跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙靜翎
研究生(外文):Ching-Ling Chao
論文名稱:隨機子空間辨識之操作模態分析參數選擇
論文名稱(外文):Parameters Selection in Stochastic Subspace Identification for Operational Modal Analysis
指導教授:陳任之
指導教授(外文):Yum-Ji Chan
口試委員:李聯旺吳建達
口試日期:2019-11-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:英文
論文頁數:74
中文關鍵詞:隨機子空間辨識操作模態分析正交投影洩漏
外文關鍵詞:SSIOMAProjectionLeakage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
操作模態分析法是模態測試的一個新趨勢,利用操作模態分析法可對機械結構的動態特性進行分析。數據驅動的隨機子空間辨識法(DD-SSI)是一種時域分析方法,用於辨識機械和結構中的模態參數。雖然數據驅動的隨機子空間辨識操作模態分析的運算法已被建立,但是仍欠缺其中的I值和N值兩個參數的選擇原則。I值和N值為Hankel矩陣的維度而在不同Hankel矩陣的維度下,會導致所辨識的模態參數發生變化。其中I值會影響投影結果和模態參數的選取,此外,計算模型的維度會隨著I值的變化而有所改變。
本研究之目標為找出適用於數據驅動的隨機子空間辨識法的I值和模型階數,以識別多輸出多自由度(MO-MDOF)模型的模態參數。確定模型階數的方法是利用circulant矩陣的特性來找出投影矩陣O的奇異值和奇異矩陣。然而,此種方法會導致頻域分析的洩漏問題,解決的方法為透過選擇合適的I值以避開洩漏的發生,可是此種方法難以在實際結構中應用。對於多輸出多自由度的系統來說,提取模態參數牽涉大量計算,而利用穩態圖可以快速的估計在後處理中所需使用的模型階數,也可利用將多輸出系統(MO)分解為多個單輸出(SO)系統進行辨識。通過優化這些計算工具,本論文示範兩個MO-MDOF結構的模態參數辨識。
Operational modal analysis (OMA) is currently one of the key technologies used in mechanical dynamics analysis. The data driven stochastic subspace identification (DD-SSI) is a time-domain method used to identify modal parameters in machinery and structures. Although the DD-SSI OMA procedure has now been established, guidelines selecting the user-defined variables do not yet exist. The variables I and N, the dimensions of Hankel matrix, lead to the variation of identified modal parameters. The variable I makes an impact on the projection process and modal parameters extraction. Besides, the model (computing) order is also followed by the variable I.
In this research, the aim is to determine the suitable value of I for identification of multiple-output (MO) with multiple degree of freedom (MDOF) system and the model (computing) order in identification. The model order is sought by applying the characteristics of circulant matrix to indicate the non-zero singular values and corresponding singular values of projection matrix O. It’s found that frequency-domain issues arise in DD-SSI OMA method which could be avoided by selecting particular values of I practically unfeasible. The use of stabilization diagram can make a quick estimation of the model order of post-processing progress. For MO-MDOF system, computation for extracting modal parameters would be considerable. Under limited computer memory, it is available to resolve the MO system response into multiple SO system responses in identification. By combining these optimization techniques, modal parameters of two MO-MDOF systems are identified.
摘要 i
Abstract ii
Table of Contents iii
List of Tables iv
List of Figures v
Abbreviations vi
Nomenclature vii
Chapter 1. Introduction 1
1.1. Background 1
1.2. Literature Review 2
1.3. Objectives 7
1.4. Methodology 8
1.5. Structure of Thesis 9
Chapter 2. Theory and Methods 10
2.1. Random Variables and Signal Processing Tools 10
2.2. Data Driven SSI-OMA 14
2.3. Singular Value Decomposition 20
Chapter 3. Analysis of the Process in Data Driven SSI-OMA 22
3.1. Order Determination of Post-Processing Progress 23
3.2. Identification Performance on Parameters 32
3.3. Analysis of the MO-MDOF block Hankel matrix 36
Chapter 4. Experimental Demonstration 42
4.1. Three-Storey Frame 43
4.2. 8-sector Integral Bladed Disc 51
Chapter 5. Conclusions and Future Prospects 57
5.1. Conclusions 57
5.2. Future prospects 60
References 61
Appendix A. Derivation 65
A.1. Derivation of Matrices F_1 and F_2 Being Circulant 65
A.2. Derivation of T_pp for MO-SDOF system 67
Appendix B. Equipment 70
[1]D. J. Ewins, Modal Testing: Theory, Practice and Application, 2nd Edition. England, Wiley, 2000.
[2]L.Zhang, R.Brincker, and P.Anderse, “An Overview of Major Developments and Issues in Modal Identification,” in 1st Int. Modal Analysis Conf., Orlando, 2005, pp. 1–8.
[3]F.Magalhães, “Operational Modal Analysis for Testing and Monitoring of Bridges and Special Structures,” Ph.D. thesis, Dept. Civil Engineering., University of Porto., Portugal, 2010.
[4]B.Peeters and G.DeRoeck, “Stochastic System Identification for Operational Modal Analysis: A Review,” J. Dyn. Syst. Meas. Control., vol. 123, no. 4, pp. 659-667, 2001.
[5]E.Orlowitz and A.Brandt, “Comparison of Experimental and Operational Modal Analysis on a Laboratory Test Plate,” Meas. J. Int. Meas. Confed., vol. 102, pp. 121–130, 2017.
[6]H. G. Sanchez, F. R. Nova, and O. A. Gonzalez-Estrada, “Implementation of the Operational Modal Analysis Technique in a Power Transmission Shaft,” J. Phys. Conf. Ser., vol. 1247, pp. 1-9, 2019.
[7]J. Grosel, W. Sawicki and W. Pakos, “Application of Classical and Operational Modal Analysis for Examination of Engineering Structures,” Procedia Eng., vol. 91, pp. 136–141, 2014.
[8]N.Møller, S.Gade, and H.Herlufsen, “Stochastic Subspace Identification Technique in Operational Modal Analysis,” in 1st IOMAC., Denmark, 2005.
[9]C. Xiong, H. Lu, and J. Zhu, “Operational Modal Analysis of Bridge Structures with Data from GNSS Accelerometer Measurements,” Sensors (Switzerland)., vol. 17, no. 3, pp. 1–20, 2017.
[10]L. Hermans and H. van der Auweraer, “Modal Testing and Analysis of Structures under Operational Conditions: Industrial Applications,” Mech. Syst. Signal Process., vol. 13, no. 2, pp. 193–216, 1999.
[11]I. Zaghbani and V. Songmene, “Estimation of Machine-tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis,” Int. J. Mach. Tools Manuf., vol. 49, no. 12–13, pp. 947–957, 2009.
[12]B. Li, H. Cai, X. Mao, J. Huang, and B. Luo, “Estimation of CNC Machine-tool Dynamic Parameters Based on Random Cutting Excitation Through Operational Modal Analysis,” Int. J. Mach. Tools Manuf., vol. 71, pp. 26–40, 2013.
[13]M. Allen, R. L. Mayes and D. J. R. Editors, “Operational Modal Analysis on a Modified Helicopter,” in 29th Int. Modal Analysis Conf., Houston, 2011, pp. 265-274.
[14]M. Tarpø, P. Olsen, M. Juul, S. Amador, T. Friis, and R. Brincker, “Statistical Error Reduction for Correlation-driven Operational Modal Analysis,” in 25th ISMA-Int. Conf. Noise Vib.. Eng., Brussel, 2018, pp. 2851–2857.
[15]E. Neu, F. Janser, A. A.Khatibi, and A. C.Orifici, “Fully Automated Operational Modal Analysis Using Multi-stage Clustering,” Mech. Syst. Signal Process., vol. 84, pp. 308–323, 2017.
[16]R. Brincker, L. Zhang, and P. Andersen, “Modal Identification from Ambient Responses Using Frequency Domain Decomposition,” in 18th Int. Modal Analysis Conf., Houston, 2000, pp. 625–630.
[17]B. Peeters, H. Van Der Auweraer, P. Guillaume, and J. Leuridan, “The PolyMAX Frequency-domain Method: A New Standard for Modal Parameter Estimation?,” Shock Vib., vol. 11, no. 3–4, pp. 395–409, 2004.
[18]B. Rune and C. Ventura, Introduction to Operational Modal Analysis. England, Wiley, 2015.
[19]J. N.Juang, Applied System Identification. United States of America, Prentice Hall, 1994.
[20]S. R. Ibrahim and E. C. Mikulcik, “A Method for the Direct Identification of Vibration Parameters from the Free Response,” Shock Vib. Bull., vol. 4, pp. 183–198, 1977.
[21]J. N. Juang and R. S. Pappa, “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid. Control. Dyn., vol. 8, no. 5, pp. 620–627, 1985.
[22]P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems : Theory, Implementation, Applications. Boston, Kluwer Academic Publishers, 1996.
[23]P. Andersen, “Identification of Civil Engineering Structures Using Vector ARMA Models,” Ph. D. thesis, Mechanical Engineering., Aalborg University., Denmark, 1997.
[24]P. Guillaume, P. Verboven, and S. Vanlanduit, “Frequency Domain Maximum Lkelihood Identification of Modal Parameters with Confidence Intervals,” in 23rd ISMA -Int. Conf. Noise Vib. Eng., Brussel, 2014, pp. 955–962.
[25]B. Peeters, “System Identification and Damage Detection in Civil Engineering,” Ph. D. thesis, Katholieke Universiteit Leuven.,Belgium, 2002.
[26]B. Peeters, H. Van Der Auweraer, F. Vanhollebeke, and P. Guillaume, “Operational Modal Analysis for Estimating the Dynamic Properties of a Stadium Structure During a Football Game,” Shock Vib., vol. 14, no. 4, pp. 283–303, 2007.
[27]B. Peeters and G. DeRoeck, “Reference-based Stochastic Subspace Identification for Output-Only Modal Analysis,” Mech. Syst. Signal Process., vol. 13, pp. 855–878, 1999.
[28]J. G. Beliveau, “Stochastic Subspace Techniques Applied To Parameter Identification of Civil Engineering Structures,” Can. J. Civ. Eng., vol. 14, no. 1, pp. 7–18, 1987.
[29]J.-W.Huang, “Apply MEMS Accelerometer in Operation Modal Analysis of Machine Tools,” M.S. thesis, Dept. Mechanical engineering, National Chung Hsing University., Taiwan, 2016.
[30]C. Priori, M. DeAngelis, and R. Betti, “On the Selection of User-defined parameters in Data-driven Stochastic Subspace Identification,” Mech. Syst. Signal Process., vol. 100, pp. 501–523, 2018.
[31]E. Reynders and G. DeRoeck, “Reference-based Combined Deterministic-stochastic Subspace Identification for Experimental and Operational Modal Analysis,” Mech. Syst. Signal Process., vol. 22, no. 3, pp. 617–637, 2008.
[32]F. Magalhães, Á. Cunha, and E. Caetano, “Online Automatic Identification of the Modal Parameters of a Long Span Arch Bridge,” Mech. Syst. Signal Process., vol. 23, no. 2, pp. 316–329, 2009.
[33]C.-Y.Tsai, “Robustness and Parameter Selection in Stochastic Subspace Identification,” M.S. thesis, Dept. Mechanical engineering, National Chung Hsing University., Taiwan, 2018.
[34]G. Zhang, B. Tang, and G. Tang, “An Improved Stochastic Subspace identification for operational modal analysis,” Measurement, vol. 45, pp. 1246–1256, 2012.
[35]L. N. Trefethen and D. Bau, Numerical Linear Algebra. Philadelphia, SIAM, 1997.
[36]C. Wu, H. Liu, X. Qin, and J.Wang, “Stabilization Diagrams to Distinguish Physical Modes and Spurious Modes for Structural Parameter Identification,” J. Vibroengineering, vol. 19, no. 4, pp. 2777–2794, 2017.
[37]B. DeMoor, M. Moonen, L. Vandenberghe, and J. Vandewalle, “A Geometrical Approach for the Identification of State Space Models with Singular Value Decomposition,” Speech, Signal Process., vol. 4, pp. 2244–2247, 1988.
[38]F. J. Cara, J. Juan, E. Alarcón, E. Reynders, and G. DeRoeck, “Modal Contribution and State Space Order Selection in Operational Modal Analysis,” Mech. Syst. Signal Process., vol. 38, no. 2, pp. 276–298, 2013.
[39]S. L. J. Hu, X. Bao, and H. Li, “Model Order Determination and Noise Removal for Modal Parameter Estimation,” Mech. Syst. Signal Process., vol. 24, no. 6, pp. 1605–1620, 2010.
[40]C. J.Wild and G. A. F. Seber, “Chapter 14-Time Series,” in Chance Encounters: A First Course in Data Analysis and Inference, 1st ed. England, Wiley, 1999.
[41]D. E. Newland, An Introduction to Random Vibrations, Spectral & Wavelet Analysis, 3rd edition, United States, Prentice Hall, 2005.
[42]William T. Thomson, Theory of Vibration with Applications, 2nd edition. Australia, George Allen & Unwin, 1984.
[43]A. Brandt, Noise and Vibration Analysis Signal Analysis and Experimental Procesures. 1st editoion, England, Wiley, 2011.
[44]P. D. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A method Based on Time Averaging over Short, Modified Periodograms,” IEEE Trans. Audio Electroacoust., vol. 9, no. 2, pp. 70-73, 2017.
[45]J. Lau, J. Lanslots, B. Peeters, and H.Van der Auweraer, “Automatic Modal Analysis: Reality or Myth?,” in 25th Int. Modal Analysis Conf., Houston, 2007, pp. 103–115.
[46]S. R. Ibrahim, J. C. Asmussen, and R. Brincker, “Modal Parameter Identification from Responses of General Unknown Random Inputs,” Fracture and Dynamics, vol. R9544, no. 72, pp. 70-73, 1995.
[47]E.Benhamou, “A Few Properties of Sample Variance,” SSRN Electron. J., vol. 33, no. 20, pp. 57-62, 2014.
[48]P. S.Varoto and L. P. R.DeOliveira, “On the Force Drop-off Phenomenon in Shaker Testing in Experimental Modal Analysis,” Shock Vib., vol. 9, no. 4-5, pp. 165–175, 2002.
[49]I. Sever, “Experimental Validation of Turbomachinery Blade Vibration Predictions,” Ph. D. thesis, Dept. Mechanical engineering., Imperial College London., 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top