|
[1]BRIEF IL. Internet of things. 2019. [2]Sheng J, Hu J, Teng X, Wang B, Pan X. Computation Offloading Strategy in Mobile Edge Computing. Information. 2019;10(6):191. [3]Mao Y, You C, Zhang J, Huang K, Letaief KB. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials. 2017;19(4):2322-2358. [4]Yang L, Zhang H, Li M, Guo J, Ji H. Mobile edge computing empowered energy efficient task offloading in 5G. IEEE Transactions on Vehicular Technology. 2018;67(7):6398-6409. [5]Guo H, Liu J, Zhang J. Efficient computation offloading for multi-access edge computing in 5G HetNets. Paper presented at: 2018 IEEE International Conference on Communications (ICC), 2018. [6]Li S, Tao Y, Qin X, Liu L, Zhang Z, Zhang P. Energy-aware mobile edge computation offloading for IoT over heterogenous networks. IEEE Access. 2019;7:13092-13105. [7]Sabella D, Vaillant A, Kuure P, Rauschenbach U, Giust F. Mobile-edge computing architecture: The role of MEC in the Internet of Things. IEEE Consumer Electronics Magazine. 2016;5(4):84-91. [8]Imran MA, Sambo YA, Abbasi QH. Enabling 5G Communication Systems to Support Vertical Industries. Wiley Online Library; 2019. [9]Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials. 2017;19(3):1628-1656. [10]Chen Z, Cheng S. Computation Offloading Algorithms in Mobile Edge Computing System: A Survey. Paper presented at: International Conference of Pioneering Computer Scientists, Engineers and Educators, 2019. [11]Zhang W, Wen Y, Guan K, Kilper D, Luo H, Wu DO. Energy-optimal mobile cloud computing under stochastic wireless channel. IEEE Transactions on Wireless Communications. 2013;12(9):4569-4581. [12]Mao Y, Zhang J, Letaief KB. Joint task offloading scheduling and transmit power allocation for mobile-edge computing systems. Paper presented at: 2017 IEEE wireless communications and networking conference (WCNC), 2017. [13]Guo J, Song Z, Cui Y, Liu Z, Ji Y. Energy-efficient resource allocation for multi-user mobile edge computing. Paper presented at: GLOBECOM 2017-2017 IEEE Global Communications Conference, 2017. [14]Yang L, Cao J, Cheng H, Ji Y. Multi-user computation partitioning for latency sensitive mobile cloud applications. IEEE Transactions on Computers. 2014;64(8):2253-2266. [15]Pham Q-V, Leanh T, Tran NH, Park BJ, Hong CS. Decentralized computation offloading and resource allocation for mobile-edge computing: A matching game approach. IEEE Access. 2018;6:75868-75885. [16]Huynh LN, Pham Q-V, Nguyen QD, Pham X-Q, Nguyen V, Huh E-N. Energy-Efficient Computation Offloading with Multi-MEC Servers in 5G Two-Tier Heterogeneous Networks. Paper presented at: International Conference on Ubiquitous Information Management and Communication, 2019. [17]Lemieux N, Zhao M. Small Cells, Big Impact: Designing Power Soutions for 5G Applications.http://www.ti.com/lit/wp/slyy166/slyy166.pdf?ts=1588842702480. Published 2019. Accessed 26-Jun, 2019. [18]Zhang J, Guo H, Liu J. Energy-Aware Task Offloading for Ultra-Dense Edge Computing. Paper presented at: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2018. [19] X. Chen, L. Jiao, W. Li, and X. Fu, "Efficient multi-user computation offloading for mobile-edge cloud computing," IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795-2808, 2015.
|