processing of dilute liquid streams: review article. International Journal of Chemical Engineering 2011: 1-19.
Mleko, S., H. G. Kristinsson, Y. Liang, M. P. Davenport, W. Gustaw, and M. Tomczynska-Mleko. 2010. Rheological properties of angel food cake made with pH unfolded and refolded egg albumen. LWT-Food Science and Technology, 43, 1461-1466.
Mmadi, M., T. Amza, Y. Wang, and M. Zhang. 2014. Effect of desalination on physicochemical and functional properties of duck (Anas plotyrhyncus) egg whites. Advance Journal of Food and Technology, 6(6), 784-791.
Mohammad, A. W., Y. N. Ching, P. L. Ying, and H. N. Gen. 2012. Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control. Food and Bioprocess Technology 5(4): 1143-1156.
Raikos, V., L. Campbell, and S. R. Euston. 2007. Effects of sucrose and sodium chloride on foaming properties of egg white proteins. Food Research International 40: 347-35.
Rasi S. M., A. Motamedzadegan, A. Shahidi, and A. Rashidinejad. 2019. Physical andrheological properties of egg albumin foams are affected by ionic strengrh and basil seed gum supplementation, International Journal of Chemical Engineering 2019: ID 2502908.
Sahi, S. 2016. Egg as a vital baking ingredient. Campden BRI, Gloucestershire, UK.
Sahoo, A., and A. Parihari. 2014. Yield and particle morphology of spray dried salts: fractional factorial design. Journal of Engineering Research and Applications 4(3): 137-152.
Simpson, R. J., M. R. Neuberger, and T. Y. Liu. 1976. Complete amino acid analysis of proteins from singlet hydrolysate. The Journal of Biological Chemistry 251(7): 1936-1940.
Steertegem, B. V., B. Pareyt, K. Brijs, and J. A. Delcour. 2013. The effects of fresh eggs, egg white, and egg yolk, separately and in combination with salt, on Mixogram properties. Cereal Chemistry 90(3): 269-272.
Song, H., B. Kim, J. Choe, S. Jung, K. Kim, D. Kim, and C. Jo. 2009. Improvement offoaming ability of egg white product by irradiation and its application. Radiation Physics and Chemistry 78: 217-221.
Vadehra, D. V., and K. R. Nath. 1973. Eggs as a source of protein. CRC Critical Reviews in Food Technology 4: 193-308.
Vandanjon, L., R. Johannsson, M. Derouiniot, P. Bourseau, and P. Jaouen. 2007. Concentration and purification of blue whiting peptide hydrolysates by membrane processes. Journal of Food Engineering 83(4): 581-589.
Walton, D. E., and C. J. Mumford. 1999. The morphology of spray-dried particles: the effect of process variables upon the morphology of spray-dried particles. Chemical Engineering Research and Design 77: 442-460.
Wang, Y., M. Zhang, B. Adhikari, A. S. Mujumdar, and B. Zhou. 2013. The application of ultrasound pretreatments and pulse-spouted bed microwave freeze drying to produce desalted duck egg white powders. Drying Technolog 31(15): 1826-1836.
Wentzel-Viljoen, E., K. Steyn, E. Ketterer, and K. E. Charlton. 2013. “Use salt and foods high in salt sparingly”: a food-based dietary guideline for South Africa. Food-Based Dietary Guidelines for South Africa 26(3): S105-S113.
Zhao, Y., Y. Tu, M. Xu, J. Li, and H. Du. 2014. Physicochemical and nutritional characteristics of preserved duck egg white. Poultry Science 93: 3130-3137.
Zhou, B., M. Zhang, Z. Fang, and Y. Liu. 2015. Effects of ultrasound and microwave pretreatments on the ultrafiltration desalination of salted duck egg white protein. Food and Bioproducts Processing 96 306-313.














Chapter 4
Barać, M., S. Čabrilo, M. Pešić, S. Stanijević, M. Pavlićević, O. Maćej, and N. Ristić. 2011. Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences 12: 8372-8387.
Carey, E. A. 1989. Protein structure: a practical approach. T. E. Creighton (ed.). IRL Press, Oxford.
Chen, H., E. M. McGowan, N. Ren, S. Lal, N. Nassif, F. Shad-Kaneez, X. Qu, and Y. Lin. 2018. Nattokinase: a promising alternative in prevention and treatment of cardiovascular disease. Biomarker Insights 13: 1-8.
Farvin, K. H. S., L. L. Andersen, H. H. Neilsen, C. Jacobsen, G. Jakobsen, I. Johansson,and F. Jessen. 2014. Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: in vitro assays and evaluation in 5% fish oil-in-water emulsion. Food Chemistry 149: 326-334.
Fu, C. W. 2016. Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. Master dissertation, National Chung Hsing University, Taichung, Taiwan.
García-Moreno P. J., I. Batista, C. Pires, N. M. Bandarra, F. J. E. Espejo-Carpio, A. Guadix, and E. M. Guadix. 2014. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International 65: 469-476.
Ghanbari, R., A. Ebrahimpour, A. Abdul-Hamid, A. Ismail, and N. Saari. 2012. Actinopyga lecanora hydrolysates as natural antibacterial agents. International Journal of Molecular Sciences 13: 16796-16811.
Gupta, R., Q. K. Beg, and P. Lorenz. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59: 15-30.
He, R., A. T. Girgih, S. A. Malomo, A. Ju, and R. E. Aluko. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods 5: 219-27.
Hsu, K. C. 2010. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry 122: 42-48.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affects functional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Intarasiriwat, R., S. Benjakul, W. Visessanguan, and J. Wu. 2012. Antioxidant and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chemistry 135: 3039-3048.
Je, J. Y., Z. J. Qian, H. G. Byun, and S. K. Kim. 2007. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzyme hydrolysis. Process Biochemistry 42: 840-846.
Jemil, I., M. Jridi, R. Nasri, N. Ktari, R. B. S. Salem, M. Mehiri, M. Hajji, and M. Nasri.2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry 49: 963-972.
Jeyasanta, I. K., and J. Patterson. 2014. Enhancement of alkaline protease production by Bacillus species through random mutagenesis. International Journal of Microbiology Research 5(2): 130-139.
Klompong, V., S. Benjakul, D. Kantachote, and F. Shahidi. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry 102: 1317-1327.
Lin, S. Y., Y. Guo, J. B. Liu, Q. You, Y. G. Yin, and S. Cheng. 2011. Optimized enzymatic hydrolysis and pulsed electric field treatment for production of antioxidant peptides from egg white protein. African Journal of Biotechnology 10: 11648-11657.
Liu, Q., B. Kong, Y. L. Xiong, and X. Xia. 2010. Antioxidant activity and functionalproperties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry 118: 403-410.
Morales-Medina, R., R. Pérez-Gálvez, A. Guadix, and E. M. Guadix. 2017. Multiobjective optimization of the antioxidant activities of horse mackerel hydrolysates producedwith protease mixtures. Process Biochemistry 52: 149-158.
Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and MolecularBiology Reviews 62: 597-635.
Razzaq, A., S. Shamsi, A. Ali, Q. Ali, M. Sajjad, A. Malik, and M. Shraf. 2019. Microbial proteases applications. Frontiers in Bioengineering and Biotechnology 7: 1-20.
Ruan, C., Y. Chi, and R. Zhang. 2010. Kinetics of hydrolysis of egg white protein by pepsin. Czech Journal of Food Sciences 28: 355-63.
Sbroggio, M. F., M. S. Montilha, V. R. G. Figueiredo, S. R. Georgetti, and L. E. Kurozawa. 2016. Influence of the degree of the hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology 36: 375-381.
Shi, Y., J. Kovacs-Nolan, B. Jiang, R. Tsao, and Y. Mine. 2014. Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells. Journal of Functional Foods 10: 35-45.
Sila, A., and A. Bougatef. 2016. Antioxidant peptides from marine by-product: isolation, identification and application in food systems. A review. Journal of FunctionalFoods 21: 10-26.
Sun, Q., H. Shen, and Y. Luo. 2011. Antioxidant activity of hydrolysates and peptidefractions derived from porcine hemoglobin. Journal of Food Science and Technology 48: 53-60.
Tang, C. H., X. S. Wang, and X. Q. Yang. 2009. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of theresulting hydrolysates. Food Chemistry 114: 1484-1490.
Tanzadehpanah, H., A. Asoodeh, and J. Chamani. 2012. An antioxidant peptide derivedfrom ostrich (Struthio camelus) egg white protein hydrolysates. Food Research International 49: 105-111.
Tejano, L. A., J. P. Peralta, E. E. S. Yap, and Y. Chang. 2019. Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food Science & Nutrition 7: 2381-2390.
Yu, H. C., and F. J. Tan. 2017. Optimization of ultrasonic-assisted enzymatic hydrolysisconditions for the production of antioxidant hydrolysates from porcine liver byusing response surface methodology. Asian-Australasian Journal of Animal Sciences 30: 1612-1619.




















Chapter 5
AOAC Official Method. 1995. AOAC Official Method Analysis 988.15 Tryptophan infoods and food and feed ingredients, ion exchange chromatography method.
Arruda, M. S., F. O. Silva, A. S. Egito, T. M. S. Silva, J. L. Lima-Filho, A. L. F. Porto,and K. A. Moreira. 2012. New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT –Food Science and Technology 49: 73-79.
Beaulieu, L., J. Thibodeau, M. Desbiens, R. Saint-Louis, C. Zatylny-Gaudin, and S. Thibault. 2010. Evidence of antibacterial activities in peptide fractions originating from Snow crab (Chionoecetes opilio) by-products. Probiotics & Antimicrobial Proteins 2: 197-209.
Chi, C. F., B. Wang, Y. Y. Deng, Y. M. Wang, S. G. Deng, and J. Y. Ma. 2013. Isolationand characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle. Food Research International 55: 222-228.
Dziuba, B., and M. Dziuba. 2014. New milk protein-derived peptides with potential antimicrobial activity: an approach based on bioinformatics studies. International Journal of Molecular Science 15: 14531-14545.
Fu, C. W. (2016). Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. National ChungHsing University, Master dissertation, Taiwan.
Girgih, A. T., C., C. Udenigwe, and R. E. Aluko. 2011. In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. Journal of the American Oil Chemists’ Society 88(3): 381-389.
Gornall., A. G., C. J. Bardawill, and M. M. David. 1949. Determination of serum protein by means of the biuret reaction. The Journal of Biological Chemistry 177: 751-766.
Hancock, R. E. W., and G. Diamond. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends in Microbiology 8(9): 402-410.
He, R., A. T. Girgih, S. A. Malomo, X. Ju, and R. E. Aluko. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltrationfractions. Journal of Functional Foods 5: 219-227.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affects functional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Jemil, I., O. Abdelhedi, L. Mora, R. Nasri, M. Aristoy, M. Jridi, M. Hajji, F. Toldrá, and M. Nasri. 2016. Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilica) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochemistry 51: 2186-2197.
Jemil, I., M. Jridi, R. Nasri, N. Ktari, R. B. S. Salem, M. Mehiri, M. Hajji, and M. Nasri. 2014. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26. Process Biochemistry 49: 963-972.
Jovanović, J., A. Stefanović, S. Grbavčić, N. Šekuljica, M. Elmalimadi, B. Bugarski, and Z. Knežević-Jugović. 2015. Peptides with improved antimicrobial activity screened by membrane ultrafiltration from egg white protein hydrolysates. In Proceedings of the 42nd International Conference of Slovak Society of Chemical Engineering, Slovakia. pp. 732-739.
Jovanović, J. R., A. B. Stefanović, M. G. Žuža, S. M. Jakovetic, N. Ž. Šekuljica, B. M.Bugarski, and Z. D. Knežević-Jugović. 2016. Improvement of antioxidant properties of egg white protein enzymatic hydrolysates by membrane ultrafiltration. Hemijiska Industrija 70(4): 419-428.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009. Protein hydrolysate of salted duck egg white as a substitute of phosphate and its effect on quality of pacific white shrimp (Litopenaeus vannamei). Journal of Food Science 74(8): 351-367.
Kimatu, B. M., L. Zhao, Y. Biao., G. Ma, W. Yang, F. Pei, and Q. Hu. 2017. Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chemistry 230: 58-67.
Kobbi, S., R. Balti, A. Bougatef, G. L. Flem, L. Firdaous, M. Bigan, G. Chataigné, S.Chaabouni, P. Dhulster, and N. Nedjar. 2015. Antibacterial activity of novel peptides isolated from protein hydrolysates of RuBisCO purified from green juice alfafa. Journal of Functional Foods 18: 703-713.
Kong, X., H. Zhou, and Y. Hua. 2008. Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes. Journal of the Science of Food and Agriculture 88, 920-926.
Kou, X., J. Gao, Z. Xue, Z. Zhang, H. Wang, and X. Wang. 2013. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT-Food Science and Technology 50: 591-598.
Kumar, D., M. K. Chati, R. Singh, N. Mehta, and P. Kumar. 2016. Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Ruminant Research 139: 20-25.
Lemes, A. C., L. Sala, J. D. Ores, A. R. C. Braga, M. B. Egea, and K. F. Fernandes. 2016. A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17(950): 1-24.
Li, Y., B. Jiang, T. Zhang, W. Mu, and J. Liu. 2008. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry 106: 444-450.
López-Expósito, I., F. Minervini, L. Amigo, and I. Recio. 2006. Identification of antibacterial peptides from bovine ƙ-casein. Journal of Food Protection 69: 2992-2997.
Mirzaei, M., S. Mirdamadi, M. R. Ehsani, and M. Aminlari. 2016. Antioxidant, ACE-inhibitory and antibacterial activities of Kluyveromyces marxianus protein hydrolysates and their peptide fractions. Functional Foods in Health and Disease 6(7): 425-439.
Morales-Medina, R., R. Pérez-Gálvez, A. Guadix, & E. M. Guadix. 2017. Multiobjective optimization of the antioxidant activities of horse mackerel hydrolysates produced with protease mixtures. Process Bioechemistry 52: 149-158.
Moure, A., H. Domínguez, and J. C. Parajó. 2006. Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry 41: 447-456.
Norberg, S., P. M. O’ Connor, C. Stanton, R. P. Ross, C. Hill, G., F. Fitzgerald, and P. D. Cotter. 2011. Altering the composition of caseicins A and B as a means of determining the contribution of specific residues to antimicrobial activity. Applied and Environmental Microbiology 77: 2496-2501.
Petrus, E. M., S. Tinakumari, L. C. Chai, A. Ubong, R. Tunung, N. Elexson, L. F. Chai, and R. Son. 2011. A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. International Food Research Journal 18: 55-66.
Pownall, T. L., C. C. Udenigwe, and R. E. Aluko. 2010. Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of Agricultural and Food Chemistry 58: 4712-4718.
Shi, Y., J. Kovacs-Nolan, B. Jiang, R. Tsao, and Y. Mine. 2014. Antioxidant activity of enzymatic hydrolysates from eggshell membrane proteins and its protective capacity in human intestinal epithelial Caco-2 cells. Journal of Functional Foods 10: 35-45.
Simpson, R. J., M. R. Neuberger, and T. Y. Liu. 1976. Complete amino acid analysis of proteins from singlet hydrolysate. The Journal of Biological Chemistry 251(7):1936-1940.
Stark, M., L. Liu, and C. M. Deber. 2002. Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial Agent and Chemotherapy 46(11): 3585-3590.
Sun, Q., H. Shen, and Y. Luo. 2011. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal of Food Science and Technology 48(1): 53-60.
Tang, W., H. Zhang, L. Wang, and H. Qian. 2013. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. EuropeanFood Research and Technology 237: 591-600.
Taniguchi, M., M. Kameda, T. Namae, A. Ochiai, E. Saitoh, and T. Tanaka. 2017. Identification and characterization of multifunctional cationic peptides derivedfrom peptic hydrolysates of rice bran protein. Journal of Functional Foods 34: 287-296.
Théolier, J., R. Hammami, P. Labelle, I. Fliss, and J. Jean. 2013. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate.Journal of Functional Foods 5: 706-714.
Udenigwe, C. C., Y. Lu, C. Han, W. Hou, and R. E. Aluko. 2009. Flaxseed protein-derived peptide fractions: antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chemistry 116: 277-284.
Wang, J., M. Zhao, X. Yang, and Y. Jiang. 2006. Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration. Journal of Cereal Science 44: 93-100.
Wu, L., A. Jiang, Y. Jing, Y. Zheng, and Y. Yan. 2017. Antioxidant properties of protein hydrolysate from Douchi by membrane ultrafiltration. International Journal of Food Properties 29(5): 997-1006.
Yu, H. C., and F. J. Tan. 2017. Optimization of ultrasonic-assisted enzymatic hydrolysis conditions for the production of antioxidant hydrolysates from porcine liver byusing response surface methodology. Asian-Australasian Journal of Animal Sciences 30: 1612-1619.
Zarei, M., A. Jamnejad, and E. Khajehali. 2014. Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur Journal of Microbiol 7(1): 1-4.
Zhang, N., C. Zhang, Y. Chen, and B. Zheng. 2017. Purification and characterization of antioxidant peptides of Pseudosciaena crocea protein hydrolysates. Molecular22(57): 1-11.
Zhou, K., C. Canning, and S. Sun. 2013. Effects of rice protein hydrolysates prepared by microbial proteases and ultrafiltration on free radicals and meat lipid oxidation. LWT-Food Science and Technology 50: 331-335.






Chapter 6
Abu-Salem, F. M., M. H. Mahmoud, M. H. El-Kalyoubi, A. Y. Gibriel, and A. A. Abou-Arab. 2014. Antioxidant and antimicrobial of peptides as bioactive components inbeef burger. International Journal of Nutrition and Food Engineering, 8(7): 763-771.
Acquah, C., Y. W. Chan, S. Pan, D. Agyei, and C. C. Udenigwe. (2019). Structure-informed separation of bioactive peptides. Journal of Food Biochemistry https://doi.org/10.1111/jfbc.127
Bai, J. J., J. G. Lee, S. Y. Lee, S. J. Kim, M. J. Choi, and Y. J. Cho. 2017. Changes inquality characteristics of pork patties containing antioxidative fish skin peptide orfish skin peptide-loaded nanoliposome during refrigerated storage. Korean Journal for Food Science of Animal Resources 37(5): 752-763.
Beltran, E., R. Pla, J. Yuste, and M. Mor-Mur. 2003. Lipid oxidation of pressurized andcooked chicken: role of sodium chloride and mechanical processing on TBARS and hexanal values. Meat Science 64: 19-25.
Bernardi, D. M., T. M. Bertol, S. B. Pflanzer, V. C. Sgarbieri, and M. A. R. Pollonio. 2016. ω-3 in meat products: benefit and effects on lipid oxidative stability. Journal of the Science of Food and Agriculture 96: 2620-2634.
Chang, H. L., Y. C. Chen, and F. J. Tan. 2011. Antioxidative properties of a chitosan-glucose Maillard reaction product and its effect on pork qualities during refrigerated storage. Food Chemistry 124: 589-595.
Centenaro, G. S., M. Salas-Mellado, C. Pires, I. Batista, M. L. Nunes, and C. Prentice.2014. Fractionation of protein hydrolysates of fish and chicken using membrane ultrafiltration: investigation of antioxidant activity. Applied Biochemistry and Biotechnology 172: 2877-2893.
CNS (Chinese National Standard).1982. General No. 1451, Classified No. N6029. Bureau of 352Standards, Metrology and Inspection, MOEA, ROC.
Fan, X., S. Liu, H. Li, J. Feng, X. Zhang, and H. Yan. 2019. Effects of Portulaca oleracea L. extract on lipid oxidation and color of pork meat during refrigerated storage.Meat Science 147: 82-90.
Fu, C. W. 2016. Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. National ChungHsing University Master thesis, Taichung, Taiwan.
Gray, J. I., E. A. Gommaa, and D. J. Buckley. 1996. Oxidative quality and shelf life ofmeats. Meat Science 43: S111-S123.
He, R., A. T. Girgih, S. A. Malomo, X. Ju, and R. E. Aluko. 2013. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods 5: 219-227.
Hogan, S., L. Zhang, J. Li, H. Wang, and K. Zhou. 2009. Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peoxidation in cooked beef. Food Chemistry 117: 438-443.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affects functional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Hugas, M. 1998. Bacteriocinogenic lactic acid bacteria for the biopreservativation of meat and meat products. Meat Science 49(1): 139-150.
Intiquilla, A., K. Jiménez-Aliaga, A. I. Zavaaleta, I. Arnao, C. Peña, E. L. Chávez-Hidalgo, and B. Hernández-Ledesma. 2016. Erythrina edulis (Pajuro) seed protein: a new source of antioxidant peptides. Natural Product Communications 11: 1-6.
Kaczmarek, A., R. Cegielska-Radziejewska, T. Szablewski and J. Zabielski. 2015. TBARS and microbial growth predicative models of pork sausage stored at different temperature. Czech Journal of Food Science 33(4): 320-325.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009a. Changes in chemicalcomposition, physical properties and microstructure of duck egg as influenced bysalting. Food Chemistry 112(3): 560-569.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009b. Protein hydrolysate of saltedduck egg white as a substitute of phosphate and its effect on quality of pacific whiteshrimp (Litopenaeus vannamei). Journal of Food Science 74(8): 351-361.
Kruk, Z. A., H. Yun, D. L. Rutley, E. J. Lee, Y. J. Kim, and C. Jo. 2011. The effect of high pressure on microbial population, meat quality and sensory characteristics of chiken breast fillet. Food Control 22: 6-12.
Kumar, D., M. K. Chatli, R. Singh, and N. Mehta. 2016. Antioxidant and antimicrobialactivity of camel milk casein hydrolysates and its fractions. Small ruminant Research 139: 20-25.
Lee, Y., B. Ko, S. Min, and G. Hong. 2015. Effect of soy protein hydrolysates prepared by subcritical water processing on the physicochemical properties of pork patty during chilled storage. Korean Journal for Food Science of Animal Resources 35(4): 557-563.
Lemes, A. C., L. Sala, J. D. Ores, A. R. C. Braga, M. B. Egea, and K. F. Fernandes. 2016.A review of the latest advances in encrypted bioactive peptides from protein-rich waste. International Journal of Molecular Sciences 17(950): 1-24.
Liu, D. C., R. T. Tsau, Y. C. Lin, S. S. Jan, and F. J. Tan. 2009. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chemistry 117: 106-113.
Lombardi-Boccia, G., B. Martinez-Dominguez, and A. Aguzzi. 2002. Total heme and non-heme iron in raw and cooked meats. Journal of Food Science 67(5): 1738-1741.
Muhlisin, D. T. Utama, J. H. Lee, J. H. Choi, and K. L. Sung. 2016. Antioxidant enzymeactivity, iron content and lipid oxidation of raw and cooked meat of Korean native chickens and other poultry. Asian-Australasian Journal of Animal Sciences 29(5): 695-701.
Nieto, G., M. Castillo, Y. L. Xiong, D. Álvarez, and F. A. Payne. 2009. Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsionswith different fat concentration. Meat Science 83: 24-30.
O’Halloran, G. R., D. J. Troy, D. J. Buckley, and W. J. Reville. 1997. The role ofendogenous proteases in the tenderization of fast glycolysing muscle. Meat Science: 47: 187-210.
Park, E. Y., H. Imazu, Y. Matsumura, Y. Nakamura, and K. Sato. 2012. Effects of peptide fractions with different isoelectric points from wheat gluten hydrolysates on lipidoxidation in pork meat patties. Journal of Agricultural and Food Chemistry 60: 7483-7488.
Peng, X., S. Ruan, Y. Liu, L. Huang, and C. Zhang. 2018. The addition of hydrolyzed whey protein fractions to raw pork patties with subsequent chilled storage and its effecton oxidation and gel properties. CyTA-Journal of Food 16(1): 553-560.
Przybylski, R., L. Firdaous, G. Châtaigné, P. Dhulster, and N. Nedjar. 2016. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potentialapplication on meat as preservative. Food Chemistry 211: 306-313.
Qiao, L., X. Tang, and J. Dong. 2017. A feasibility quantification study of total volatilebasic nitrogen (TVB-N) content in duck meat for freshness evaluation. Food Chemistry 237: 1179-1185.
Quan, T. H., and S. Benjakul. 2019. Duck egg albumen: physicochemical and functionalproperties as affected by storage and processing. Journal of Food science andTechnology 56(3): 1104-1115.
Sbroggio, M. F., M. S. Montilha, V. R. G. Figueiredo, S. R. Georgetti, and L. E. Kurozawa. 2016. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Science and Technology 36(2): 1-7.
Seo, H. W., J. K. Seo, and H. S. Yang. 2016. Supplementation of pork patties with bovineplasma protein hydrolysates augments antioxidant properties and improves quality.Korean Journal for Food Science of Animal Resources 36(2): 198-205.
Shah, M. A., S. J. D. Bosco, and S. A. Mir. 2014. Plant extracts as natural antioxidnats in meat and meat products. Meat Science 98: 21-33.
Singh, B. P., S. Vij, S. Hati, D. Singh, P. Kumari, and J. Minij. 2015. Antimicrobial activity of bioactive peptides derived from fermentation of soy milk by Lactobacillus plantarum C2 against common foodborne pathogens. International Journal ofFermented Food 4: 91-99.
Sonklin, C., , N. Laohakunjit, and O. Kerdchoechuen. 2018. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ https://doi.org/10.7717/peerj.5337.
Suh, S., Y. E. Kim, D. Shin, and S. Ko. 2017. Effect of frozen-storage period on qualityof American sirloin and mackerel (Scomber japonicus). Food Science and Biotechnology 26(4): 1077-1084.
Sujiwo, J., D. Kim, and A. Jang. 2018. Relation among quality traits of chiken breat meat during cold storage: correlation between freshness traits and torrymeters values. Poultry Science 0: 1-8.
Tao, J., Y. Zhao, C. Chi, and B. Wang. 2018. Bioactive peptides from cartilage proteinhydrolysate of spotless smoothhound and their antioxidant activity in vitro. Marine Drugs https://doi.org/10.3390/md16040100
Valenzuela, A. B., and S. K. Nieto. 1996. Synthetic and natural antioxidants: food quality protectors. Grasas y Aceites 47(3): 186-196.
Vo, T. D., K. T. Pham, and D. Q. Ha. 2018. Recovery of proteolysates from salmon by-product: investigation of antioxidant activity, optimization of hydrolysis,determination of iron-binding activity and identification of bioactive peptides. The International Journal of Engineering and Science 7(9):18-30.
Wang, Y., F. Shen, and, H. Hatt. 2018. Evaluation of antioxidant activity of egg white hydrolysates and their application on color stability of pork meat slices. Advance Journal of Food Science and Technology 14(5): 148-154.
Xia, Y., F. Bamdad, M. Gänzle, and L. Chen. 2012. Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chemistry 134: 1509-1518.
Yang, J., C. Cui, W. Feng, H. Zhao, W. Wang, and K. Dong. 2017. Protein hydrolysates of salted duck egg white improve the quality of Jinga shrimp (Metapenaeus affinis). International Journal of Food Science and Technology 52(7): 1623-1631.
Zhang, L., J. Li, and K. Zhou. 2010. Chelating and radical scavenging activities of soyprotein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresource Technology 101: 2084-2089.
Zhou, K., C. Canning, and S. Sun. 2013. Effects of rice protein hydrolysates prepared by microbial proteases and ultrafiltration on free radicals and meat lipid oxidation. LWT-Food Science and Technology 50: 331-335.



Chapter 7
Arruda, M. S., F. O. Silva, A. S. Egito, T. M. S. Silva, J. L. Lima-Filho, A. L. F. Porto, and K. A. Moreira. 2012. New peptides obtained by hydrolysis of caseins from bovine milk by protease extracted from the latex Jacaratia corumbensis. LWT – Food Science and Technology 49: 73-79.
Bondi, M., A. Lauková, S. Niederhausern, P. Messi, and C. Papadopoulou. 2017. Natural preservatives to improve food quality and safety. Journal of Food Quality http://doi.org/10.1155/2017/1090932.
Chakrabarti, S., S. Guha, and K. Majumder.2018). Food-derived bioactive peptides inhuman health: challenges and opportunities. Nutrients http://doi:10.3390/nu10111738.
Cutter, C. N., and L. Hruska. 2000. Antimicrobial effect of herb extracts against Escherichia coli O157:H7, Listeria monocytogenes and Salmonella typhimurium associated with beef. Journal of Food Protectection 63 (5): 601-607.
Daliri, E. B., Oh, D. H. and Lee, B. H. (2017) Bioactive peptides. Foods 6 (32): 1-21.
Fu, C. W. 2016. Effects of desalinization and drying on the functional properties of salted duck egg white and its application to cooked sliced pork ham. Master thesis, National Chung Hsing University, Taichung, Taiwan.
Govaris, A., N. Solomakos, A. Pexara, and, P. S. Chatzopoulou. 2010. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. International Journal of Food Microbiology 137: 175-180.
Huang, J. J., J. S. Tsai, and B. S. Pan. 1999. Pickling time and electrodialysis affectsfunctional properties of salted duck egg white. Journal of Food Biochemistry 23: 607-618.
Hwang, C., Y. Chen, C. Luo, and W. Chiang. 2012. Antioxidant and antimicrobialactivities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. International Journal of Food Science & Technology 51: 681-689.
Kaemanee, T., S. Benjakul, and W. Visessanguan. 2009. Changes in chemical composition, physical properties and microstructure of duck egg as influenced by salting. Food Chemistry 112 (3): 560-569.
Kerry, J., J. Kerry, and D. Ledward. 2002. Meat processing: improving quality. Woodhead Publishing, Cambridge, England. pp. 262.
Lemes, A. C., L. Sala, J. D. Ores, A. R. C. Braga, M. B. Egea, and K. F. Fernandes. 2016. A review of the latest advances in encrypted bioactive peptides from protein-richwaste. International Journal of Molecular Sciences 17 (950): 1-24.
Marriott, N. G. and Gravani, R. B. (2006) Principles of Food Sanitation. Springer, USA. pp. 43-49.
Mine, Y., F. Ma, and S. Lauriau. 2004. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. Journal of Agricultural and Food Chemistry 52: 1088-1094.
Mudoh, M. F., S. Parveen, J. Schwarz, T. Rippen, and A. chaudhuri. 2014. The effects of storage temperature on the growth of Vibrio parahaemolyticus and organoleptic properties in oysters. Frontiers in Public Health 2: 1-7.
Northcutt, J. K., J. A. Cason, K. D., Ingram, D. P. Smith, R. J., Buhr, and D. L. Fletcher.2006. Broiler carcass bacterial counts after immersion chilling using either a low or high volume of water. Poultry Science 85: 1802-1806.
Oliveira, T. L. C., R. A. Soares, and, R. H. Piccoli. 2013. A Weibull model to describeantimicrobial kinetics of oregano and lemongrass essential oils against Salmonella Enteritidis in ground beef during refrigerated storage. Meat Science 93: 645-651.
Pellegrini, A., A. Hülsmeier, P. Hunziker, and U. Thomas. 2004. Proteolytic fragments of ovalbumin display antimicrobial activity. Biochimica et Biophysica Acta 1672: 76-85.
Sánchez, S., and A. Vázquez. 2017. Bioactive peptides: a review. Food Quality and Safety 1: 29-46.
Shelef, L. A., E. K. Jyothi, and M. A. Bulgarelli. 1984. Growth of enteropathogenic and spoilage bacteria in sage-containing broth and foods. Journal of Food Science 49: 737-740.
Strøm, M. B., Ø. Rekdal, and J. S. Svendsen. 2002. Antimicrobial activity of short arginine- and tryptophan-rich peptides. Journal of Peptide Science 8: 431-437.
Tang, W., H. Zhang, L. Wang, and H. Qian. 2013. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. European Food Research Technology 237: 591-600.
Thammasirilak, S., Y. Pukcothanung, S. Preecharran, S. Daduang, R. Patramanon, T.,Fukamizo, and T. Araki. 2010. Antimicrobial peptides derived from goose egg white lysozyme. Comparative Biochemistry and Physiology-Part C 151: 84-91.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊