跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.248) 您好!臺灣時間:2023/01/28 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧彥齊
研究生(外文):Yen-Chi Lu
論文名稱:金屬玻璃薄膜整合高分子基板作為應變感測器之研究
論文名稱(外文):Study of metallic glass thin film integrated with Polymer substrate as strain sensor
指導教授:蔡燿全蔡燿全引用關係
指導教授(外文):Yao-Chuan Tsai
口試委員:戴慶良施博仁吳靖宙黃承俊
口試委員(外文):Ching-Liang DaiPo-Jen ShihChing-Chou WuCheng-Chun Huang
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:55
中文關鍵詞:金屬玻璃薄膜高分子基板濺鍍技術應變感測器鋯基金屬玻璃
外文關鍵詞:Metallic glass thin filmPolymer substrateSputtering techniqueStrain sensorZr-based metallic glass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出鋯基金屬玻璃薄膜與聚碳酸脂、聚二甲基矽氧烷高分子基板整合製作應變感測器之研究,金屬玻璃薄膜擁有良好的機械特性,具有高強度、高韌性及高黏著性,且容易沉積於高分子基板上。本研究控制不同的靶材與試片間距離控制鋯基金屬玻璃薄膜在濺鍍的過程的溫度以及濺鍍效率,最佳的沉積速率為20 nm/min,透過對於溫度的控制,高分子基板不會達到玻璃轉換溫度使基板軟化導致製作失敗。本研究以兩種高分子材料作為感測器基板製作應變感測器,分別為PC高分子基板之可撓性薄膜應變感測器與PDMS高分子基板之可拉伸薄膜應變感測器,其中由PC高分子與鋯基金屬玻璃薄膜及銅金屬薄膜所製造之應變感測器在應變電阻關係實驗中,鋯基金屬玻璃薄膜有更高的應變係數,經過計算達到3.4,約為銅金屬的2.5倍;由穩定性實驗得知,鋯基金屬玻璃擁有良好的穩定性以及響應時間短等優點;溫度效應實驗得知鋯基金屬玻璃薄膜擁有較低之電阻溫度係數,達到8×10-6oC-1,表示在溫差變化大的環境下,鋯基金屬玻璃仍然可以保持量測應變的準確性。接著為PDMS高分子與鋯基金屬玻璃薄膜利用預拉伸的方式所製造之應變感測器,在拉伸極限實驗中得知,在拉伸應變高於6%後,電阻值過高且無法準確量測應變所造成之電阻的改變;當應變值控制在預拉伸應變值的80%時可以進行有效的應變量測,由3種預拉伸的應變電阻關係實驗可知在應變值0%至3%之間,雖然裂紋間隙之間距離增加,但側向應變造成之壓縮,使裂紋間隙有額外的接觸,經過計算後應變係數約為275,在應變值3%至4.8%之間,側向應變無法給予應變感測器更多的接觸,使電阻值上升的幅度提高,使應變係數達到340;由穩定性實驗可知,利用預拉伸方式所製造的鋯基金屬玻璃薄膜應變感測器在量測持續的應變時,有良好的穩定性,且當應變值改變時也能有即時的響應。本研究成功地將金屬玻璃薄膜與高分子基板整合製造更高應變極限的應變感測器。
In this work, the metallic glass thin film was proposed to integrate with the Polycarbonate (PC) and Polydimethylsiloxane (PDMS) polymer substrate for manufacturing the strain sensors. The mechanical properties of the metallic glass thin film are high strength, high viscosity, high adhesion and easy to deposit on polymer substrate by the sputtering process. In the sputtering process, the distance between sample and target was controlled for depositing Zr-based based metallic glass on the polymer substrate and the best deposition rate of 20 nm/min was achieved. If the temperature of sputtering process is higher than the glass transition temperature of the polymer substrates, the polymer substrate would become soft. Therefore, the temperature control is important for avoiding the polymer substrate become soft during the sputtering processes. In this study, two types of polymer materials were used as the strain sensor substrate, the flexible thin film strain sensor of PC polymer substrate and the stretchable thin film strain sensor of PDMS polymer substrate. For the PC substrate strain gauge, the thin film strain sensor were made by Zr-based metallic glass and copper, respectively. The strain-resistance measurement shows that the Zr-based metallic glass thin film strain sensor has the higher gauge factor than the copper thin film strain sensor. The gauge factor of Zr-based metallic glass thin film strain sensor is 3.4, which is 2.5 times higher than it of the copper thin film strain sensor. According to the stability experiment, Zr-based thin film strain gauge has the advantages of good stability and short response time. The temperature effect experiment shows that Zr-based metallic glass thin film strain gauge has the lower temperature coefficient of resistance reaching to 8×10-6. For the PDMS substrate strain gauge, the stretchable Zr-based metallic glass thin film strain sensor made by the pre-stretch process was proposed. The tensile limitation measurement result shows that, if the tensile strain is higher than 6%, the response resistance is too high and can not measure the change of resistance during applied strain accurately. According to the tensile limitation results, the pre-stretch process of Zr-based metallic glass thin film strain sensor was controlled below 6%, and the application strain range was set the amount at 80% of pre-stretch. The strain-resistance relationship results show three kinds of pre-stretch strain sensor, 2%, 4%, 6%, respectively. When the tensile strain controlled in 0% to 3%, although the crack gap distance was increase, the compression by lateral strain make the crack gap has additional contact resulting in the low initial resistance. For the applied tensile strain between 0% to 3%, the gauge factor is about 275. When the applied tensile strain between 3% to 4.8%, the lateral strain could not provide the additional contact resulting in the higher resistance change and the gauge factor of 340 was achieved. The stability measurement results show that the Zr-based metallic glass thin film strain sensor manufactured by the pre-stretch process has good stability when measuring continuous strain, and the response time of the immediate strain value change is short. In this study, the metallic glass thin film is successfully integrated with the two polymer substrates for the strain sensor application with larger strain limitation.
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2研究目標 2
第二章 文獻回顧 4
2.1 金屬玻璃相關文獻 4
2.2 可穿戴式應變感測器相關文獻 7
2.3 金屬薄膜應變感測器相關文獻 9
第三章 材料與方法 10
3.1金屬玻璃薄膜之製備 10
3.1.1金屬玻璃溫度特性與薄膜濺鍍技術 10
3.1.2金屬玻璃薄膜濺鍍品質控制 13
3.2可撓性薄膜應變感測器之製備 15
3.2.1可撓性薄膜應變感測器之原理 15
3.2.2可撓性應變感測器之製程 18
3.2.3導電性、應變與電阻變化關係、穩定性及溫度效應之量測架構 20
3.3可拉伸性薄膜應變感測器之製備 22
3.3.1可拉伸性薄膜應變感測器之感測原理與製程 22
3.3.2最大拉伸極限實驗、應變電阻關係、應變電阻穩定性實驗架構 25
第四章 結果與討論 27
4.1金屬玻璃薄膜實驗結果 27
4.1.1鋯基金屬玻璃與銅金屬薄膜鍍率之量測結果 27
4.1.2金屬玻璃薄膜與銅金屬濺鍍溫度之量測結果 28
4.2可撓性薄膜應變感測器實驗結果 31
4.2.1導電性實驗量測結果 31
4.2.2應變與電阻變化關係量測結果 32
4.2.3穩定性實驗量測結果 35
4.2.4溫度效應實驗量測結果 38
4.3可拉伸性薄膜應變感測器實驗結果 40
4.3.1最大拉伸極限實驗結果 40
4.3.2應變電阻關係實驗結果 42
4.3.3穩定性實驗結果 45
4.4綜合比較 47
第五章 結論與未來展望 48
5.1結論 48
5.2未來展望 49
參考文獻 50
[1]W. K. Jun, R. H. Willens and, P. O. L. Duwez, “Non-crystalline structure in solidified gold–silicon alloys,” Nature, vol. 187(4740), pp. 869, 1960.
[2]E. Williams and, N. Lavery, “Laser processing of bulk metallic glass: A review,” Journal of Materials Processing Technology, vol. 247, pp. 73-91, 2017.
[3]Inoue, A. and, A. Takeuchi, “Recent development and application products of bulk glassy alloys,” Acta Materialia, vol. 59(6), pp 2243-2267, 2011.
[4]M. Telford, “The case for bulk metallic glass,” Materials today vol. 7(3), pp. 36-43(2004).
[5]J. J. Lai, Y. S. Lin, C. H. Chang, T. Y. Wei, J. C. Huang, Z. X. Liao, C. H. Lin and, C. H. Chen, “Promising Ta-Ti-Zr-Si metallic glass coating without cytotoxic elements for bio-implant applications,” Applied Surface Science, vol. 427, pp. 485-495, 2018.
[6]N. Li, J. Zhang, W. Xing, D. Ouyang and, L. Liu, “3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness,” Materials & Design, vol. 143, pp. 285-296, 2018.
[7]G. Wei, H. Kato, R. Yamada and, J. Saida, “Fabrication and mechanical properties of bulk metallic glass matrix composites by in-situ dealloying method,” Journal of Alloys and Compounds, vol. 707, pp. 332-336, 2017.
[8]Kumar, Golden, A. Desai and, J. Schroers, “Bulk metallic glass: the smaller the better," Advanced materials, vol. 23(4), pp. 461-476, 2011.
[9]J. C. Huang, J. P. Chu and, J. S. C. Jang, “Recent progress in metallic glasses in Taiwan,” Intermetallics, vol. 17(12), pp. 973-987, 2009.
[10]J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang and, P. K. Liaw, “Thin film metallic glasses: preparations, properties, and applications,” Jom, vol. 62(4), pp. 19-24, 2010.
[11]J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, L. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li and, C. Rullyani, “Thin film metallic glasses: Unique properties and potential applications,” Thin Solid Films, vol. 520(16), pp. 5097-5122, 2012.
[12]Y. B. Wang, X. H. Li, X. L. Wang, M. Z. Zhao, E. W. Zhang, Y. J. Bai, Y. F. Zheng and, L. Qin, “Biodegradable CaMgZn bulk metallic glass for potential skeletal application,” Acta biomaterialia, vol. 7(8), pp. 3196-3208, 2011.
[13]M. Carmo, R. C. Seko, S. Ding, G. Kumar, J. Schroers and, A. D. Taylor, “Bulk metallic glass nanowire architecture for electrochemical applications,” ACS nano, vol. 5(4), pp. 2979-2983, 2011.

[14]H. H. Huang, Y. S. Sun, C. P. Wu, C. F. Liu, P. K. Liaw and, W. Kai, “Corrosion resistance and biocompatibility of Ni-free Zr-based bulk metallic glass for biomedical applications,” Intermetallics, vol. 30, pp. 139-143, 2012.
[15]N. W. Khun, H. Yu, Z. Z. Chong, P. Tian, Y. Tian, S. B. Tor and, E. Liu, “Mechanical and tribological properties of Zr-based bulk metallic glass for sports applications,” Materials & Design, vol. 92, pp. 667-673, 2016.
[16]H. Ida, M. Seiryu, N. Takeshita, M. Iwasaki, Y. Yokoyama, Y. Tsutsumi, E. Lkeda, S. Sasaki, S. Miyashita, S. Sasaki, T. Fukunaga, T. Deguchi and, T. T. Yamamoto, “Biosafety, stability, and osteogenic activity of novel implants made of Zr70Ni16Cu6Al8 bulk metallic glass for biomedical application,” Acta biomaterialia, vol. 74, pp. 505-517, 2018.
[17]C. J. Lee, H. K. Lin, S. Y. Sun and, J. C. Huang, “Characteristic difference between ITO/ZrCu and ITO/Ag bi-layer films as transparent electrodes deposited on PET substrate,” Applied surface science, vol. 257(1), pp. 239-243, 2010.
[18]S. M. Song, P. C. Wong, C. W. Chiang, P. H. Tsai, J. S. C. Jang and, C. H. Chen, “A bi-phase core–shell structure of Mg-based bulk metallic glass for application in orthopedic fixation implants,” Materials Science and Engineering: C, pp. 110783, 2020.
[19]J. P. Chu, T. Y. Liu, C. L. Li, C. H. Wang, J. S. C. Jang, M. J. Chen, S. H. Chang and, W. C. Huang, “Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application,” Thin Solid Films, vol. 561, pp. 102-107, 2014.
[20]N. Kaushik, P. Sharma, S. Ahadian, A. Khademhosseini, M. Takahashi, A. Makino, S. Tanaka and, M. Esashi, “Metallic glass thin films for potential biomedical applications,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 102(7), pp. 1544-1552, 2014.
[21]Z. Li, C. Zhang and, L. Liu, “Wear behavior and corrosion properties of Fe-based thin film metallic glasses,” Journal of Alloys and Compounds, 650 (2015): 127-135.
[22]G. H. Lim, N. E. Lee and, B. Lim, “Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection,” Journal of Materials Chemistry C, vol. 4(24), pp. 5642-5647, 2016.
[23]X. G. Yu, Y. Q. Li, W. B. Zhu, P. Huang, T. T. Wang, N. Hu and, S. Y. Fu, “A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection,” Nanoscale, vol. 9(20), pp. 6680-6685, 2017.

[24]Y. Zheng, Y. Li, K. Dai, Y. Wang, G. Zheng, C. Liu and, C. Shen, “A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring,” Composites Science and Technology, vol. 156, pp. 276-286, 2018.
[25]J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu and, L. Park, “A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection,” Nanoscale, vol. 6(20), pp. 11932-11939, 2014.
[26]J. D. Pegan, J. Zhang, M. Chu, T. Nguyan, S. J. Park, A. Paul, J. Kim, M. Bachman and, M. Khine, “Skin-mountable stretch sensor for wearable health monitoring,” Nanoscale, vol. 8(39), pp. 17295-17303, 2016.
[27]J. Kim, S. J. Park, T. Nguyen, M. Chu, J. D. Pegan and, M. Khine, “Highly stretchable wrinkled gold thin film wires,” Applied physics letters, vol. 108(6), pp. 061901, 2016.
[28]J. W. Zha, W. Huang, S. J. Wang, D. L. Zhang, R. K. Y. Li and, Z. M. Dang, “Difunctional graphene–Fe3O4 hybrid nanosheet/polydimethylsiloxane nanocomposites with high positive piezoresistive and superparamagnetism properties as flexible touch sensors,” Advanced Materials Interfaces, vol. 3(1), pp. 1500418, 2016.
[29]E. Roh, B. U. Hwang, D. Kim, B. Y. Kim and, N. E. Lee, “Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers,” ACS nano, vol. 9(6), pp. 6252-6261, 2015.
[30]L. Yi, W. J. K. Wu, L. Qian, X. Y. Q. Xia, K. Mao, S. Yuan, S. Wang and, Y. Jiang, “Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection,” Nano Research, vol. 8.9, pp. 2978-2987, 2015.
[31]C. Yan, J. Wang, W. Kang, M. Cui, C. Y. Foo, K. J. Chee and, P. S. Lee, “Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors,” Advanced materials, vol. 26(13), pp. 2022-2027, 2014.
[32]R. Rahimi, M. Ochoa, W. Yu and, B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS applied materials & interfaces, vol. 7(8), pp. 4463-4470, 2015.
[33]Y. Lin, S. Liu, S. Chen, Y. Wei, X. Dong and, L. Liu, “A highly stretchable and sensitive strain sensor based on graphene–elastomer composites with a novel double-interconnected network,” Journal of Materials Chemistry C, vol. 4(26), pp. 6345-6352, 2016.

[34]H. J. Xian, C. R. Cao, J. A. Shi, X. S. Zhu, Y. F. Huang, S. Meng, L. Gu, Y. H. Liu, H. Y. Bai and, W. H. Wang, “Flexible strain sensors with high performance based on metallic glass thin film,” Applied Physics Letters, vol. 111(12), pp. 121906, 2017.
[35]Q. Fan, Z. Qin, S. Gao, Y. Wu, J. Pionteck, E. Mader and, M. Zhu, “The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%,” Carbon, 50.11 (2012): 4085-4092.
[36]H. Liu, Y. Li, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo and, Z. Guo, “Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications,” Journal of Materials Chemistry C, vol. 4(1), pp. 157-166, 2016.
[37]M. Amjadi, M. Turan, C. P. Clementson and, M. Sitti, “Parallel microcracks-based ultrasensitive and highly stretchable strain sensors,” ACS applied materials & interfaces, vol. 8(8), pp. 5618-5626, 2016.
[38]Y. Wang, L. Wang, T. Yang, X. Li, X. Zang, M. Zhu, K. Wang, D. Wu and, H. Zhu, “Wearable and highly sensitive graphene strain sensors for human motion monitoring,” Advanced Functional Materials, vol. 24(29), pp. 4666-4670, 2014.
[39]T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. I. Najafabadi, D. N. Futaba and, K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nature nanotechnology, vol. 6(5), pp. 296, 2011.
[40]Q. Liu, J. Chen, Y. Li and, G. Shi, “High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions,” ACS nano, vol. 10(8), pp. 7901-7906, 2016.
[41]M. Qu, F. Nilsson, Y. Qin, G. Yang, Y. Pan, X. Liu, G. H. Rodriguez, J. Chen, C. Zhang and, D. W. Schubert “Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black,” Composites Science and Technology, vol. 150, pp. 24-31, 2017.
[42]Y. Pan, X. Liu, J. Kaschta, X. Hao, C. Liu and, D. W. Schubert “Viscoelastic and electrical behavior of poly (methyl methacrylate)/carbon black composites prior to and after annealing,” Polymer, vol. 113, pp. 34-38, 2017.
[43]K. K. Kim, S. Hong, H. M. Cho, J. Lee, Y. D. Suh, J. Ham and, S. H. Ko, “Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks,” Nano letters, vol. 15(8), pp. 5240-5247, 2015.
[44]Y. Wei, S. Chen, F. Li, Y. Lin, Y. Zhang and, L. Liu, “Highly stable and sensitive paper-based bending sensor using silver nanowires/layered double hydroxides hybrids,” ACS applied materials & interfaces, vol. 7(26), pp. 14182-14191, 2015.

[45]H. C. Chu, Y. C. Chang, Y. Lin, S. H. Chang, W. C. Chang, G. A. Li and, H. Y. Tuan, “Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications,” ACS applied materials & interfaces, vol. 8(20), pp. 13009-13017, 2016.
[46]Z. Su, H. Wu, H. Chen, X. Cheng, Y. Song, X. Chen and, H. Zhang, “Digitalized self-powered strain gauge for static and dynamic measurement,” Nano Energy, vol. 42, pp. 129-137, 2017.
[47]L. Lin, H. Deng, X. Gao, S. Zhang, E. Bilotti, T. Peijs and Q. Fu, “Modified resistivity–strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes,” Polymer international, vol. 62(1), pp. 134-140, 2013.
[48]L. M. Ball, “Strain gauge,” U.S. Patent, vol. 2, 556, 132, 1951.
[49]W. J. Chen, T. Y. Liu, H. Y. Lee and, Y. C. Lee, “Ni-Cr-Mn-Y-Nb resistive thin film prepared by co-sputtering,” Materials Chemistry and Physics, vol. 210, pp. 327-335, 2018.
[50]E. Schippel, “Modifications test of vacuum deposition Ni/Cr films with Mn and Si for thin film resistors,” Kristall und Technik, vol. 15(8), pp. 917-919, 1980.
[51]W. Isler and, L. Kitchman. “Influence of deposition and processing parameters on the tcr of ni-cr-cu-al alloy film resistors,” IEEE Transactions on Parts, Materials and Packaging, vol. 5(3), pp. 139-146, 1969.
[52]H. Y. Lee, C. W. He Y. C. Lee and, D. C. Wu, “A study on the characteristics of Cu–Mn–Dy alloy resistive thin films,” Coatings, vol. 9(2), pp. 118, 2019.
[53]D. Meyners, T. V. Hofe, M. Vieth, M. Ruhrig, S. Schmitt and, E. Quandt, “Pressure sensor based on magnetic tunnel junctions,” Journal of Applied Physics, vol. 105(7), pp. 914, 2009.
[54]W. K. Schomburg, Z. Rummler, P. Shao, K. Wulff and, L. Xie, “The design of metal strain gauges on diaphragms,” Journal of Micromechanics and Microengineering, vol. 14(7), pp. 1101, 2004.
[55]H. J. Kim, A. Thukral and, C. Yu, “Highly sensitive and very stretchable strain sensor based on a rubbery semiconductor,” ACS applied materials & interfaces, vol. 10(5), pp. 5000-5006, 2018.
[56]Nge, Pamela N., Chad I. Rogers, and Adam T. Woolley. “Advances in microfluidic materials, functions, integration, and applications,” Chemical reviews, vol. 113(4), pp. 2550-2583(2013).
[57]D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K. Y. Suh, T. I. Kim and, M. Choi, “Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system,” Nature, vol. 516(7530), pp. 222-226, 2014.
[58]A. Livne, E. Bouchbinder, L. Svetlizky and J. Fineberg, “The near-tip fields of fast cracks,” Science, vol. 327(5971), pp. 1359-1363, 2010.
[59]B., Vera, “Principles of Measurement and transduction of biomedical variables,” Academic Press, pp. 155, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top