[1] Kashkoush, M., & Avigad, G. (2018, September). A Decision Support System for Automated Mushroom Harvesting. In Proceedings of SAI Intelligent Systems Conference (pp. 1178-1184). Springer, Cham.
[2] 鄭燮(民57)。不同成熟度採收洋菇對產量之影響。中國園藝,3&4,177-187。
[3] 邱相文、石信德、呂昀陞(民108)。菇類栽植盛盤自動化上下架系統之開發。菇類智慧化生產與農場經營管理研討會專刊:農業試驗所特刊,216,53-60。
[4] Tillett, R. D., & Batchelor, B. G. (1991). An algorithm for locating mushrooms in a growing bed. Computers and electronics in agriculture, 6(3), 191-200.
[5] Reed, J. N., & Tillett, R. D. (1994). Initial experiments in robotic mushroom harvesting. Mechatronics, 4(3), 265-279.
[6] Reed, J. N., Miles, S. J., Butler, J., Baldwin, M., & Noble, R. (2001). AE—Automation and emerging technologies: Automatic mushroom harvester development. Journal of Agricultural Engineering Research, 78(1), 15-23.
[7] Rowley, J. H. (2009). Developing flexible automation for mushroom harvesting (Agaricus bisporus)(Doctoral dissertation). University of Warwick.
[8] Masoudian, A.(2013). Computer vision algorithms for an automated harvester(Master''s thesis). University of Western Ontario.
[9] Rapila, T., Kantola, J., & Rapila, T. (2011). U.S. Patent No. 8,033,087. Washington, DC: U.S. Patent and Trademark Office.
[10] Janssen, J. J., Van Nunen, J. J., & Giebels, M. M. (1995). U.S. Patent
No. 5,471,827. Washington, DC: U.S. Patent and Trademark Office.
[11] Russell, T. A., & Wheeler, G. C. (1993). U.S. Patent No. 5,185,989. Washington, DC: U.S. Patent and Trademark Office.
[12] Li, B., Lecourt, J., & Bishop, G. (2018). Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review. Plants, 7(1), 3.
[13] Tsai, S. Y., Wu, T. P., Huang, S. J., & Mau, J. L. (2007). Nonvolatile taste components of Agaricus bisporus harvested at different stages of maturity. Food Chemistry, 103(4), 1457-1464.
[14] Taghizadeh, M., Gowen, A. A., & O’Donnell, C. P. (2011). The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Computers and electronics in agriculture, 77(1), 74-80.
[15] Qin, J., Chao, K., Kim, M. S., Lu, R., & Burks, T. F. (2013). Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering, 118(2), 157-171.
[16] 吳柏輝(2019)。基於機器學習對於高光譜檢測水果甜度研究(碩士論文)。國立雲林科技大學。[17] Zou, S., Tseng, Y. C., Zare, A., Rowland, D. L., Tillman, B. L., & Yoon, S. C. (2019). Peanut maturity classification using hyperspectral imagery. Biosystems Engineering, 188, 165-177.
[18] Qiao, S., Wang, Q., Zhang, J., & Pei, Z. (2020). Detection and Classification of Early Decay on Blueberry Based on Improved Deep Residual 3D Convolutional Neural Network in Hyperspectral Images. Scientific Programming, 2020.
[19] Li, X., Wei, Y., Xu, J., Feng, X., Wu, F., Zhou, R., ... & He, Y. (2018). SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biology and Technology, 143, 112-118.
[20] Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
[21] Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., & dos Reis Alves, S. F. (2017). Artificial neural network architectures and training processes. Springer, Cham.
[22] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
[23] Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6), 183-197.
[24] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
[25] Jiongnima(民107年1月21日)。實例分割模型Mask R-CNN詳解:從R-CNN,Fast R-CNN,Faster R-CNN再到Mask R-CNN【部落格文字資料】。取自https://blog.csdn.net/jiongnima/article/details/79094159
[26] 蕈菌的構造【部落格圖形資料】。取自http://learn.foodmate.net/class/study/point_part?block_id=109
[27] 羅榮豪(2013)。添加營養劑對洋菇產量的影響(碩士論文) 。國立中興大學。[28] Waleed Abdulla(2018, Mar 20). Splash of Color: Instance Segmentation with Mask R-CNN and TensorFlow [Web blog message]. Retrieved from https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
[29] Matterport(2018, March 20). Mask_RCNN [Web blog message]. Retrieved from https://github.com/matterport/Mask_RCNN