跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/06 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉燕
研究生(外文):Yen Liu
論文名稱:應用在奈米金結構生醫感測器之電化學阻抗等效電路模型比較研究
論文名稱(外文):Comparative research on equivalent electrochemical impedance circuit models for nanostructured gold biosensor
指導教授:吳嘉哲
口試委員:黃朱瑜鍾官榮
口試日期:2019-10-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:58
中文關鍵詞:電化學阻抗譜類胰蛋白酶等效電路模型均方根誤差
外文關鍵詞:electrochemical impedance spectroscopytryptaseequivalent circuit modelsroot-mean-square error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用電化學阻抗方法(EIS)來檢測在奈米結構生醫晶片上的過敏反應標記物-類胰蛋白酶(Tryptase)的濃度,這項研究提出了一種快速,準確的疾病生物標記物檢測方法。將含有金奈米顆粒結構的生醫晶片以自我組裝層(SAM)技術增加官能基的均勻性,然後接附EDC、NHS、類胰蛋白酶抗體、BSA等藥品來測量類胰蛋白酶的濃度。本研究探討了奈米結構生醫晶片接附類胰蛋白酶前後的阻抗與交流電頻率的關係。本研究以三種等效電路模型來擬合量測的阻抗值,並以均方根誤差(RMSE)比較擬合曲線和原始數據之間的差異。透過電化學阻抗方法測量1至50ng / ml的類胰蛋白酶濃度,可以得到y = 1096x + 18370的線性回歸線和R2為0.9932。本研究建立以奈米結構生醫晶片的電化學阻抗方法將進一步用於量化血液樣本中類胰蛋白酶的濃度,以判斷過敏反應的程度。
In this thesis, electrochemical impedance spectroscopy (EIS) was used to quantify the concentration of tryptase, an allergic reaction marker, on a nanostructured biochip. This study propose a fast and accurate detection method for disease biomarker. The nanostructured biochip with gold nanoparticles was coated with a self-assembled layer (SAM) to increase the uniformity of functional groups and followed by EDC, NHS, tryptase antibody and BSA to measure the concentration of tryptase. The impedance of nanostructured biochip in dependence of the AC potentials frequency was studied before and after tryptase attachment. The raw data of measured impedance was fitted by three equivalent circuit models. Root-mean-square error (RMSE) was used to compare the differences between fitting curves and raw data. The concentration of tryptase from 1 to 50ng/ml was measured by EIS with a linear regression line of y = 1096x + 18370 with R2 of 0.9932. The established EIS measurements with nanostructured biochips will be used for further quantifying of tryptase concentration for blood samples to judge the degree of allergic reaction.
目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1研究動機與背景 1
1.2文獻回顧 3
1.2.1過敏機制 3
1.2.2類胰蛋白酶(Tryptase) 6
1.2.3檢測方法 8
1.2.4等效電路模型 11
1.3研究目標 13
1.4論文架構 13
第二章 實驗檢測原理 14
2.1基板生物相容性 14
2.1.1自我組裝薄膜修飾 14
2.1.2 EDC/NHS原理 16
2.2抗體抗原之間專一性 17
2.3電化學相關理論 18
2.3.1電路阻抗分析 18
2.3.2質傳反應 23
2.3.3電雙層反應 25
2.3.4電極檢測 26
第三章 實驗檢測方法 27
3.1實驗藥品 27
3.1.1實驗藥品來源 27
3.1.2實驗藥品製備 27
3.2三極式奈米金生醫檢測晶片 28
3.2.1奈米半球PC基板製作 28
3.2.2奈米半球PC基板濺鍍 29
3.2.3生醫檢測晶片點膠封裝 29
3.3晶片表面修飾方法 30
3.3.1自我組裝薄膜修飾 30
3.3.2抗體修飾 31
3.4電化學阻抗檢測 33
3.4.1三極式電極檢測方法 33
3.4.2生醫檢測晶片量測 33
3.4.3 EC-LAB軟體 34
3.5等效電路之奈氏圖擬合評估 35
3.5.1 Randles modal修正等效電路模型 35
3.5.2 Wu等人提出之等效電路模型 36
3.5.3本實驗使用之等效電路模型 37
3.5.4 RMSE評估 38
第四章 研究結果 39
4.1奈米金電極與抗原專一性 39
4.1.1奈米金電極表面判斷 39
4.1.2抗原專一性確認 41
4.2等效電路模型分析 42
4.2.1原始數據和擬合分析之比較 42
4.3類胰蛋白酶之電化學阻抗分析方法 48
4.3.1 類胰蛋白酶標準曲線 48
第五章 結論及未來展望 52
5.1結論 52
5.2未來展望 53
參考文獻 54
[1]Hayashi, T., & Hara, M. (2011). Nonfouling self-assembled monolayers: mechanisms underlying protein and cell resistance. Current Physical Chemistry, 1(2), 90-98.
[2]Lieberman, P. (2002). Anaphylactic reactions during surgical and medical procedures. Journal of Allergy and Clinical Immunology, 110(2), S64-S69.
[3]Dewachter, P., Mouton-Faivre, C., & Emala, C. W. (2009). Anaphylaxis and AnesthesiaControversies and New Insights. Anesthesiology: The Journal of the American Society of Anesthesiologists, 111(5), 1141-1150.
[4]Schwartz, L. B., Yunginger, J. W., Miller, J., Bokhari, R., & Dull, D. (1989). Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. The Journal of clinical investigation, 83(5), 1551-1555.
[5]Aydin, S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72, 4-15.
[6]Holgate, S. T. (1999). The epidemic of allergy and asthma. Nature, 402(6760supp), 2.
[7]Marshall, J. S., Warrington, R., Watson, W., & Kim, H. L. (2018). An introduction to immunology and immunopathology. Allergy, Asthma & Clinical Immunology, 14(2), 1-10.
[8]Rajan, T. V. (2003). The Gell–Coombs classification of hypersensitivity reactions: a re-interpretation. TRENDS in Immunology, 24(7), 376-379.
[9]Nel, L., & Eren, E. (2011). Peri‐operative anaphylaxis. British journal of clinical pharmacology, 71(5), 647-658.
[10]Nowak, R., Farrar, J. R., Brenner, B. E., Lewis, L., Silverman, R. A., Emerman, C., ... & Singer, E. (2013). Customizing anaphylaxis guidelines for emergency medicine. The Journal of emergency medicine, 45(2), 299-306.
[11]Antunes, J., Kochuyt, A. M., & Ceuppens, J. L. (2014). Perioperative allergic reactions: experience in a Flemish referral centre. Allergologia et immunopathologia, 42(4), 348-354.
[12]Mertes, P. M., Demoly, P., & Malinovsky, J. M. (2012). Hypersensitivity reactions in the anesthesia setting/allergic reactions to anesthetics. Current opinion in allergy and clinical immunology, 12(4), 361-368.
[13]Ewan, P. W., Dugue, P., Mirakian, R., Dixon, T. A., Harper, J. N., & Nasser, S. M. (2010). BSACI guidelines for the investigation of suspected anaphylaxis during general anaesthesia. Clinical & Experimental Allergy, 40(1), 15-31.
[14]Aalberse, R. C., Kleine Budde, I., Mulder, M., Stapel, S. O., Paulij, W., Leynadier, F., & Hollmann, M. W. (2011). Differentiating the cellular and humoral components of neuromuscular blocking agent-induced anaphylactic reactions in patients undergoing anaesthesia. British journal of anaesthesia, 106(5), 665-674.
[15]Tacquard, C., Laroche, D., Stenger, R., Mariotte, D., Uring-Lambert, B., De Blay, F., ... & Mertes, P. M. (2016). Diagnostic procedure after an immediate hypersensitivity reaction in the operating room. La Presse Médicale, 45(9), 784-790.
[16]Petrișor, C., Sfichi, M., Gherman, N., Cociș, M., & Hagău, N. (2016). The Performance of Flowcytometry-Assisted Basophil Activation Tests in the Diagnosis of Drug-Induced Immediate-Type Hypersensitivity Reactions. Proof and Concepts in Rapid Diagnostic Tests and Technologies, 51.
[17]Payne, V., & Kam, P. C. A. (2004). Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia, 59(7), 695-703.
[18]Ebo, D. G., Fisher, M. M., Hagendorens, M. M., Bridts, C. H., & Stevens, W. J. (2007). Anaphylaxis during anaesthesia: diagnostic approach. Allergy, 62(5), 471-487.
[19]Caughey, G. H. (2006). Tryptase genetics and anaphylaxis. Journal of allergy and clinical immunology, 117(6), 1411-1414.
[20]Müller, U. R. (2009). Elevated baseline serum tryptase, mastocytosis and anaphylaxis. Clinical & Experimental Allergy, 39(5), 620-622.
[21]Blank, U., & Rivera, J. (2004). The ins and outs of IgE-dependent mast-cell exocytosis. Trends in immunology, 25(5), 266-273.
[22]Garvey, L. H., Bech, B., Mosbech, H., Krøigaard, M., Belhage, B., Husum, B., & Poulsen, L. K. (2010). Effect of general anesthesia and orthopedic surgery on serum tryptase. Anesthesiology: The Journal of the American Society of Anesthesiologists, 112(5), 1184-1189.
[23]Mahmood, T., & Yang, P. C. (2012). Western blot: technique, theory, and trouble shooting. North American journal of medical sciences, 4(9), 429.
[24]Jha, S. N. (2015). Rapid Detection of Food Adulterants and Contaminants: Theory and Practice. Academic Press.
[25]Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. (1999). Ultrasensitive chemical analysis by Raman spectroscopy. Chemical reviews, 99(10), 2957-2976.
[26]Johansson, S. G. O. (2004). ImmunoCAP® Specific IgE test: an objective tool for research and routine allergy diagnosis. Expert review of molecular diagnostics, 4(3), 273-279.
[27]Chen, Y., Yang, Y., & Tu, Y. (2013). An electrochemical impedimetric immunosensor for ultrasensitive determination of ketamine hydrochloride. Sensors and Actuators B: Chemical, 183, 150-156.
[28]Couto, R. A., Gonçalves, L. M., Góes, M. S., Rodrigues, C. M., Quinaz, M. B., & Rodrigues, J. A. (2017). SAM-Based Immunosensor for the Analysis of Thyroxine (T4). Journal of The Electrochemical Society, 164(4), B103-B106.
[29]Bard, A. J., & Faulkner, L. R. (2001). Fundamentals and applications. Electrochemical Methods, 2, 482.
[30]Wu, C. C., Lin, C. H., & Wang, W. S. (2009). Development of an enrofloxacin immunosensor based on label-free electrochemical impedance spectroscopy. Talanta, 79(1), 62-67.
[31]Nikolaev, K., Ermakov, S., Ermolenko, Y., Averyaskina, E., Offenhäusser, A., & Mourzina, Y. (2015). A novel bioelectrochemical interface based on in situ synthesis of gold nanostructures on electrode surfaces and surface activation by Meerwein''s salt. A bioelectrochemical sensor for glucose determination. Bioelectrochemistry, 105, 34-43.
[32]Metkar, S. K., & Girigoswami, K. (2019). Diagnostic biosensors in medicine-A review. Biocatalysis and agricultural biotechnology, 17, 271-283.
[33]Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors-sensor principles and architectures. Sensors, 8(3), 1400-1458.
[34]Jin, W., & Maduraiveeran, G. (2017). Electrochemical detection of chemical pollutants based on gold nanomaterials. Trends in Environmental Analytical Chemistry, 14, 28-36.
[35]Ferretti, S., Paynter, S., Russell, D. A., Sapsford, K. E., & Richardson, D. J. (2000). Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces. TrAC Trends in Analytical Chemistry, 19(9), 530-540.
[36]Gooding, J. J., & Hibbert, D. B. (1999). The application of alkanethiol self-assembled monolayers to enzyme electrodes. TrAC Trends in Analytical Chemistry, 18(8), 525-533.
[37]Bart, J., Tiggelaar, R., Yang, M., Schlautmann, S., Zuilhof, H., & Gardeniers, H. (2009). Room-temperature intermediate layer bonding for microfluidic devices. Lab on a Chip, 9(24), 3481-3488.
[38]Foxman, B. (2010). Chapter 5 - A Primer of Molecular Biology. Molecular tools and infectious disease epidemiology. Academic Press.
[39]Kelly, R. S. (2009). Analytical electrochemistry: the basic concepts. Analytical Sciences Digital Library.
[40]胡啟章(2002) 。電化學原理與方法。五南圖書出版股份有限公司。
[41]Franklin, R. K. (2010). In vivo Electrochemical Sensors.
[42]Hammond, J. L., Formisano, N., Estrela, P., Carrara, S., & Tkac, J. (2016). Electrochemical biosensors and nanobiosensors. Essays in biochemistry, 60(1), 69-80.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊